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Abstract: We consider a three-dimensional dynamical system proposed in Physica D,

164, (2002), 168–186. It is a conservative system and is unusual in that most of the solutions

are unbounded. The paper presented a conjecture that an unstable periodic orbit determines

directions of unbounded orbits of helical form. In the present paper we prove existence and local

uniqueness of the conjectured periodic orbit by a method of numerical verification.
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1. Introduction. We consider the following

system of ordinary differential equations

_x ¼ yðz� 1Þ; _y ¼ zð1� xÞ; _z ¼ xðy� 1Þ;ð1Þ

for real functions xðtÞ, yðtÞ, and zðtÞ of a time-like

variable t. This system was proposed by [2] as a

model for a conservative dynamical system describ-

ing water-waves, etc.: see [2] and the references

therein. It has the following interesting properties:

(i) the phase-volume is conserved, (ii) most of the

solutions are unbounded (but do not blow up in

finite time), (iii) they bend in 90� or not, depending

on initial data. [2] found an unstable periodic orbit

which acts as a separator of direction, which means

that solutions near the periodic orbit stay nearby

for a while and are thrown away either straightly

without a bend or to a direction of 90�-bend. See

Fig. 1. In this sense the periodic orbit may be

viewed as an organising centre, and plays a very

important role in (1). However, at the time of

publication of [2] we had no means to prove

existence of a periodic orbit of that sort.

Our aim in the present paper is to give a

computer-assisted proof of the existence and local

uniqueness of a periodic orbit for (1). The proof uses

a Poincaré map for (1), and a fixed point is proved

to exist by verifying some technical conditions

through a computer programme.

The present paper is organised as follows. In

Section 2, we define the Poincaré map and state

our main theorem. Section 3 briefly introduces the

interval arithmetic on which our method of numer-

ical verification is based. We prove existence of a

fixed point of the Poincaré map in Section 4, and

we introduce in Section 5 a method for computing

the linearised eigenvalues of the fixed point. In

Section 6, we show a method for enlarging the

region in which the fixed point of the Poincaré map

can be proved to be unique. In Section 7, we present

the computational details. Finally, we give con-

cluding remarks in Section 8.

2. Main results. The numerical computa-

tion of [2] shows that the periodic orbit, which is

reproduced in Fig. 2, passes through

ðx; y; zÞ � ð8:043; 0:5;�7:043Þ:

To prove the existence of the periodic orbit, we

first characterise a periodic orbit as a fixed point

of a Poincaré map. To define the Poincaré map we

introduce the following half-plane:

fðx; y; zÞ 2 R3 j xþ z ¼ 1; _xþ _z < 0g;

where _x and _z are those in (1). For the sake of easy

implementation of our computer programme, we

define new coordinates x1; x2; x3 by

x1 ¼ x; x2 ¼ y; x3 ¼ xþ z� 1:ð2Þ

In these new variables the half-plane above becomes

the following

S ¼ fðx1; x2; x3Þ 2 R3 j x3 ¼ 0; x1 > 0g:ð3Þ

The equations for ðx1; x2; x3Þ become

_x1 ¼ x2ðx3 � x1Þ;
_x2 ¼ ð1� x1Þð1� x1 þ x3Þ;
_x3 ¼ x2x3 � x1:

8<
:ð4Þ

Since (2) defines a diffeomorphism between (1) and
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(4), we consider (4) in the rest of the paper. If an

orbit of (4) passes through S, the sign of x3 changes

from positive to negative. We consider the Poincaré

map, which is defined on S and denoted by ~P , in the

usual way. Let � : S ! R2 be the chart on S defined

by

� : ðx1; x2; 0Þ 7! ðx1; x2Þ;

and we define P by P ¼ � � ~P � ��1.

Let X ¼ ½6:5; 8:5� � ½0; 2� � R2. Our goal is to

prove the following

Theorem 1.

(i) For all x 2 X, the positive orbit of ��1ðxÞ 2 S
returns to S at least once, whence the Poincaré

map is well-defined in X. Moreover, there

exists a unique fixed point of P jX. Accordingly,

the corresponding periodic orbit for (1) exists.

(ii) The fixed point of P in X is contained in the

open ball centred at

ð8:0430011130; 0:5Þ

with radius 2:0� 10�10, where the radius is

measured in the norm maxfjx1j; jx2jg.
(iii) The fixed point of P in X is a saddle.

Before explaining the numerical verification

method, we remark that our system (1) is a

conservative system and, in addition, most of the

orbits are unbounded. Some theories on computa-

tion of dynamical systems assume dissipativity

and/or existence of a compact absorbing set.

Accordingly the results of numerical verification

such as [4] are not directly applicable to the present

problem, although some of ideas may be used. As

for the numerical verification for existence of a

periodic orbit in a conservative system, there are

several works. For example, [5] and [6] study the

many-body problem in celestial mechanics. The

periodic orbit in their system is not isolated, since

the system has first integrals and each hypersurface

corresponding to the first integral possesses a

periodic orbit. This seems to be a difficulty for

their problem. They overcame it by deriving a

reduced system in which a periodic orbit is isolated,

and they proved existence of a periodic orbit by a

method of numerical verification. However, proving

the uniqueness in as large region as possible does

not seem to be their prime objective. On the other

hand, it should be noted that our theorem above

guarantees that the periodic orbit is unique in a

relatively large region.

3. Interval arithmetic. We briefly recall

terminology of the interval arithmetic. What fol-

lows is standard one, and the reader can find details

in [10] or [12, Part 1].

In this paper, a closed interval is simply called

an interval. An interval is denoted by ½x� with a

square bracket. For two intervals, binary opera-

tions such as addition, subtraction, multiplication,

and division are defined. For example, multiplica-

tion of ½x� and ½y� is defined by ½x� 	 ½y� :¼
f~x 	 ~y j ~x 2 ½x�; ~y 2 ½y�g, where the right hand side is

also an interval.

Fig. 2. The periodic orbit through ðx; y; zÞ � ð8:043; 0:5;

�7:043Þ, and its projections onto ðx; yÞ, ðy; zÞ, and

ðx; zÞ-planes, respectively from left to right. The squares in

the three figures denote the boundary of ½�10; 10�2.

Fig. 1. Two unbounded orbits. The grey orbit passing through

ðx; y; zÞ ¼ ð15; 0; 3Þ does not bend but the radius reduces. The

black orbit passing through ðx; y; zÞ ¼ ð17:5; 0; 0Þ changes its

course by 90�.
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A vector and a matrix whose entries are

intervals are called an interval vector and an

interval matrix, respectively. Operations for inter-

val vectors and matrices are defined in an obvious

way. We denote the set of all n-dimensional interval

vectors by IRn. Similarly, we denote the set of all

m� n interval matrices by IRm�n.

An interval vector and an interval matrix are

identified with a direct product of intervals. For

example, we may identify a rectangular set ½a; b� �
½c; d� with an interval vector ð½a; b�; ½c; d�Þ. Inclusion

of interval vectors and matrices is defined in the

same way as a set operation.

Many computer softwares and libraries for the

interval arithmetic are available now, and one

can easily implement the algorithms for numerical

verification below. We use CAPD library [13],

which is a C++ library designed for computer-

assisted analysis for dynamical systems. We employ

it since it offers subroutines for solving ordinary

differential equations with verification.

Suppose that we are given ½A� ¼ ð½Aij�Þ2i;j¼1 2
IR2�2 and ½b� ¼ ð½b1�; ½b2�Þ 2 IR2, where ½Aij� and

½bj�ði; j ¼ 1; 2Þ are intervals. We define an interval

½d� by

½d� ¼ ½A11� 	 ½A22� � ½A12� 	 ½A21�;ð5Þ

which contains det ~A for all ~A 2 ½A�. If ½d� does not

contain 0, then all the matrices ~A 2 ½A� are inver-

tible. Let ½y� 2 IR2 be defined by

½y� ¼
ð½A22� 	 ½b1� � ½A12� 	 ½b2�Þ=½d�
ð�½A21� 	 ½b1� þ ½A11� 	 ½b2�Þ=½d�

� �
;ð6Þ

which is the interval version of Cramer’s rule for

2� 2 matrix. Hence ½y� contains the set

fy ¼ ~A�1 ~b j ~A 2 ½A�; ~b 2 ½b�g;ð7Þ

provided that 0 =2 ½d�.
There are more sophisticated methods for

solving a general linear system with verification,

e.g., the Krawczyk method and the interval Gauss–

Seidel method: see [10, Chap. 7] and [12, Sec. 10] for

details. Nevertheless, it is enough for us to compute

(6) by interval arithmetic since our problem is

two-dimensional and the coefficient matrix is well-

conditioned. As far as we have tested for our prob-

lem, the diameter of ½y� obtained by (6) does not

differ much from that obtained by the Krawczyk

method.

4. Existence of a fixed point. In this

section, we recall the interval Newton method by

which we prove the existence of a fixed point of P .

The method was originally introduced by Moore [9].

As far as we know, [3] is the first paper in which the

interval Newton method is applied to the Poincaré

map, and it is now a standard method for proving

the existence of a periodic orbit. Let us briefly

summarise the method to clarify how we have

implemented our computer programme.

We use the interval Newton method in the

following form. Let ½X� 2 IR2 be an interval vector,

and let f : ½X� ! R2 be a continuously differentia-

ble map. Here ½X� is identified with a rectangle

in R2, as was explained above. Let ~x 2 ½X� be the

centre of ½X� viewed as a rectangle. Suppose that

every matrix ~A 2 hullðf 0ð½X�ÞÞ is invertible, where

f 0ðxÞ is the Jacobian matrix of f evaluated at x, and

hullðf 0ð½X�ÞÞ is the smallest interval matrix which

contains f 0ð½X�Þ. Define

Nð½X�Þ ¼ f~x� ~A�1fð~xÞ j ~A 2 hullðf 0ð½X�ÞÞg:ð8Þ

Lemma 2 ([12]). Under the setting above,

½X� contains a unique zero x� of f in ½X� if

Nð½X�Þ 
 ½X�. Moreover, x� 2 Nð½X�Þ. If Nð½X�Þ \
½X� ¼ ;, then there is no zero of f in ½X�.

This lemma is a special case of Theorem 13.2

in [12], and we may omit the proof.

Lemma 2 is used in the following way. We first

define f : �ðSÞ ! R2 by fðxÞ ¼ P ðxÞ � x. We apply

Zgliczynski’s method [14], which is implemented in

CAPD library [13], to compute for a given ½x� 2
�ðSÞ and a given ½X� 2 �ðSÞ an interval vector ½Q�
and an interval matrix ½R� satisfying P ð½x�Þ 
 ½Q�
and P 0ð½X�Þ 
 ½R�. Note that

fð½x�Þ 
 P ð½x�Þ � ½x� 
 ½Q� � ½x�;
f 0ð½X�Þ 
 P 0ð½X�Þ � I2 
 ½R� � I2;

where I2 is the identity matrix of order 2 and is

identified with an interval vector diagð½1; 1�; ½1; 1�Þ.
Then we have

fð½x�Þ 
 ½b� :¼ ½Q� � ½x�;
f 0ð½X�Þ 
 ½A� :¼ ½R� � I2:

ð9Þ

Suppose now that ½X� ¼ ð½X1; X1�; ½X2; X2�Þ 2
IR2 is given, where X1; X1; X2; X2 2 R with X1 �
X1 and X2 � X2. Although Nð½X�Þ itself is not

computable, an interval vector which contains

Nð½X�Þ is computed in the following way.

1 Compute ½x� 2 IR2 by
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½x� ¼
1

2
X1 þX1; X2 þX2

� �

via interval arithmetic. Note that ½x� contains

the centre of ½X�.
2 Compute ½b� 2 IR2 and ½A� 2 IR2�2 with

fð½x�Þ 
 ½b� and f 0ð½X�Þ 
 ½A�, as is shown in

(9).

3 Compute an interval ½d� by (5). If 0 =2 ½d�, then

go to the next step. Otherwise, stop.

4 Compute ½y� 2 IR2 by (6), and compute ½Y � ¼
½x� � ½y� by interval arithmetic.

As a result, ½Y � contains Nð½X�Þ. Let us refer the

above procedure as INOð½X�Þ, that is, we regard

INO as a function which returns ½Y � for an input

½X�.
Since Nð½X�Þ 
 ½Y �, we see that ½Y � 
 ½X�

implies Nð½X�Þ 
 ½X� and that ½Y � \ ½X� ¼ ; implies

Nð½X�Þ \ ½X� ¼ ;. This criterion serves as a suffi-

cient condition for the assumption of Lemma 2 to

hold. If neither ½Y � 
 ½X� nor ½Y � \ ½X� ¼ ;, one

cannot conclude anything about existence by the

lemma. In this case we say that the verification

failed. In addition, if INO returns ‘‘stop’’ at the

third step above, there is the possibility that ½A�
contains a singular matrix and one cannot apply

Lemma 2. In those cases we re-define the input ½X�
and try again.

5. Stability of a fixed point. We now

explain how to test the stability of the fixed point

of P . Suppose that we have proved that there exists

a fixed point x� of P in ½Y � 2 IR2�2. We denote the

eigenvalues of P 0ðx�Þ by �1 and �2. Since (4) is a

divergence-free vector field in R3 and P is a two-

dimensional map, we have

�1�2 ¼ detðP 0ðx�ÞÞ ¼ 1:

Therefore �1 and �2 are given by

�1 ¼
1

2
ð� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4
p

Þ; �2 ¼ 1=�1;

where � is the trace of P 0ðx�Þ. Note that � > 2

implies that both �1 and �2 are real and 0 <
�2 < 1 < �1. Later we show that this is indeed the

case.

6. Uniqueness of a fixed point. The in-

terval vector ½X� of Lemma 2 must be small enough.

Otherwise, the computation breaks down due to

inflation of upper bounds of errors. As far as we

have tested for our problem, the computation of the

Poincaré map often breaks down, if the diameter of

½X� is greater than Oð10�2Þ. Moreover, one may fail

to compute the Jacobian matrix of the Poincaré

map within desired accuracy if the diameter is

greater than Oð10�5Þ. Therefore the diameter of the

uniqueness region which is guaranteed by a single

use of Lemma 2 is quite small.

We therefore wish to enlarge, by another

method, the region in which the uniqueness of the

fixed point of P is guaranteed. Our method is as

follows. Let d and lmax be positive integers. An

interval vector ½X� 2 IR2 and a non-negative inte-

ger l are the inputs of the following procedure.

1 If l � lmax, then output ½X� and exit from this

procedure. If l < lmax, go to the next step.

2 Divide ½X� into m ¼ 2d � 2d small sub-interval

vectors ½X1�; ½X2�; . . . ; ½Xm�, and go to the next

step.

3 For each j ¼ 1; 2; . . . ;m, compute a ½Pj� 2 IR2

such that P ð½Xj�Þ 
 ½Pj� by Zgliczynski’s

method and test whether ½Pj� \ ½Xj� ¼ ; or

not. If the intersection is nonempty, go to step

1 with inputs ½Pj� \ ½Xj� and lþ 1, that is, call

this procedure recursively.

When the procedure above finishes, a consid-

erable number of intervals are judged to contain no

fixed point and we have only a small number of

interval vectors which intersects its image of P , in

which a fixed point may possibly exist. We expect

each of the outputs of the procedure above is small

enough to be verified by Lemma 2. They actually

are and we can prove uniqueness of the fixed point

in a considerably large region. Though it may be a

brute-force method, it actually worked well.

We have not excluded a periodic point of P ,

e.g., an x such that P ðxÞ 6¼ x but P ðP ðxÞÞ ¼ x. We

need a different idea to prove non-existence of a

periodic orbit corresponding to n-periodic orbit of P

for n > 1. Galias [4] has proposed a systematic way

to find all the periodic orbits with period n and has

applied it to the Rössler system. It is, however, not

straightforward to apply Galias’s method to our

problem since the method uses a positively invar-

iant bounded set of P but (4) does not seem to have

one. Therefore we have focused ourselves on the

fixed point of P .

7. Computational detail. In this section,

we show the computational details. Our computer

environment is as follows: Hewlett-Packard Z420

Workstation, Intel Xeon E5-1660 3.30GHz, Ubuntu
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12.04 (Precise) 64bit (Linux 3.2.0-60-generic), the

GNU Compiler Collection version 4.6.3. (We made

another experiment in Linux machines to obtain the

same result.) We implemented our algorithms by

C++ using CAPD library version 3.0 [13]. We used

IVector and IPoincareMap classes, which are

provided by the CAPD library for manipulating

interval vectors and Poincaré maps, respectively.

They are based on intervals whose endpoints are

double-precision floating point numbers.

We examined existence and uniqueness of a

fixed point in ½X� ¼ ð½6:5; 8:5�; ½0; 2�Þ. Computation

was carried out in the following way. First, we

divided ½X� into 29 � 29 subintervals ½Xij�ð1 �
i; j � 29Þ. For each ½Xij�, we applied the algorithm

in Section 6 with

l ¼ 0; lmax ¼ 5; d ¼ 2;

to get a list of intervals which may possibly contain

a fixed point of P . (Under this setting, the diameter

of an output interval vector will be at most

2�18 � 3:8� 10�6, and it is sufficiently small for

the interval Newton method to be applied.) Then

9144 intervals were listed. We next applied the

algorithm in Section 4 to each of these 9144

intervals. As a result, non-existence in 9142 inter-

vals was proved, while the verification failed for the

remaining two interval vectors. They are approx-

imately

½8:0429992; 8:0430031�
½0:4999961; 0:5�

� �

and

½8:0429992; 8:0430031�
½0:5; 0:5000038�

� �
;

which are adjacent to each other. We applied the

algorithm in Section 4 to the union of these interval

vectors, which is approximately

½8:0429992; 8:0430031�
½0:4999961; 0:5000038�

� �
;

and the unique existence of a fixed point in this

interval was proved. In particular, the fixed point of

P j½X� is unique.

Next, we explain how we prove (ii) of Theo-

rem 1. We apply an iterative technique proposed by

Caprani and Madsen [1]. For easy implementation

we employ the method labelled (viii) in the survey

by Mayer [7, p. 149]. First, we compute an approx-

imate value as accurately as possible, say,

xa ¼ ð8:04300111305391; 0:5Þ:

We obtained this value by applying the Newton

method to P ðxÞ � x ¼ 0 with the initial guess

ð8:043; 0:5Þ. Let ½xð0Þ� ¼ ½xa; xa� and ½yð0Þ� ¼ ½xð0Þ�.
With a prescribed " > 0, we generate sequences of

interval vectors by

½xðjþ1Þ� :¼ ð1þ "Þ½yðjÞ� � "½yðjÞ�;ð10Þ
½yðjþ1Þ� :¼ INOð½xðjþ1Þ�Þ;ð11Þ

for j ¼ 0; 1; . . . , until ½yðjþ1Þ� � ½xðjþ1Þ� is satisfied,

where INO is the procedure in Section 4 to compute

an interval vector containing the set defined by (8).

If ½yðjþ1Þ� � ½xðjþ1Þ� holds for some j, then Lemma 2

implies the existence of a fixed point of P in ½yðjþ1Þ�.
We applied the above method with " ¼ 0:1. Then in

our computer environment and programme, INO

did not return ‘‘stop’’, and the iteration successfully

ended at j ¼ 2. Therefore there exists a fixed point

of P in the interval vector ½yð3Þ� which is approx-

imately given by

½8:04300111293052; 8:04300111317316�
½0:49999999999337; 0:50000000000689�

� �
:

Finally, we consider the stability of the fixed

point. We computed an interval matrix ½A� ¼
ð½Aij�Þ2i;j¼1 which contains P 0ð½yð3Þ�Þ, and we com-

puted the trace ½A11� þ ½A22� by Zgliczynski’s meth-

od [14]. The result is: it is contained in

½2:010569; 2:010571�;

showing that it is greater than 2. Therefore the

eigenvalues �1 and �2 of the fixed point satisfy

0 < �2 < 1 < �1, and the fixed point is a saddle.

Moreover, it follows that

�1 2 ½1:108229; 1:108236�;
�2 2 ½0:902334; 0:902340�:

Thus Theorem 1 is proved.

8. Concluding remarks. We demonstrated

that the numerical verification method is powerful

enough to prove existence of a periodic orbit in a

conservative dynamical system. A dynamical sys-

tem related to (1) was proposed by Pehlivan [11].

The system possesses chaotic orbits generated by

period-doubling cascades. In [8] we will use our

method to prove period-doubling bifurcations. Also,

we will analyse (1) and a related system in [2] in our

companion paper.
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