Linking numbers for handlebody-links

By Atsuhiko Mizusawa
Department of Mathematics, Faculty of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

(Communicated by Kenji Fukaya, m.J.A., March 12, 2013)

Abstract

As a generalization of the linking number, we construct a set of invariant numbers for two-component handlebody-links. These numbers are elementary divisors associated with the natural homomorphism from the first homology group of a component to that of the complement of another component.

Key words: Handlebody-knot; handlebody-link; linking number; elementary divisor.

1. Introduction. A handlebody-link is an embedding of handlebodies into a 3 -manifold [1]. Especially an embedding of one handlebody into a 3 -manifold is called a handlebody-knot. In case the genus of each component of a handlebody-link is one, it can be regarded as an ordinary link.

Handlebody-links are also regarded as neighborhood equivalence class of spatial graphs [2]. Two spatial graphs are neighborhood equivalent if they have isotopic regular neighborhoods. Hence handle-body-links are represented by spatial graphs whose regular neighborhoods are isotopic to the handle-body-links. In the present paper, we use this representation for handlebody-links. A contraction move of spatial graphs is a local transformation of spatial graphs shown in Fig. 1; contracting an edge e and its inverse move, where this move is done in an embedded disc in a 3 -manifold. In [1], it is shown that two spatial graphs are neighborhood equivalent (i.e. they represent the same handlebodylinks) if and only if they are transformed to each other by a sequence of contraction moves.

In the ordinary knot theory, the linking number is an elementary and important invariant for oriented two-component links. In this paper, we construct an invariant for two-component handle-body-links in a 3 -sphere S^{3} like the linking number for ordinary links. We consider two first homology groups for each component of the two-component handlebody-links. The invariants for two-component handlebody-links are elementary divisors of a matrix whose entries are linking numbers of closed

[^0]

Fig. 1. A contraction move on the edge e.
circles corresponding to the basis of one homology group and that of the other homology group. When a genus of each component of handlebody-links is one, thus they are ordinary links, our invariants coincide with the linking number of them.

The rest of the present paper is organized as follows. In Section 2, we define the invariant of twocomponent handlebody-links. We show an example of the invariant in Section 3. In Section 4, we see a geometrical meaning of the invariant that is a relationship to first homology groups of exterior spaces of handlebody-link components.
2. Definition. In this section, we construct the invariant numbers for two-component handle-body-links in S^{3}. In case both components are genus 1 (i.e. two-component links), these numbers correspond to the linking number.

Definition 2.1 (Linking numbers for handle-body-links). Let L be a two-component handle-body-link in S^{3}, h_{1} and h_{2} be its components and m, n be genera of them respectively. We fix bases of first homology groups $H_{1}\left(h_{1}\right)$ and $H_{1}\left(h_{2}\right)$ of h_{1} and $h_{2} ; e_{1}, \ldots, e_{m}$ for $H_{1}\left(h_{1}\right)$ and f_{1}, \ldots, f_{n} for $H_{1}\left(h_{2}\right) . e_{i}$ and f_{j} can be regarded as embedded closed oriented circles in the S^{3}. Then we make a $m \times n$ matrix M whose (i, j) entry is a linking number of e_{i} and f_{j} :

$$
\left(\begin{array}{ccc}
l k\left(e_{1}, f_{1}\right) & \cdots & l k\left(e_{1}, f_{n}\right) \\
\vdots & \ddots & \vdots \\
l k\left(e_{m}, f_{1}\right) & \cdots & l k\left(e_{m}, f_{n}\right)
\end{array}\right)
$$

Then we consider the elementary divisors $d_{1}\left|d_{2}\right| \ldots \mid d_{l}$ (for some $0 \leq l \leq \min (m, n), d_{i} \in \mathbf{Z}$) of M as \mathbf{Z}-module. Note that $d_{1}, d_{2}, \ldots, d_{l}$ are unique up to signs. If $0<l$, choosing positive signs, we define

$$
L k\left(h_{1}, h_{2}\right)=\left\{\left|d_{1}\right|,\left|d_{2}\right|, \ldots,\left|d_{l}\right|\right\}
$$

otherwise $L k\left(h_{1}, h_{2}\right)=\{0\}$.
If h_{1} and h_{2} are separated, the linking numbers $L k\left(h_{1}, h_{2}\right)$ is equal to $\{0\}$. We remark that the linking number above $l k(\cdot, \cdot): H_{1}\left(h_{1}\right) \times H_{1}\left(h_{2}\right) \rightarrow \mathbf{Z}$ is bilinear for sums of elements of the first homology groups and scalar multiplying over \mathbf{Z}, i.e. $l k\left(c x_{1}+d x_{2}, y\right)=c l k\left(x_{1}, y\right)+d l k\left(x_{2}, y\right)$, for $x_{1}, x_{2} \in$ $H_{1}\left(h_{1}\right), y \in H_{1}\left(h_{2}\right)$ and $c, d \in \mathbf{Z}$, and the same relation holds for the second argument.

Theorem 2.2. $L k\left(h_{1}, h_{2}\right)$ is independent of the ways taking bases of $H_{1}\left(h_{1}\right)$ and $H_{1}\left(h_{2}\right)$. Thus $L k\left(h_{1}, h_{2}\right)$ is an invariant of two-component handle-body-links.

Proof. Changing a basis of the first homology group $H_{1}\left(h_{1}\right)$ (resp. $H_{1}\left(h_{2}\right)$) causes multiplying an $m \times m$ (resp. an $n \times n$) regular matrix with integer entries from left (resp. right) to M, and these operations do not change the elementary divisors of M.
3. Example. We show a calculation of $L k\left(h_{1}, h_{2}\right)$ for the handlebody-link $L=h_{1} \cup h_{2}$ in Fig. 2, where we represent components of the handlebody-link by bouquet graphs. The original handlebody-link is a regular neighborhood of the graphs. By virtue of the bouquet graph representation, we see bases of first homology groups $H_{1}\left(h_{1}\right)$ and $H_{1}\left(h_{2}\right)$ of the components explicitly as the oriented loop edges e_{1}, e_{2}, e_{3} and $f_{1}, f_{2}, f_{3}, f_{4}$ of the graphs.

Example 3.1. A matrix M of linking numbers of the bases of the first homology groups of h_{1} and h_{2} is calculated as

$$
\left(\begin{array}{cccc}
-1 & -1 & 0 & 2 \\
1 & -3 & -2 & 0 \\
0 & 0 & 2 & -2
\end{array}\right)
$$

The elementary divisors of M are $1|2| 4$ up to signs. Thus $L k\left(h_{1}, h_{2}\right)=\{1,2,4\}$.

Fig. 2. A handlebody-link $L=h_{1} \cup h_{2}$.

We remark that by sliding a loop along another loop, we have a new bouquet graph representing the same handlebody-link. This corresponds to adding or subtracting a row or column to other row or column. Therefore we can choose bouquet graphs such that the non-zero entries of the linking matrix of their loops is exactly the elementary divisors of the matrix. Thus the linking number of the handle-body-link is realized by such bouquet graphs.
4. Geometrical meanings of $L k\left(h_{1}, h_{2}\right)$. In this section, we show a relationship between the linking numbers $L k\left(h_{1}, h_{2}\right)$ of handlebody-links and the first homology group of a complement space of one component h_{1} (resp. h_{2}) in S^{3} with relations derived from another component h_{2} (resp. h_{1}).

First we consider the first homology group $H_{1}\left(S^{3} \backslash h_{1}\right)$ of the complement of h_{1}. Remark that $H_{1}\left(S^{3} \backslash h_{1}\right)=\mathbf{Z}^{m}$ where m is a genus of h_{1}. Let $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a basis of the first homology group $H_{1}\left(h_{2}\right)$ of h_{2} where n is a genus of h_{2}. Since h_{2} is in the complement space $S^{3} \backslash h_{1}$, we can regard the elements of the basis as oriented closed circles in $S^{3} \backslash h_{1}$ and as elements of $H_{1}\left(S^{3} \backslash h_{1}\right)$. Then we consider a quotient group of $H_{1}\left(S^{3} \backslash h_{1}\right)$ by a subgroup generated by $f_{1}, f_{2}, \ldots, f_{n}$;

$$
A_{1}=H_{1}\left(S^{3} \backslash h_{1}\right) /\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle
$$

A_{1} is independent of choices of the basis of $H_{1}\left(h_{2}\right)$ and determined only by $L . A_{1}$ is a finitely generated abelian group and have a form

$$
A_{1}=\mathbf{Z}^{m-k} \oplus \operatorname{Tor}\left(A_{1}\right)
$$

for some k, where $\operatorname{Tor}\left(A_{1}\right)$ is a torsion part of A_{1}. If the component h_{2} is separated from h_{1}, the circles of the basis of $H_{1}\left(h_{2}\right)$ are trivial circles in $S^{3} \backslash h_{1}$ and $A_{1}=H_{1}\left(S^{3} \backslash h_{1}\right)=\mathbf{Z}^{m}$. By tangling h_{2} to h_{1}, a part
of \mathbf{Z}^{m} degenerates to the torsion part $\operatorname{Tor}\left(A_{1}\right)$. So we think $\operatorname{Tor}\left(A_{1}\right)$ has information of a tangle between h_{1} and h_{2}.

On the other hand, we can construct a group A_{2} as above exchanging the roles of h_{1} and h_{2},

$$
A_{2}=\mathbf{Z}^{n-k^{\prime}} \oplus \operatorname{Tor}\left(A_{2}\right)
$$

for some k^{\prime}, where $\operatorname{Tor}\left(A_{2}\right)$ is a torsion part of A_{2}. $\operatorname{Tor}\left(A_{2}\right)$ also has information of a tangle between h_{1} and h_{2}. Then we have the next proposition.

Proposition 4.1. Suppose that m is not smaller than n. Then $A_{1} \cong \mathbf{Z}^{m-n} \oplus A_{2}$.

Proof. It is sufficient to show $\operatorname{Tor}\left(A_{1}\right) \cong$ $\operatorname{Tor}\left(A_{2}\right)$. We see a form of $\operatorname{Tor}\left(A_{1}\right)$. Let Γ_{1} and Γ_{2} be bouquet graphs representing the components h_{1} and h_{2} respectively, i.e. the regular neighborhood of $\Gamma_{1}\left(\right.$ resp. $\left.\Gamma_{2}\right)$ is equivalent to $h_{1}\left(\right.$ resp. $\left.h_{2}\right)$. Let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be edges of Γ_{1} and Γ_{2}. They are regarded as bases of $H_{1}\left(h_{1}\right)$ and $H_{1}\left(h_{2}\right)$. We take a basis $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ of $H_{1}\left(S^{3} \backslash h_{1}\right)=H_{1}\left(S^{3} \backslash \Gamma_{1}\right)=\mathbf{Z}^{m}$ such that x_{i} is a closed oriented circle that rounds the edge e_{i} of Γ_{1} one time. Each f_{j}, as a close oriented circle in $S^{3} \backslash h_{1}$, is represented by the basis of $H_{1}\left(S^{3} \backslash \Gamma_{1}\right)$ as

$$
f_{j}=a_{1 j} x_{1}+a_{2 j} x_{2}+\cdots+a_{m j} x_{m}, \quad a_{i j} \in \mathbf{Z}
$$

$$
(1 \leq j \leq n) .
$$

From the choice of basis, the coefficient $a_{i j}$ is how many times the edge f_{j} of Γ_{2} rounds the edge e_{i} of Γ_{1}. These observations lead a representation of $A_{1}=H_{1}\left(S^{3} \backslash h_{1}\right) /\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle ;$

$$
\mathbf{Z}^{n} \xrightarrow{\psi} \mathbf{Z}^{m}\left(=H_{1}\left(S^{3} \backslash h_{1}\right)\right) \xrightarrow{\varphi} A_{1} \longrightarrow 0,
$$

which is an exact sequence of \mathbf{Z}-module homomorphisms such that $\operatorname{Im} \psi=\operatorname{ker} \varphi$ and φ is a surjection, where a matrix representation for ψ is equal to M in Section 2 (assuming appropriate orientations for edges of Γ_{1} and Γ_{2}). By appropriate change of basis of $H_{1}\left(S^{3} \backslash h_{1}\right)$ and relations for them (i.e. multiplying regular matrices from both sides of M), we have a rectangular diagonal matrix

$$
\left(\begin{array}{cccccc}
d_{1} & & & & & \\
& d_{2} & & & O & \\
& & \ddots & & & \\
& & & d_{l} & & \\
& & & & 0 & \\
& O & & & & \ddots
\end{array}\right),
$$

where $d_{1}\left|d_{2}\right| \cdots \mid d_{l}$ are elementary divisors of M. Therefore A_{1} have a form

$$
A_{1}=\mathbf{Z}^{m-l} \oplus \mathbf{Z} / d_{1} \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} / d_{l} \mathbf{Z}
$$

and we have

$$
\operatorname{Tor}\left(A_{1}\right)=\mathbf{Z} / d_{1} \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} / d_{l} \mathbf{Z}
$$

We do the same operation for $H_{1}\left(S^{3} \backslash h_{2}\right)$ as above and have a representation of the abelian group A_{2};

$$
\mathbf{Z}^{m} \xrightarrow{\psi^{\prime}} \mathbf{Z}^{n}\left(=H_{1}\left(S^{3} \backslash h_{2}\right)\right) \xrightarrow{\varphi^{\prime}} A_{2} \longrightarrow 0
$$

where a matrix representation for ψ^{\prime} is ${ }^{t} M$, a transposed matrix of M. Since elementary divisors of ${ }^{t} M$ is equal to those of M, we have a form of A_{2},

$$
A_{2}=\mathbf{Z}^{n-l} \oplus \mathbf{Z} / d_{1} \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} / d_{l} \mathbf{Z}
$$

and we have

$$
\operatorname{Tor}\left(A_{2}\right)=\mathbf{Z} / d_{1} \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} / d_{l} \mathbf{Z}
$$

Therefore $\operatorname{Tor}\left(A_{1}\right) \cong \operatorname{Tor}\left(A_{2}\right)$.
A_{1} and A_{2} have the same torsion part $\mathbf{Z} / d_{1} \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} / d_{l} \mathbf{Z}$, which have the information of tangle of h_{1} and h_{2}, and this is what the linking numbers $L k\left(h_{1}, h_{2}\right)$ indicate. We remark that if $d_{i}=1, \mathbf{Z} / d_{i} \mathbf{Z}$ is a trivial group and does not appear explicitly in the torsion part. When we calculate the linking number from the torsion part, we also need the number l which is the difference of rank between A_{1} and $H_{1}\left(S^{3} \backslash h_{1}\right)$ or A_{2} and $H_{1}\left(S^{3} \backslash h_{2}\right)$.

Acknowledgements. The author would like to thank Prof. Jun Murakami for helpful discussions. He also would like to thank Atsushi Ishii, Ayumu Inoue, Kengo Kishimoto, the participants of Tohoku Knot Seminar 2012 and the referee for their helpful comments.

References

[1] A. Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008), no. 3, 1403-1418.
[2] S. Suzuki, On linear graphs in 3-sphere, Osaka J. Math. 7 (1970), 375-396.

[^0]: 2010 Mathematics Subject Classification. Primary 57M27; Secondary 57M15, 57M25

