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Abstract: A numerical Godeaux surface X is a minimal surface of general type with
x(Ox) = K% =1. Over C such surfaces have p,(X) = h'(Ox) =0, but p, =h'(Ox) =1 also
occurs in characteristic p > 0. Keum and Lee [9] studied Godeaux surfaces over C with an
involution, and these were classified by Calabri, Ciliberto, and Mendes Lopes [4]. In character-
istic p > 5, we obtain the same bound |Tors X| < 5 as in characteristic 0, and we show that the
quotient X /o of X by its involution is rational, or is birational to an Enriques surface. Moreover,
we give explicit examples in characteristic 5 of quintic hypersurfaces Y with an action of each of
the group schemes G of order 5, and having extra symmetry by Aut G = Z/47Z, hence by the
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holomorph Hayy = HolG = G x Z/4Z of G.
Key words:

1. Introduction. Godeaux surfaces are sur-
faces over C of general type with the smallest
invariants p, = ¢ =0 and K% = 1. Information on
the torsion groups of numerical Godeaux surfaces
was obtained by Bombieri, Miyaoka, and Reid. It is
known that Tors X has order at most 5 and Z/2Z &
Z/27Z is impossible [1,17,19]. Simply connected
examples were first constructed by Barlow in
1982, and Lee and Park [13] gave a more recent
construction. Godeaux surfaces with an involution
over C were studied by Keum and Lee [9], and
subsequently Calabri, Ciliberto, and Mendes Lopes
[4] classified the possibilities for the quotient space
of a Godeaux surface by its involution, proving that
it is either rational or birational to an Enriques
surface.

Lang [11] showed Godeaux surfaces exist in
every characteristic. In his treatment PicX is
reduced, Pic" X = Z/5Z, and X is a quotient of a
quintic hypersurface Y in P? by an action of the
multiplicative group scheme p5. A minimal surface
X of general type over C with K3 = 1 and x(Ox) =
1 has py(X) = h'(Ox) =0, but p,(X) = h'(Ox) =1
can also happen in characteristic p = 2, 3 and 5 [15].
These Godeaux surfaces are called nonclassical, and
have nonreduced Pic X.

Miranda [16] constructed a Godeaux surface
with nonreduced Picard scheme in characteristic 5
via a Godeaux-like construction. In a similar way,
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Liedtke constructed an action of the additive group
scheme a5 on a quintic in characteristic 5 [15] by a
nowhere zero additive vector field.

In these three cases, Pic” X is isomorphic to
Z/5Z, p; and as respectively, and Pic” determines
a finite flat morphism ¢:Y — X which is a torsor
over X under the group scheme (Pic” X)", where
GV denotes the Cartier dual group scheme of G.
We obtain the same bound |TorsX| <5 as in
characteristic 0, and we show that the quotient
X/o of X by its involution is rational, or is
birational to an Enriques surface. We study the
three families in characteristic 5 due to Lang [11],
Miranda [16], and Liedtke [15] with Pic™ X.

We show explicit examples of quintic hyper-
surface Y having symmetry by AutG = Z/47Z
which is the holomorph Hay =HolG = G x Z/4Z
of G to give an involution on examples in each
family in characteristic 5.

2. Godeaux surfaces in positive charac-
teristic.

2.1. Notation and basic results. We work
over an algebraically closed field k of characteristic
p # 2. Recall the following definitions.

X(Ox) =37 (=1)'W'(Ox)

be' = dim H!, (X, Q) _

e(X) = Xeop(X) = 20110 (—1) B (X)

wy := dualizing sheaf of X

py = h*(X,0x) = dim H*(X, wy)

q:=dimAlb X

TX = Homox (Q}(, Ox)
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Pic” X := subscheme of Pic X of numerically

trivial Cartier divisors

W5 (k) := ring of second Witt vectors of k.

Proposition 2.1 (Proposition 1, [15]). Let X
be a minimal surface of general type with K% = 1.
Then the following equalities and inequalities hold:

1 S X(OX) S 37 p(](X) S 27 hl(OX) S 17
h(X)=0, [n'(X)|<6.

In particular, if h*(Ox) # 0, then X has nonreduced
Picard scheme, which can happen only in positive
characteristic.

Definition 2.2. A numerical Godeauzr sur-
face is a minimal surface X of general type over
an algebraically closed field with K% =1 and
X(Ox) = 1. In this paper we abbreviate numerical
Godeauz surface to Godeaux surface.

Theorem 2.3 (Corollary 1, [15]). Nonclassi-
cal Godeaux surfaces can exist only in characteristic
2<p<5.

2.2. TorsX. Let G be a subgroup scheme of
order n in Pic” X. Then there is a finite morphism
©:Y — X that is a nontrivial GV-torsor. If the cover
is purely inseparable, Y may be singular, but is still
an irreducible Gorenstein surface [6]. If ¢: Y — X is
a p,-torsor then

0.0y = @ L,
0<i<p-1
where Ly = Oy, L € PicX is a line bundle with
LYP = Oy, and L; = L{.

If :Y — X is a ay-torsor then ¢,Oy is a
successive extension of sheaves isomorphic to Ox
[6, Proposition 1.1.7]. And the equalities

(2.1)  x(Oy)=px(Ox) and Kj =pK%

hold as for a finite degree n Galois étale cover [15].

Proposition 2.4. Let X be a minimal sur-
face of general type over an algebraically closed field
k. Suppose characteristic p>5. If K% =1 and
x(Ox) =1, then |Pic” X| < 5.

Proof. The proof is similar to Reid [18]. Let
©:Y — X be the GY-torsor associated to G = Pic”™ X
of order n. Since char k # 2,3, the Noether inequal-
ity K? > 2p, — 4 and (2.1) imply |Pic” X| < 6.

Suppose |Pic” X| =6. There is 6-to-1 étale
cover ¢:Y — X with p,(Y) =5, K{ =6. Then Y
is a Horikawa surface with h!'(Oy) = 0. The canon-
ical map is a double cover ¢k, :Y — Z and restricts
to a gi on a general C € |Ky|. The classical Clifford
theorem on an irreducible Gorenstein curve says
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that C is hyperelliptic [5]. The canonical image Z
is an irreducible surface of degree 3 spanning P*
[6, Proposition 0.1.2 (iii)], [14, Theorem 2.3], and Z
is either F; embedded in P* as the cubic scroll or
the cone over a rational normal curve of degree 3 in
P* [14, Theorem 3.3]. In either case, the Horikawa
double cover induces a biregular involution, and
the composite p o ¢ := f (where p is the projection
p: F — P!) is a canonically defined pencil of curves
f:Y — P! with fibers of genus 2. The Horikawa
double cover induces a biregular involution since we
work in characteristic # 2, and the surface Y has a
canonically defined pencil of curves of genus 2. This
contradicts the free action of Z/3Z. g

Remark 2.5. Proposition 2.4 implies that if
Pic" X contains a nontrivial subgroup scheme of
odd order, then Pic™ X has no 2-torsion.

3. Numerical Godeaux surfaces with an
involution in odd characteristic. Let X be a
smooth Godeaux surface in positive characteristic
p # 2 with an involution o. The quotient double
cover m: X — T := X /o fits in the diagram

Vv X
(31) I
w T -

Given an involution ¢ on X, its fixed locus is the
union of a smooth curve R and n isolated fixed
points p1,...,p,. The singularities of T" are canon-
ical and the adjunction formula gives Ky =
7 Kr + R. In diagram (3.1), let ¢ be the blowup of
X at n isolated fixed points in X of the action of o.
The quotient map 7 induces a double cover 7, where
7 is the minimal resolution of the n ordinary double
points of T. We set E; :=¢*(p;), Ry :=€*(R) on V
and C; := 7(E;), By := 7(Rp) on the smooth surface
W. The C; are n disjoint —2-curves.

The map 7 is a finite flat double cover with
branch locus B := By + Z?:l C;. Thus there exists a
line bundle L on W for which 2L =B and
7.0y = Oy @ L. Later in Lemma 3.6, we assume
in addition that Kx is ample, so that H,, has no
—2-curves other than the four C;.

Proposition 3.1. Let X be a minimal sur-
face of general type in odd characteristic with an
involution o. Then:

(i) 2Kw + By is nef and big;

(ii) (2Kw + By)® = 2K%;

(iii) KW'(KW + L) <0

(iv) The Kodaira dimension k(W) < 0.
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Proof. (i) and (ii) follow from 7 (2K + By) =
e*(2Kx). Part (iii) is clear by formula (ii). For (iv),
since the Kodaira dimension x is a birational
invariant, consider ¢:D C W — D' C Wy, := W',
where D € |2Kw + By| and D' = . D. Suppose by
contradiction that (W) >1. Then DKy <0,
which implies D'Ky» <0. For m >0 we have
D'mKy» = D'(M + F), where M is the moving part
and F the fixed part. Then D'Ky~ >0, which
contradicts D'Ky» < 0. Hence (W) < 0. O

3.1. Vanishing theorem for 2Kw + L. The
Kodaira vanishing theorem and its extension
due to Kawamata and Viehweg may fail in posi-
tive characteristic [7]. However, under additional
assumptions, mnotably lifting to Wy(k), the
Kawamata—Viehweg vanishing theorem does hold.

Assumption 3.2. We fix the notation used
in Theorem 3.3. X denotes a d-dimensional projec-
tive smooth variety over a perfect field k. Let E =
>_it; Ej be areduced simple normal crossing divisor
on X. Assume that F C X has a lifting EF =
S E; C X to Wak).

Theorem 3.3 (Corollary 3.8, [8]). Let X be
projective over a Noetherian affine scheme and
let D be an ample Q-divisor on X such that
Supp(D — [D]) C Supp(E). Assume that E C X ad-
mits a lifting E C X to Wa(k). Then, ifi +j > d =
dim X and if p > d, we have

(32) H'(X,%, (logE)(—E — [-D])) = 0.

Proposition 3.4 ([12]). Let X be an alge-
braic surface with isolated mormal singularities,
m V. — X its minimal resolution, and E the reduced
exceptional divisor. If X has a cyclic quotient
singularity of type %(l,n —1), we assume that
n s coprime to p. Then we have -equality
F*Tv(— log E) = 7T*TV = T)(.

We keep the notation of diagram (3.1), C :=
Z?:l C;and H,, = Ky + L — (% + %)C

Lemma 3.5. H,, is an ample Q-divisor for
m > 0.

Proof. Let N:=Ky+L—-1%" C;, then
N =1(2Kwy + By) in (3.1). N =1&*(2Kx) is a
nef and big divisor on V. For s> 0 the linear
system |sN| is basepoint free and the associated
morphism is birational, and contracts exactly C;.
Hence N =n*A for some ample Q-divisor A, and
then L+ v(e*Kx) = L + v(7*N) is ample for v > 0
by [10, Proposition 1.45]. Therefore H,, is ample for
m > 0. (]
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Consider the following sequence:
(3.3) 0= Ty(—logC) — Ty — € Neyw — 0.

Lemma 3.6. (W,C) lifts over W (k).
Proof. (3.3) gives the long exact sequence:

= HY(Tyw) — H{(@D Neyw)
— H*(Tw(=1og C)) — H*(Tw) — 0.

By results of Lee and Nakayama in [12], and by
Section 1 of Burns and Wahl [3], the morphism
HY(Tw) — @ H'(N¢,w) is surjective. If W is ra-
tional or an Enriques surface, then H*(Ty) =0
holds in any characteristic except possibly 2. Hence
H?*(Ty(—1log C)) = 0 by the above exact sequence,
so that (W, C) lifts to Wy (k) by [20, Lemma 4.1]. O

Lemma 3.7. Let W, L be as above. Then
Hi(W, Ow(2Kw + L)) =0 fori>0.

Proof. By Lemma 3.5, H,, is ample for m > 0.
Now (W, C) lifts over W5 (k) by Lemma 3.6. Applied
to Theorem 3.3, this gives the vanishing

H(W,0w(2Kwy + L)) =0 fori> 0.

By Riemann—-Roch on surfaces, and 7,0y =
Ow & L', we get x(Oy) = 2x(Ow) +  L(Kw + L),
which holds in odd characteristic.

Theorem 3.8. Let X,V and W be as above,
and n the number of fixed points of o. Then:

(i) x(Ow) =1, (ii) n > 5.
Proof. By the Riemann—Roch theorem, Lem-
ma 3.7 and the standard double cover formula
0<h’(2Kw + L) = x(2Kw + L)
= Xx(Ow) +12Kw + L)(Kw + L)
= x(Oy) — x(Ow) + Kw(Kw + L).
Suppose by contradiction that x(Ow) < 0. Then,
K% = 2(Ky + L)?
=2((Kw + L)Kw + 2x(Ov) — 4x(Ow))
= Q(hO(KW + L)+ x(Oy) — 3x(Ow)) > 2.
A contradiction, and hence x(Ow) = 1. From the
standard double cover formula, (i), and by Propo-
sition 3.1 (iii), we have (K + L)* < —2. So that
K =7(Kw + L)2 < —4, hence n > 5. O
Corollary 3.9. FEither W s rational or its
minimal model is birational to an Enriques surface.
Proof. From Theorem 3.8 (i), Proposition 3.1
(iv) and the Table of possible invariants for surfaces
with £ =0 in [2], py(W) = h'(Ow) = 0. The result
thus follows from the classification of surfaces. [

and
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Lemma 3.10. H'(W,Ow(2Kw + L)) =0 for
i >0, hence h°(W, 0w (2Kw + L)) = 0.

Proof. By Theorem 3.8 (i), x(Ow)=1 and
L(Kw + L) = —2. Therefore x(2Kw + L) < 0. Thus
H!(2Kw + L) = 0 if i > 0, hence h°(W, Oy (2Kw +
L))=0. O

Corollary 3.11. Let ¢ be the bicanonical
map of X. Then:

(i) ¢ is composed with o

(ii) (Kw + L)Kw = 0;

(iii) n = 5.

Proof. Lemma 3.10 gives (i). Vanishing for
2Kw + L and (i) give hO(QKW +L)=Kw(Kw+
L) =0, K2 =7 (Kw 4 L)* = 2(Kw + L)?, and n =
K% —K:=1-2(Ky+L)"=5. O

Lemma 3.12. Let f:X — E be a double
cover with X a nonsingular surface of general type
and E birational to an Enriques surface in charac-
teristic p # 2. Then f*Kpg is a nontrivial torsion
element in Pic X. Equivalently, if K — E is the K3
double cover, then the fiber product Y = X xg K is
irreducible.

Proof. Consider

Y X
(3.4) | ¥
K —2+F .

We can assume that X — FE is the quotient by an
involution, so E has only %(1, 1) singularities. The
ramification locus of X — F is a nonzero divisor
Dpg. For otherwise Ky = f*Kp is numerically zero,
which contradicts X of general type. Consider the
fiber product ¥ = X xp K as the composite ¥ —
K — E. Here ¢: K — E is the K3 double cover.
Also Y — K is ramified in the divisor Dg = ¢*Dg
by fiber product. Now Dg > 0 and therefore Y is
an irreducible surface. By base change, ¥ — X is
the double cover corresponding to f*Kpg, so that
f*Kg # 0 in Pic X if and only if YV is irreducible.
O

Corollary 3.13. Let X be a Godeaux surface
with 5-torsion in characteristic 5. Then the bira-
tional type of the quotient space of X by an
involution cannot be an Enriques surface.

Proof. Assume that the quotient of X is an
Enriques surface W. We may assume W is minimal.
An Enriques surface W in characteristic # 2 has
Ky a 2-torsion class. Therefore the algebraic
fundamental group 7$"(W) is isomorphic to Z/2Z.
The fundamental group is a birational invariant of
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surfaces with at worst rational singularities. There
is an étale 2-to-1 cover f:S — Wy, with S a K3
surface in any characteristic [2]

X ——X 54
(3.5) i l \
S 77777 > W4> Wmln

If the quotient of X by its involution is
birational to an Enriques surface W, the pullback
of the 2-torsion class Ky defines a nontrivial 2-
torsion class on X by Lemma 3.12, so |Pic” X| must
have even order. This contradicts Remark 2.5. [

4. Godeaux surfaces in characteristic 5
with an involution. The Godeaux surfaces in
characteristic 5 due to Lang [11], Miranda [16], and
Liedtke [15] are constructed as quotients X =Y /G
of a quintic hypersurface Y C P? by a group scheme
G of order 5 action freely. Here if G = Z/5Z, free
means that G acts without fixed points. In the
inseparable cases py or oy, it means that G acts by
a nowhere zero vector field. They prove the non-
singularity of X by using Bertini’s theorem for a
very ample linear system on P3/G. Instead, in
each case, we give an explicit example of Y having
symmetry by AutG =2 Z/4Z, hence by the holo-
morph Hyy = HolG = G X Z/4Z of G. For the two
inseparable cases, the nonsingularity of X involves
a nonclassical calculation: as we show in 4.4, Y has
exactly 11 singular points of type Aj.

4.1. The case G = Z/5Z. Miranda [16] takes
the linear map o given by the matrix:

1 100
01 10
0011
00 01

He constructs a quintic surface Y invariant under
(o) using the subspace V of quintic forms generated
by norms N(I) = H?:o o'(l) of linear forms I; these
forms define an embedding P?/(c) C P(V), and his
X is a hyperplane section.

Lemma 4.1. The linear automorphisms

1 3 3 1 10 00

01 21 02 00
A= , B=

00 11 040

00 01 00 0 3

generate an action of HolG = Z/5Z x Z/AZ on P>,
Clearly A, B> generate an action of Diy.

Proof. One checks directly that A =1, B* =1
and BAB™! = A2 O
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Proposition 4.2.
hypersurface Y in P? invariant under Hol G action.

Proof. Set
fi=a" 4+ 32%yw + 22322 + 3222 + 22220 — zyt

There exists a nonsingular

— zPu? + 222t + 3zwt + 2P 2w + 3y° 2 + yaud.
One checks that f is invariant under A and B, and
the quintic surface ¥ C P? defined by f=0 is
nonsingular. (This is easy by computer algebra, but
it can also be done by hand.) O

Now the quotient ¥ — X is an étale Z/5Z
cover of a Godeaux surface X with py(X) =
h'(Ox) =1 and m = Z/5Z, and the HolG action
on Y descends to a Z/4Z action on X, so in
particular an involution.

4.2. The case G = ;. Lang’s Godeaux
surfaces [11] satisfy p,(X) = h'(Ox) = 0, and work
in all characteristics. The group scheme p;5 acts on
P? by e(z;) — €'z; and P?/pu; is nonsingular except
at the 4 coordinate points. If Y does not pass
through these points, the p; action on P? restricts
to a free action on Y. The general hyperplane X =
Y /s is a nonsingular Godeaux surface.

Lemma 4.3. Let A= p; act on P* with
coordinates x,y,z,w by é(1,2,4,3). The permuta-
tion B = (x,y, z,w) of Sy defines a linear map of P3
that normalizes the py action, and generates an
action of the semidirect product group scheme
Hol py = ps x Z/AZ. Then (A, B?) is a dihedral
group scheme Dyg.

Proof. The 4-cycle B = (z,y, z,w) corresponds
to the generator e+ &2 of Autps = Z/4Z. One
checks that BAB™' = A2, O

Proposition 4.4. There exists a hypersur-
face Ys C P? invariant under Hol py such that the
quotient X =Y /s is a nonsingular Godeaux sur-
face.

Proof. Set

f= z° + y5 + 25w’ + 2($3zw + xwa + xyz?’

+ yzw®) + 3(2%y 2 + 2yuw? + zw? + P w).
Clearly Y is invariant under Hol p; and Djg. See 4.4
for the nonsingularity of X. O

4.3. The case G = a5. Liedtke [15] uses the
vector field § := y% + Za% + wa—az to generate an ay
action on P?. Let V be the vector space of elements
of degree 5 in the fixed ring of §. The morphism
©:P? — P(V) can be identified with the quotient
map P? — P3/aj, at least outside [1:0:0:0].
Its general hyperplane is a nonsingular Godeaux
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surface X =Y /a5 quotient of a é-invariant quintic
Ys C P2,
Lemma 4.5. The following matrices gener-
ate an action of Holas = a5 X Z/4Z on P3:
3t 3t 1
2t

00
0 0
0
0 3

A:
0

0 0

such that (A) = as with t> = 0, (B) = Z/AZ. More-
over A, B generate a dihedral group scheme Dyg.

Proof. The matrix A with t°> =0 defines a
group scheme a;. One sees that BAB™' = A? as in
Lemma 4.1. To prove Diy = (A, B?) is clear. O

Proposition 4.6. There exists a hypersur-
face Ys C P? invariant under Hol pus with quotient
Y /as a nonsingular Godeauzx surface.

Proof. Set

f= 2" + 2z’ + zy2w + 222t

+ 2zwt — 2w 4+ 12 — yaw® — P

Y is invariant under e, Z/47Z and hence Hol G. As
in the p5 case, we show in 4.4 that X is nonsingular.
|
4.4. Nonsingularity of the quotient X. A
quintic Y with an inseparable group action as in
Proposition 4.4 and 4.6 must be singular. In fact a
nonsingular quintic Y has e(Y) = ¢»(Y) = 55. But a
nonsingular surface with an everywhere nonzero
vector field has c(Y) = 0. Alternatively, if Y is
an inseparable cover of a nonsingular Godeaux
surface X, then X and Y are homeomorphic in the
étale topology, so e(Y)=¢e(X)=11. We define
the singular subscheme of Y by V(J) CY, where
J(f) = (f,%,g—i,%,%) is the Jacobian ideal.
Lemma 4.7. Let f be either of the invar-
iant quintic polynomials of Proposition 4.4 and
4.6. Then dimV(J)=0, degV(J)=>55
deg V(J),q = 11.
Proof. Computer algebra. (A Magma script is
available on request.) O
Corollary 4.8. Y has 11 singularities of type
Ay (of analytic type zy = 2°), and X is nonsingular.
Proof. Lemma 4.7 says that V(J) is supported
at 11 distinct singular points of Y. py or as act
freely on P? except at the fixed coordinate points
and V(J) is invariant under these G actions. Define
J = J - Ops to be the sheaf of ideals generated by J,
and J; its stalks at the 11 singular points. Then
J = ﬂ}il Ji. Each J; is G-invariant, so that V(J;)
contains an orbit of G. From Lemma 4.7, each

[ R

—

(== ]

o O N O
'

and
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V(J:) coincides with the G-orbit of P;, which is
a subscheme of length 5. Hence Ops/J; = k[G] =
k[2]/2°. We choose local regular coordinates z,v, z
in the local ring Ops p, so that V(J;) = (z,y,2).
Thus z,y € J;, and after a coordinate change f =
xy — 2° + higher order terms.

The group scheme G acts by an everywhere
nonzero p-closed vector field D, and D(f) =0. It
follows that D = ag(z 2% — yd%) +bZ, where ag €
klz,y, 2] and b is unit. We want to arrange that
Dz = Dy = 0 after coordinate change. Set

t=x(l4+mz+ - Fa2), n=y(l 4+ +asz")".

We take av,..., 04 € Ops p then D(€), D(n) € (2*).
This coordinate change gives D = az*(z 2 - ya%) +
bZ. Dz =axz*, so that D’z =4lb'(az)+--- =
a-azxzt. D°(x) = D*(az'z) includes the term a - 4! -
bz and other terms in a - m?, where m is a maximal
ideal. But D’(z) = eD(x) = caz*z withc=0or 1, a
is divisible by z. Since Ops p is UFD, hence a = 0.
Similarly for D(y), then the vector field acting on z
only by z — az+ Bwith a® =1, 8° = 0. Thus z,y €
Ox, are regular functions on the quotient X =
Y /G and the ideal they generate in Oy p is JOy.
Therefore z,y generate the maximal ideal of Oy g,
which implies X is nonsingular. t
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