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Abstract: A numerical Godeaux surface X is a minimal surface of general type with

�ðOXÞ ¼ K2
X ¼ 1. Over C such surfaces have pgðXÞ ¼ h1ðOXÞ ¼ 0, but pg ¼ h1ðOXÞ ¼ 1 also

occurs in characteristic p > 0. Keum and Lee [9] studied Godeaux surfaces over C with an

involution, and these were classified by Calabri, Ciliberto, and Mendes Lopes [4]. In character-

istic p � 5, we obtain the same bound jTorsXj � 5 as in characteristic 0, and we show that the

quotient X=� of X by its involution is rational, or is birational to an Enriques surface. Moreover,

we give explicit examples in characteristic 5 of quintic hypersurfaces Y with an action of each of

the group schemes G of order 5, and having extra symmetry by AutG ¼� Z=4Z, hence by the

holomorph H20 ¼ HolG ¼ Go Z=4Z of G.
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1. Introduction. Godeaux surfaces are sur-

faces over C of general type with the smallest

invariants pg ¼ q ¼ 0 and K2
X ¼ 1. Information on

the torsion groups of numerical Godeaux surfaces

was obtained by Bombieri, Miyaoka, and Reid. It is

known that TorsX has order at most 5 and Z=2Z�
Z=2Z is impossible [1,17,19]. Simply connected

examples were first constructed by Barlow in

1982, and Lee and Park [13] gave a more recent

construction. Godeaux surfaces with an involution

over C were studied by Keum and Lee [9], and

subsequently Calabri, Ciliberto, and Mendes Lopes

[4] classified the possibilities for the quotient space

of a Godeaux surface by its involution, proving that

it is either rational or birational to an Enriques

surface.

Lang [11] showed Godeaux surfaces exist in

every characteristic. In his treatment PicX is

reduced, Pic� X ¼ Z=5Z, and X is a quotient of a

quintic hypersurface Y in P3 by an action of the

multiplicative group scheme �5. A minimal surface

X of general type over C with K2
X ¼ 1 and �ðOXÞ ¼

1 has pgðXÞ ¼ h1ðOXÞ ¼ 0, but pgðXÞ ¼ h1ðOXÞ ¼ 1

can also happen in characteristic p ¼ 2, 3 and 5 [15].

These Godeaux surfaces are called nonclassical, and

have nonreduced PicX.

Miranda [16] constructed a Godeaux surface

with nonreduced Picard scheme in characteristic 5

via a Godeaux-like construction. In a similar way,

Liedtke constructed an action of the additive group

scheme �5 on a quintic in characteristic 5 [15] by a

nowhere zero additive vector field.

In these three cases, Pic� X is isomorphic to

Z=5Z, �5 and �5 respectively, and Pic� determines

a finite flat morphism ’:Y ! X which is a torsor

over X under the group scheme ðPic� XÞ_, where

G_ denotes the Cartier dual group scheme of G.

We obtain the same bound jTorsXj � 5 as in

characteristic 0, and we show that the quotient

X=� of X by its involution is rational, or is

birational to an Enriques surface. We study the

three families in characteristic 5 due to Lang [11],

Miranda [16], and Liedtke [15] with Pic� X.

We show explicit examples of quintic hyper-

surface Y having symmetry by AutG ¼� Z=4Z

which is the holomorph H20 ¼ HolG ¼ Go Z=4Z

of G to give an involution on examples in each

family in characteristic 5.

2. Godeaux surfaces in positive charac-

teristic.

2.1. Notation and basic results. We work

over an algebraically closed field k of characteristic

p 6¼ 2. Recall the following definitions.

�ðOXÞ :¼
Pn

i¼0ð�1ÞihiðOXÞ
bet
i :¼ dimHi

etðX;QlÞ
eðXÞ :¼ �topðXÞ :¼

Pn
i¼0ð�1Þibet

i ðXÞ
!X :¼ dualizing sheaf of X

pg :¼ h2ðX;OXÞ ¼ dimH0ðX;!XÞ
q :¼ dim AlbX
TX :¼ HomOXð�1

X;OXÞ
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Pic� X :¼ subscheme of PicX of numerically

trivial Cartier divisors

W2ðkÞ :¼ ring of second Witt vectors of k.

Proposition 2.1 (Proposition 1, [15]). Let X

be a minimal surface of general type with K2
X ¼ 1.

Then the following equalities and inequalities hold:

1 � �ðOXÞ � 3; pgðXÞ � 2; h1ðOXÞ � 1;

b1ðXÞ ¼ 0; j�et
1 ðXÞj � 6:

In particular, if h1ðOXÞ 6¼ 0, then X has nonreduced

Picard scheme, which can happen only in positive

characteristic.

Definition 2.2. A numerical Godeaux sur-

face is a minimal surface X of general type over

an algebraically closed field with K2
X ¼ 1 and

�ðOXÞ ¼ 1. In this paper we abbreviate numerical

Godeaux surface to Godeaux surface.

Theorem 2.3 (Corollary 1, [15]). Nonclassi-

cal Godeaux surfaces can exist only in characteristic

2 � p � 5.

2.2. TorsX. Let G be a subgroup scheme of

order n in Pic� X. Then there is a finite morphism

’:Y ! X that is a nontrivial G_-torsor. If the cover

is purely inseparable, Y may be singular, but is still

an irreducible Gorenstein surface [6]. If ’:Y ! X is

a �p-torsor then
’�OY ¼

M
0�i�p�1

Li;

where L0 ¼ OX, L1 2 PicX is a line bundle with

L�p1 ¼� OX, and Li ¼� L�i1 .

If ’:Y ! X is a �p-torsor then ’�OY is a

successive extension of sheaves isomorphic to OX
[6, Proposition I.1.7]. And the equalities

�ðOY Þ ¼ p�ðOXÞ and K2
Y ¼ pK2

Xð2:1Þ

hold as for a finite degree n Galois étale cover [15].

Proposition 2.4. Let X be a minimal sur-

face of general type over an algebraically closed field

k. Suppose characteristic p � 5. If K2
X ¼ 1 and

�ðOXÞ ¼ 1, then jPic� Xj � 5.

Proof. The proof is similar to Reid [18]. Let

’:Y ! X be the G_-torsor associated to G ¼ Pic� X

of order n. Since char k 6¼ 2; 3, the Noether inequal-

ity K2 � 2pg � 4 and (2.1) imply jPic� Xj � 6.

Suppose jPic� Xj ¼ 6. There is 6-to-1 étale

cover ’:Y ! X with pgðY Þ ¼ 5, K2
Y ¼ 6. Then Y

is a Horikawa surface with h1ðOY Þ ¼ 0. The canon-

ical map is a double cover ’KY
:Y ! Z and restricts

to a g3
6 on a general C 2 jKY j. The classical Clifford

theorem on an irreducible Gorenstein curve says

that C is hyperelliptic [5]. The canonical image Z

is an irreducible surface of degree 3 spanning P4

[6, Proposition 0.1.2 (iii)], [14, Theorem 2.3], and Z

is either F1 embedded in P4 as the cubic scroll or

the cone over a rational normal curve of degree 3 in

P4 [14, Theorem 3.3]. In either case, the Horikawa

double cover induces a biregular involution, and

the composite p 	 ’ :¼ f (where p is the projection

p:F ! P1) is a canonically defined pencil of curves

f:Y ! P1 with fibers of genus 2. The Horikawa

double cover induces a biregular involution since we

work in characteristic 6¼ 2, and the surface Y has a

canonically defined pencil of curves of genus 2. This

contradicts the free action of Z=3Z. �

Remark 2.5. Proposition 2.4 implies that if

Pic� X contains a nontrivial subgroup scheme of

odd order, then Pic� X has no 2-torsion.

3. Numerical Godeaux surfaces with an

involution in odd characteristic. Let X be a

smooth Godeaux surface in positive characteristic

p 6¼ 2 with an involution �. The quotient double

cover �:X ! T :¼ X=� fits in the diagram

W

V X

T

π π

ε

η
:

ð3:1Þ

Given an involution � on X, its fixed locus is the

union of a smooth curve R and n isolated fixed

points p1; . . . ; pn. The singularities of T are canon-

ical and the adjunction formula gives KX 

��KT þR. In diagram (3.1), let " be the blowup of

X at n isolated fixed points in X of the action of �.

The quotient map � induces a double cover e�, where

� is the minimal resolution of the n ordinary double

points of T . We set Ei :¼ "�ðpiÞ, R0 :¼ "�ðRÞ on V

and Ci :¼ e�ðEiÞ, B0 :¼ e�ðR0Þ on the smooth surface

W . The Ci are n disjoint �2-curves.

The map e� is a finite flat double cover with

branch locus eB :¼ B0 þ
Pn

i¼1 Ci. Thus there exists a

line bundle L on W for which 2L 
 eB and

e��OV ¼ OW � L�1. Later in Lemma 3.6, we assume

in addition that KX is ample, so that Hm has no

�2-curves other than the four Ci.

Proposition 3.1. Let X be a minimal sur-

face of general type in odd characteristic with an

involution �. Then:

(i) 2KW þ B0 is nef and big;

(ii) ð2KW þB0Þ2 ¼ 2K2
X;

(iii) KW ðKW þ LÞ � 0;

(iv) The Kodaira dimension �ðW Þ � 0.
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Proof. (i) and (ii) follow from e��ð2KW þ B0Þ ¼
"�ð2KXÞ. Part (iii) is clear by formula (ii). For (iv),

since the Kodaira dimension � is a birational

invariant, consider ’:D � W ! D0 � Wmin :¼W 0,
where D 2 j2KW þB0j and D0 ¼ ’�D. Suppose by

contradiction that �ðW Þ � 1. Then DKW � 0,

which implies D0KW 0 � 0. For m� 0 we have

D0mKW 0 ¼ D0ðM þ F Þ, where M is the moving part

and F the fixed part. Then D0KW 0 > 0, which

contradicts D0KW 0 � 0. Hence �ðW Þ � 0. �

3.1. Vanishing theorem for 2KW þL. The

Kodaira vanishing theorem and its extension

due to Kawamata and Viehweg may fail in posi-

tive characteristic [7]. However, under additional

assumptions, notably lifting to W2ðkÞ, the

Kawamata–Viehweg vanishing theorem does hold.

Assumption 3.2. We fix the notation used

in Theorem 3.3. X denotes a d-dimensional projec-

tive smooth variety over a perfect field k. Let E ¼Pm
j¼1 Ej be a reduced simple normal crossing divisor

on X. Assume that E � X has a lifting eE ¼Pm
j¼1

eEj � eX to W2ðkÞ.
Theorem 3.3 (Corollary 3.8, [8]). Let X be

projective over a Noetherian affine scheme and

let D be an ample Q-divisor on X such that

SuppðD� ½D
Þ � SuppðEÞ. Assume that E � X ad-

mits a lifting eE � eX to W2ðkÞ. Then, if iþ j > d ¼
dimX and if p > d, we have

HiðX;�j
XðlogEÞð�E � ½�D
ÞÞ ¼ 0:ð3:2Þ

Proposition 3.4 ([12]). Let X be an alge-

braic surface with isolated normal singularities,

�:V ! X its minimal resolution, and E the reduced

exceptional divisor. If X has a cyclic quotient

singularity of type 1
n ð1; n� 1Þ, we assume that

n is coprime to p. Then we have equality

��TV ð� logEÞ ¼ ��TV ¼ TX.

We keep the notation of diagram (3.1), C :¼Pn
i¼1 Ci and Hm :¼ KW þ L� ð12 þ 1

mÞC.

Lemma 3.5. Hm is an ample Q-divisor for

m� 0.

Proof. Let N :¼ KW þ L� 1
2

Pn
i¼1 Ci, then

N ¼ 1
2 ð2KW þB0Þ in (3.1). e��N ¼ 1

2 "
�ð2KXÞ is a

nef and big divisor on V . For s� 0 the linear

system jsN j is basepoint free and the associated

morphism is birational, and contracts exactly Ci.

Hence N ¼ ��A for some ample Q-divisor A, and

then Lþ �ð"�KXÞ ¼ Lþ �ðe��NÞ is ample for � � 0

by [10, Proposition 1.45]. Therefore Hm is ample for

m� 0. �

Consider the following sequence:

0! TW ð� logCÞ ! TW !
M

NCijW ! 0:ð3:3Þ

Lemma 3.6. ðW;CÞ lifts over W2ðkÞ.
Proof. (3.3) gives the long exact sequence:

� � � ! H1ðTW Þ ! H1ð
M

NCijW Þ
! H2ðTW ð� logCÞÞ ! H2ðTW Þ ! 0:

By results of Lee and Nakayama in [12], and by

Section 1 of Burns and Wahl [3], the morphism

H1ðTW Þ !
L
H1ðNCijW Þ is surjective. If W is ra-

tional or an Enriques surface, then H2ðTW Þ ¼ 0

holds in any characteristic except possibly 2. Hence

H2ðTW ð� logCÞÞ ¼ 0 by the above exact sequence,

so that ðW;CÞ lifts to W2ðkÞ by [20, Lemma 4.1].�

Lemma 3.7. Let W , L be as above. Then

HiðW;OW ð2KW þ LÞÞ ¼ 0 for i > 0.

Proof. By Lemma 3.5, Hm is ample for m� 0.

Now ðW;CÞ lifts over W2ðkÞ by Lemma 3.6. Applied

to Theorem 3.3, this gives the vanishing

HiðW;OW ð2KW þ LÞÞ ¼ 0 for i > 0:
�

By Riemann–Roch on surfaces, and e��OV ¼
OW � L�1, we get �ðOV Þ ¼ 2�ðOW Þ þ 1

2 LðKW þ LÞ,
which holds in odd characteristic.

Theorem 3.8. Let X, V and W be as above,

and n the number of fixed points of �. Then:

(i) �ðOW Þ ¼ 1; and (ii) n � 5:

Proof. By the Riemann–Roch theorem, Lem-

ma 3.7 and the standard double cover formula

0 � h0ð2KW þ LÞ ¼ �ð2KW þ LÞ
¼ �ðOW Þ þ 1

2ð2KW þ LÞðKW þ LÞ
¼ �ðOV Þ � �ðOW Þ þKW ðKW þ LÞ:

Suppose by contradiction that �ðOW Þ � 0. Then,

K2
V ¼ 2ðKW þ LÞ2

¼ 2ððKW þ LÞKW þ 2�ðOV Þ � 4�ðOW ÞÞ
¼ 2ðh0ðKW þ LÞ þ �ðOV Þ � 3�ðOW ÞÞ � 2:

A contradiction, and hence �ðOW Þ ¼ 1. From the

standard double cover formula, (i), and by Propo-

sition 3.1 (iii), we have ðKW þ LÞ2 � �2. So that

K2
V ¼ e��ðKW þ LÞ2 � �4, hence n � 5. �

Corollary 3.9. Either W is rational or its

minimal model is birational to an Enriques surface.

Proof. From Theorem 3.8 (i), Proposition 3.1

(iv) and the Table of possible invariants for surfaces

with � ¼ 0 in [2], pgðW Þ ¼ h1ðOW Þ ¼ 0. The result

thus follows from the classification of surfaces. �
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Lemma 3.10. HiðW;OW ð2KW þ LÞÞ ¼ 0 for

i > 0, hence h0ðW;OW ð2KW þ LÞÞ ¼ 0.

Proof. By Theorem 3.8 (i), �ðOW Þ ¼ 1 and

LðKW þ LÞ ¼ �2. Therefore �ð2KW þ LÞ � 0. Thus

Hið2KW þ LÞ ¼ 0 if i > 0, hence h0ðW;OW ð2KW þ
LÞÞ ¼ 0. �

Corollary 3.11. Let ’ be the bicanonical

map of X. Then:

(i) ’ is composed with �;

(ii) ðKW þ LÞKW ¼ 0;

(iii) n ¼ 5.

Proof. Lemma 3.10 gives (i). Vanishing for

2KW þ L and (i) give h0ð2KW þ LÞ ¼ KW ðKW þ
LÞ ¼ 0, K2

V ¼ e��ðKW þ LÞ2 ¼ 2ðKW þ LÞ2, and n ¼
K2
X �K2

V ¼ 1� 2ðKW þ LÞ2 ¼ 5. �

Lemma 3.12. Let f :X ! E be a double

cover with X a nonsingular surface of general type

and E birational to an Enriques surface in charac-

teristic p 6¼ 2. Then f�KE is a nontrivial torsion

element in PicX. Equivalently, if K ! E is the K3

double cover, then the fiber product Y ¼ X �E K is

irreducible.

Proof. Consider

K

Y X

E

f
ϕ

:

ð3:4Þ

We can assume that X ! E is the quotient by an

involution, so E has only 1
2 ð1; 1Þ singularities. The

ramification locus of X ! E is a nonzero divisor

DE. For otherwise KX ¼ f�KE is numerically zero,

which contradicts X of general type. Consider the

fiber product Y ¼ X �E K as the composite Y !
K ! E. Here ’:K ! E is the K3 double cover.

Also Y ! K is ramified in the divisor DK ¼ ’�DE

by fiber product. Now DK > 0 and therefore Y is

an irreducible surface. By base change, Y ! X is

the double cover corresponding to f�KE, so that

f�KE 6¼ 0 in PicX if and only if Y is irreducible.

�

Corollary 3.13. Let X be a Godeaux surface

with 5-torsion in characteristic 5. Then the bira-

tional type of the quotient space of X by an

involution cannot be an Enriques surface.

Proof. Assume that the quotient of X is an

Enriques surface W . We may assume W is minimal.

An Enriques surface W in characteristic 6¼ 2 has

KW a 2-torsion class. Therefore the algebraic

fundamental group �et
1 ðW Þ is isomorphic to Z=2Z.

The fundamental group is a birational invariant of

surfaces with at worst rational singularities. There

is an étale 2-to-1 cover f :S !Wmin with S a K3

surface in any characteristic [2]

S

X

W

X

Wmin

2 : 1

2 : 1 :

ð3:5Þ

If the quotient of X by its involution is

birational to an Enriques surface W , the pullback

of the 2-torsion class KW defines a nontrivial 2-

torsion class on X by Lemma 3.12, so jPic�Xj must

have even order. This contradicts Remark 2.5. �

4. Godeaux surfaces in characteristic 5

with an involution. The Godeaux surfaces in

characteristic 5 due to Lang [11], Miranda [16], and

Liedtke [15] are constructed as quotients X ¼ Y =G
of a quintic hypersurface Y � P3 by a group scheme

G of order 5 action freely. Here if G ¼ Z=5Z, free

means that G acts without fixed points. In the

inseparable cases �5 or �5, it means that G acts by

a nowhere zero vector field. They prove the non-

singularity of X by using Bertini’s theorem for a

very ample linear system on P3=G. Instead, in

each case, we give an explicit example of Y having

symmetry by AutG ¼� Z=4Z, hence by the holo-

morph H20 ¼ HolG ¼ Go Z=4Z of G. For the two

inseparable cases, the nonsingularity of X involves

a nonclassical calculation: as we show in 4.4, Y has

exactly 11 singular points of type A4.

4.1. The case G ¼ Z=5Z. Miranda [16] takes

the linear map � given by the matrix:

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

0
B@

1
CA:

He constructs a quintic surface Y invariant under

h�i using the subspace V of quintic forms generated

by norms NðlÞ ¼
Q4

i¼0 �
iðlÞ of linear forms l; these

forms define an embedding P3=h�i � PðV Þ, and his

X is a hyperplane section.

Lemma 4.1. The linear automorphisms

A ¼
1 3 3 1

0 1 2 1

0 0 1 1

0 0 0 1

0
B@

1
CA; B ¼

1 0 0 0

0 2 0 0

0 0 4 0

0 0 0 3

0
B@

1
CA

generate an action of HolG ¼ Z=5Zo Z=4Z on P3.

Clearly A;B2 generate an action of D10.

Proof. One checks directly that A5 ¼ 1, B4 ¼ 1

and BAB�1 ¼ A2. �
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Proposition 4.2. There exists a nonsingular

hypersurface Y in P3 invariant under HolG action.

Proof. Set

f :¼ x5 þ 3x3ywþ 2x3z2 þ 3x2y2zþ 2x2zw2 � xy4

� xy2w2 þ 2xz4 þ 3xw4 þ 2y3zwþ 3y2z3 þ yzw3:

One checks that f is invariant under A and B, and

the quintic surface Y � P3 defined by f ¼ 0 is

nonsingular. (This is easy by computer algebra, but

it can also be done by hand.) �

Now the quotient Y ! X is an étale Z=5Z

cover of a Godeaux surface X with pgðXÞ ¼
h1ðOXÞ ¼ 1 and �1 ¼ Z=5Z, and the HolG action

on Y descends to a Z=4Z action on X, so in

particular an involution.

4.2. The case G ¼ �5. Lang’s Godeaux

surfaces [11] satisfy pgðXÞ ¼ h1ðOXÞ ¼ 0, and work

in all characteristics. The group scheme �5 acts on

P3 by "ðxiÞ ! "ixi and P3=�5 is nonsingular except

at the 4 coordinate points. If Y does not pass

through these points, the �5 action on P3 restricts

to a free action on Y . The general hyperplane X ¼
Y =�5 is a nonsingular Godeaux surface.

Lemma 4.3. Let A ¼ �5 act on P3 with

coordinates x; y; z; w by 1
5 ð1; 2; 4; 3Þ. The permuta-

tion B ¼ ðx; y; z; wÞ of S4 defines a linear map of P3

that normalizes the �5 action, and generates an

action of the semidirect product group scheme

Hol�5 ¼ �5 o Z=4Z. Then hA;B2i is a dihedral

group scheme D10.

Proof. The 4-cycle B ¼ ðx; y; z; wÞ corresponds

to the generator " 7! "2 of Aut�5 ¼� Z=4Z. One

checks that BAB�1 ¼ A2. �

Proposition 4.4. There exists a hypersur-

face Y5 � P3 invariant under Hol�5 such that the

quotient X ¼ Y =�5 is a nonsingular Godeaux sur-

face.

Proof. Set

f ¼ x5 þ y5 þ z5 þ w5 þ 2ðx3zwþ xy3wþ xyz3

þ yzw3Þ þ 3ðx2y2zþ x2yw2 þ xz2w2 þ y2z2wÞ:
Clearly Y is invariant under Hol�5 and D10. See 4.4

for the nonsingularity of X. �

4.3. The case G ¼ �5. Liedtke [15] uses the

vector field 	 :¼ y @
@x þ z @

@y þ w @
@z to generate an �5

action on P3. Let V be the vector space of elements

of degree 5 in the fixed ring of 	. The morphism

’: P3 ! PðV Þ can be identified with the quotient

map P3 ! P3=�5, at least outside ½1 : 0 : 0 : 0
.
Its general hyperplane is a nonsingular Godeaux

surface X ¼ Y =�5 quotient of a 	-invariant quintic

Y5 � P3.

Lemma 4.5. The following matrices gener-

ate an action of Hol�5 ¼ �5 o Z=4Z on P3:

A ¼
1 3t 3t2 t3

0 1 2t t2

0 0 1 t

0 0 0 1

0
B@

1
CA; B ¼

1 0 0 0

0 2 0 0

0 0 4 0

0 0 0 3

0
B@

1
CA

such that hAi ¼� �5 with t5 ¼ 0, hBi ¼� Z=4Z. More-

over A;B2 generate a dihedral group scheme D10.

Proof. The matrix A with t5 ¼ 0 defines a

group scheme �5. One sees that BAB�1 ¼ A2 as in

Lemma 4.1. To prove D10 ¼ hA;B2i is clear. �

Proposition 4.6. There exists a hypersur-

face Y5 � P3 invariant under Hol�5 with quotient

Y =�5 a nonsingular Godeaux surface.

Proof. Set

f :¼ x5 þ 2xy2w2 þ xyz2wþ 2xz4

þ 2xw4 � y3zwþ y2z3 � yzw3 � z3w2:

Y is invariant under �5, Z=4Z and hence HolG. As

in the �5 case, we show in 4.4 that X is nonsingular.

�

4.4. Nonsingularity of the quotient X. A

quintic Y with an inseparable group action as in

Proposition 4.4 and 4.6 must be singular. In fact a

nonsingular quintic Y has eðY Þ ¼ c2ðY Þ ¼ 55. But a

nonsingular surface with an everywhere nonzero

vector field has c2ðY Þ ¼ 0. Alternatively, if Y is

an inseparable cover of a nonsingular Godeaux

surface X, then X and Y are homeomorphic in the

étale topology, so eðY Þ ¼ eðXÞ ¼ 11. We define

the singular subscheme of Y by V ðJÞ � Y , where

JðfÞ :¼ ðf; @f@x ;
@f
@y ;

@f
@z ;

@f
@wÞ is the Jacobian ideal.

Lemma 4.7. Let f be either of the invar-

iant quintic polynomials of Proposition 4.4 and

4.6. Then dimV ðJÞ ¼ 0, degV ðJÞ ¼ 55 and

degV ðJÞred ¼ 11.

Proof. Computer algebra. (A Magma script is

available on request.) �

Corollary 4.8. Y has 11 singularities of type

A4 (of analytic type xy ¼ z5), and X is nonsingular.

Proof. Lemma 4.7 says that V ðJÞ is supported

at 11 distinct singular points of Y . �5 or �5 act

freely on P3 except at the fixed coordinate points

and V ðJÞ is invariant under these G actions. Define

J ¼ J �OP3 to be the sheaf of ideals generated by J,

and J i its stalks at the 11 singular points. Then

J ¼
T11
i¼1 J i. Each J i is G-invariant, so that V ðJ iÞ

contains an orbit of G. From Lemma 4.7, each
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V ðJ iÞ coincides with the G-orbit of Pi, which is

a subscheme of length 5. Hence OP3=J i ¼� k½G
 ¼�
k½z
=z5. We choose local regular coordinates x; y; z

in the local ring OP3;Pi
, so that V ðJ iÞ ¼ ðx; y; z5Þ.

Thus x; y 2 J i, and after a coordinate change f ¼
xy� z5 + higher order terms.

The group scheme G acts by an everywhere

nonzero p-closed vector field D, and DðfÞ ¼ 0. It

follows that D ¼ a0ðx @
@x � y @

@yÞ þ b @
@z, where a0 2

k½½x; y; z

 and b is unit. We want to arrange that

Dx ¼ Dy ¼ 0 after coordinate change. Set


 ¼ xð1þ �1zþ � � � þ �4z
4Þ; � ¼ yð1þ � � � þ �4z

4Þ�1:

We take �1; . . . ; �4 2 OP3;Pi
then Dð
Þ; Dð�Þ 2 ðz4Þ.

This coordinate change gives D ¼ az4ðx @
@x � y @

@yÞ þ
b @
@z. Dx ¼ axz4, so that D5x ¼ 4!b4ðaxÞ þ � � � ¼

� � axz4. D5ðxÞ ¼ D4ðaz4xÞ includes the term a � 4! �
b4x and other terms in a �m2, where m is a maximal

ideal. But D5ðxÞ ¼ cDðxÞ ¼ caz4x with c ¼ 0 or 1, a

is divisible by z. Since OP3;Pi
is UFD, hence a ¼ 0.

Similarly for DðyÞ, then the vector field acting on z

only by z! �zþ � with �5 ¼ 1, �5 ¼ 0. Thus x; y 2
OX;Qi

are regular functions on the quotient X ¼
Y =G and the ideal they generate in OY ;P is JOY .

Therefore x; y generate the maximal ideal of OX;Q,

which implies X is nonsingular. �
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