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Dualities for absolute zeta functions and multiple gamma functions

By Nobushige KUROKAWA*) and Hiroyuki OCHIAT*"

(Communicated by Heisuke HIRONAKA, M.J.A., June 12, 2013)

Abstract:

We study absolute zeta functions from the view point of a canonical

normalization. We introduce the absolute Hurwitz zeta function for the normalization. In
particular, we show that the theory of multiple gamma and sine functions gives good
normalizations in cases related to the Kurokawa tensor product. In these cases, the functional
equation of the absolute zeta function turns out to be equivalent to the simplicity of the
associated non-classical multiple sine function of negative degree.
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1. Introduction. The absolute zeta func-
tion of a scheme X over F; was first studied by
Soulé [S] as a “limit of p — 1” of the (congruence)
zeta function over F,: see Kurokawa [K2] and
Deitmar [D] also. Then, Connes and Consani
[CC1] [CC2] investigated the absolute zeta function
as the following integral

* N
cxts) =esp( [N au).

Ny (u) = [X(Fpu )

where

is a suitably interpolated “counting function.” Here
we must pay attention to the needed normalization
for the integral near u = 1: see [CC1] [CC2] for a
discussion. In [CC1, Theorem 4.13] [CC2, Theorem
4.3] Connes and Consani calculated (x(s) for
Noetherian schemes via the Kurokawa tensor prod-
uct of [K1].

Our purpose is to introduce the absolute
Hurwitz zeta function

1 > Nx(u)
['(w) /1 wt (logu)' ™"

to get the canonical normalization:
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This normalization is essentially due to
Riemann (1859) and it is used in the theory of
multiple gamma and sine functions as follows:

For each integer r > 1, the r-ple Hurwitz zeta
function ¢, (w;x) is defined in Re(w) > r as

(1) Glwim) =S Hn+2)™"
n=>0

where . H, = (”*;_1).
The analytic continuation of ¢,(w;z) to all w €
C is obtained via the integral representation of

Riemann

Gr(w;z) = ﬁ /000(1 — e—t)_"‘e—arttu,r—ldt
= 1 > —1\-r, —z-1 w—1
_iiail (1 —u ) "u " (logu)" du

by treating the integral around v =1 in the usual
way.
Thus, by using such analytic continuation we

get the r-ple gamma function
u;O)

and the r-ple sine function

Sp(x) = To(x) T (r — 2) Y.
We refer to Barnes [B] (1904) and Kurokawa-
Koyama [KK] (2003) for details, where more gen-
eral multiple gamma functions and multiple sine
functions were treated respectively.

We report three results in this introduction.
First, for a function N : (1,00) — C we use

I (x) = exp (% ¢ (ws )
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1 00 ) Then
Zn(w;s) = —/ N(u)u*t(logu)" 'du
(9 =gy ), Nl Cosw) Zniom ;)
and = Z my(ar)ma(ae)(s — (aq + ag)) ™™

(n(s) =exp (8% Zn(w; s)

11)-0)
also.
Theorem A. Let N(u

=2_mle)
finite sum. Then:
(1) Zn(w;s) Zm (s —a) ™.

@) Culs) = (s — ).

o

This result is applicable to calculate many

examples (see [K2]) of absolute zeta functions under

our canonical normalization. We note two simple
examples.

Example 1.

Ju® be a

Let X = SpecF;. Then
’Spec Fq| =1 for prime powers ¢,
Nx(u) =1,
Zx(w;s) =s7",
Cx(s) =1/s.

Example 2. Let X = SL(2). Then

|SL(2, Fq)} = ¢* — ¢ for prime powers ¢,
Nx(u) = u® — u,
Zx(w;s) = (s =3)"" =
(x(s) = (s =1)/(s = 3).
Now the following result shows a functoriality.
Theorem B.
(1) For Ni,Ny: (1,00) —
(N1 & Na)(u) =
Then

(5 - 1)*7L7

C let
Nl(u) + NQ(U)

ZNIEENQ ('LU; S) = ZN] (U); S) + ZNz (’LU, S)

and

= (v, (8)Cn, (8)-

u) = Z mi(a;)u

fori=1,2. Suppose that both are finite sums.
Put

(Ve (8)
(2) Let

(N1 (029] NQ)(U) = Nl(U)NQ(U)

and
Gvan(s) = [T (s = (0 +a))mleameten),
1,00
This tensor product is essentially the

Kurokawa tensor product originated in [K1]
(see [M], [CC1] and [CC2]) when «;’s are real. We
remark that for general N;’s (“infinite sums” or
“generalized functions”) we must resolve various
difficulties.

For the next result we notice that our con-
struction of ¢ (w;x), T'y(x) and S.(z) is valid for
negative r also (see the later explanation).

Theorem C. Letr be a positive integer. Then
(1) Zaor(ws) = ¢ (wss — 1),

(2) Gﬁws):r_-(s—r)

_ H (s— U0
TR

where ®r is the Kurokawa tensor product.
(3) We have the functional equation

Cay (5) = Gy (r =)
which is equivalent to S_,(z) = 1.
Our result would suggest that

Cor(s) =Ty (s 1)

holds for r < 0 also with the functional equation
s <> —r — s. For example

)

I'(s+1)
V2r

and the functional equation s+« —1—s is the
reflection formula of Euler:

Cgei(s) =Ti(s +1) =

1

-1 - -
Sils+1) 2sin(ms)

Dy(s+ D)y (—s) =
We remark that Manin [M, §1.7] indicated an idea
to consider the gamma function as the zeta function
of the “dual infinite dimensional projective space
over F;.”

2. Multiple gamma functions and multi-
ple sine functions. We recall the construction of
the multiple Hurwitz zeta function:



1 o0
= —/ (1—e D Te v 1dt
0

1 o0
= 1—u ) "u " logu)" *du.
g A R (30
This definition is valid for any r € R with suffi-
ciently large Re(z) and Re(w), so we have the
analytic continuation to all w € C via the usual
method. Thus, we get
w—O)

I'(z) = exp (% Gr(w; )
Si(x) = T,(x) "Iy (r — )"

and

for any r € R (or r € Z at least without ambiguity
of the meaning of (—1)"). For readers interested in
the theory of r < 0, we refer to [KO].

Theorem 1. Letr be a negative integer. Then

(1) Ty(z) = ﬁ(x+n)(_l)nﬂ<,ﬂ,)'

n=0
(2) Sy(z)=1.
Proof. We have

n+r—1 w
G (w; ) ;( N )(n—I—a:)
_ 1) -r nat )Y
S () )ore)
Hence
I(z) =ex 3 O ) log(n + 2
(@ p(;< pet () ot + >)
:ﬁ(nﬂ)( )
Next "
Sy(x) = To(a)™! (r—as><—”’
ﬁn+:z: X]j(TL‘FT*I)( CAN )
n=( n=0

where we used
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n=0
Hence
ST<$) _ H(n-‘,— n ) H n-|—g; N n)
n=0 n=0
=1.

O

This result can be generalized to the multi-

period case w= (wi,...,w,) with wy,...,w, >0

as follows, where the above case is contained as
w=(1,...,1). Put

Cr(w;z,w)

r

:Z Z (—)M"@ 4w, + -

k=0 1<i;<---<ip<r
)
w=0

+ wik- ) —’lU’

T, (1,w) = exp (% ¢ o(w;z,w)

and

S_p(z,w) =T- !

r(z,w)
X Tp(=(wi 4+ w,) )(—1)7,'
Then we have (see [KO] for more generalizations
also)

C—r(w; Zz, Q)
1

- e 1 — e W)... (] — g twr eixttwildt,

T I erunsoro ™,

=0 1<iy <--<ip<r

— I,

and
S_p(z,w) =1.
For example, we get
s—1
=I_ 3,2) = .
CSL(Q)(S) 1(5 , ) s_ 3

More generally:
CSL('(‘)(S) = 1—‘7(7"71)(8 - (72 - 1)7 (27 37 e

and

Carp(s) =T-p(s =1, (1,2,3,;
r — 1 = rank SL(r)

r = I'&Ilk G’L(T)
where {r2 —1 = dim SL(r) wnd {

r* = dim GL(r).

We obtain the functional equations
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Csn((8) = (e (r(3r—1)/2 =1 — S)(fl)rfl7

and
Carim(s) = Cam(rBr—1)/2 — 5) Y

from the triviality of the multiple sine function of

negative order exactly similar to Theorem C.
Theorem 2. Letr be a negative real number.

Then:

(1) ¢(m;x) =0 for each integer m satisfying
r<m<O0.

(2) T)(z) =exp (/100(1 T N T

for Re(z) >0
Example 3.

(log u)_ldu)

Cs(wyz)=2""=3(x+1)"
+3(z+2)" —(x+3)"
and
(3(052) = (3(—12) = (3(—2;2) = 0.
Notice  that (_3(—3;z) =—6. (In  general
Cm(=m;z) = (—1)"m! for integers m > 0.
Example 4.
- 0
—w __ n w
Cylwsm) =2 ;(Qn—l)éln (n+2)
and
.. (2n>
0 - 1 - =
- %( 7 ; 2n — 1)4n ’
that is

=~ ()
S LV A——
; (2n — 1)4"

Proof. The fact (1) follows from the integral
representation

1 *° .
—)/ (1—u™) "u " logu)"” 'du,
1

Glwsa) = o

since this integral converges for Re(w) > —r when
Re(z) >0, and 1/T'(w) has zeros at we {ke
Z | r < k <0}. Similarly, (2) is seen by looking at
w=0. ]

3. Proof of Theorem A. For afunction IV :
(1,00) — C we defined

[Vol. 89(A),

“logu)” du

)

We calculate these functions in the case of a finite

sum
= Zm(a)u

It is sufficient to calculate the following monomial
case.

Zn(w /N

and

Cx(s) = oxp (a% Zy(w:s)

Lemma. Let N(u)=u®, then
Zn(w;s) = (s —a)™"
and
1
CN(S) = .
s—a
Proof.
Zn(w F—/ u ™ logu)"” du
/ (s—a ttu 1dt
F
=(s—a)™”
Hence
0
2 Zn(ws)| = —log(s — a)
ow w=0
and
1
CN(S) S .
s—a
t
4. Proof of Theorem B. (1) Since

CNI (S)CNZ (5)

nan,(s) =
(2) From

(N1 ® NQ)(U) = Nl(u)Ng(u)
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(e (S

= ma(an)ma(ag)u™ e,

aq,00

we have

ZN@NZ

s“(log u)“’_ldu

s)
/ (N7 ® No)(uw)u~
)

(Z my(en)ma(az) ”1“”)

‘ ‘

Qap,02
x u™* " logu)" ' du
= > mi(ar)ma(as)(s — (o1 + a2)) "
ay,0n
Hence
Cneny(s) = [ (s = (ar + ag)) mienmle),

ap,0

O
5. Absolute zeta functions.
Theorem 3. Letr be a positive integer. Then

(1) () =T—(s — 7).

(2) Caor(s) = exp ( / Neer(u

Proof. (1) Since
Neggr(u) = (u—1),

m

u*"!(log u)_ldu> .

we have

“Llogu)* 'du

1 © " ,
= —/ 1 —uHu*" " log u)“_ldu
1

Caor(s) =T

£(8) = Tors=1).

(2) This follows from (1) and Theorem 2(2). O
We notice that Theorem 1 and Theorem 3(1)
imply Theorem C(1)(2).
6. Functional equations.
Theorem 4. Letr be a positive integer. Then

CGX"(S)
G (=)

m

=S . (s—7)""
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Proof. From Theorem 3(1), we have
Cazr(s) =T (s —7)
and
Carr(r—s) =T (=s).

m

Hence,
Cagr(8)Cay (r— )7
=T_.(s—rT. (—s)(f1>
=8 ,(s—r)"".

r+1

O
We remark that we have the functional
equation
Caer (s) )Y
from Theorem 1(2) and we know that it is
equivalent to S_.(z) = 1. Thus we have Theorem

c(3).

= G (r—s
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