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Abstract: The equivariant cobordism class of a small cover over a simple convex polytope

is determined by its tangential representation set. Since the tangential representation can be

identified with the characteristic function of the simple convex polytope, by using characteristic

functions we determine the number of small covers over cubes and the product of at most three

simplices up to equivariant cobordism.
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1. Introduction. A small cover, defined by

Davis and Januszkiewicz in [4], is a smooth closed

manifold Mn with a locally standard ðZ2Þn–action

such that its orbit space is a simple convex

polytope. This establishes a direct connection

between equivariant topology and combinatorics.

In recent years, several studies have attempted

to enumerate the number of Davis-Januszkiewicz

equivalence classes and equivariant homeomor-

phism classes of small covers over a specific poly-

tope, see [1–3].

By Mn we denote the set of equivariant

unoriented cobordism classes of all n-dimensional

small covers. Let M� ¼
P

n�1Mn. From

[6, Theorems 1.4, 1.5, Corollary 5.8], M� is gener-

ated by the classes of small covers over the products

of simplices. Then we consider the following prob-

lem.

Problem. How can we determine the num-

ber of equivariant cobordism classes of small covers

over the product of simplices?

When the dimension of each simplex is 1 or

when the number of simplices is at most 3, we

answer the above problem. By In we denote an

n-cube. Let �n1
;�n2

;�n3
be n1-simplex, n2-simplex

and n3-simplex respectively. The main results of

this paper are stated as follows:

Theorem 1. All small covers over In equiv-

ariantly bound.

Theorem 2. The number of equivariant

cobordism classes of small covers over �n1
is

Qn1

t¼1

ð2n1 � 2t�1Þ

ðn1 þ 1Þ!
; n1 � 3;

1; n1 ¼ 1; 2:

8>><
>>:

Remark 1. An example of a small cover

over �n1
is RPn1 with a standard action T0 of

ðZ2Þn1 . In fact, when n1 � 2, we may find

Qn1

t¼1

ð2n1�2t�1Þ

ðn1þ1Þ!

different small covers ðRPn1 ; �T0Þ over �n1
with

� 2 GLðn1;Z2Þ up to equivariant cobordism, see

[5, Proposition 2.3].

Theorem 3. The number of equivariant co-

bordism classes of small covers over �n1
��n2

is

Qn1þn2

t¼1

ð2n1þn2 � 2t�1Þ

ðn1 þ 1Þ!ðn2 þ 1Þ!
ð2n1 þ 2n2 � 1Þ; 2 � n1 < n2;

Q2n1

t¼1

ð22n1 � 2t�1Þ

2ðn1 þ 1Þ!2
ð2n1þ1 � 1Þ; 2 � n1 ¼ n2;

Qn2þ1

t¼1

ð2n2þ1 � 2t�1Þ

2ðn2 þ 1Þ!
ð2n2 � 1Þ þ 1; 1 ¼ n1 < n2:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Theorem 4. When 2 � n1 � n2 � n3, the

number of equivariant cobordism classes of small

covers over �n1
��n2

��n3
is
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Qn1þn2þn3

t¼1

ð2n1þn2þn3 � 2t�1Þ

ðn1 þ 1Þ!ðn2 þ 1Þ!ðn3 þ 1Þ!
� ð22n1þn2 þ 2n1þ2n2 þ 22n1þn3 þ 2n1þ2n3

þ 22n2þn3 þ 2n2þ2n3 � 22n1 � 22n2

� 22n3 � 2n1þn2 � 2n1þn3 � 2n2þn3 þ 1Þ;
2 � n1 < n2 < n3;

Q2n2þn3

t¼1

ð22n2þn3 � 2t�1Þ

2ðn2 þ 1Þ!2ðn3 þ 1Þ!
� ð22n2þn3þ1 þ 2n2þ2n3þ1 þ 23n2þ1

� 3 � 22n2 � 22n3 � 2n2þn3þ1 þ 1Þ;
2 � n1 ¼ n2 < n3;

Qn1þ2n2

t¼1

ð2n1þ2n2 � 2t�1Þ

2ðn1 þ 1Þ!ðn2 þ 1Þ!2

� ð22n1þn2þ1 þ 2n1þ2n2þ1 þ 23n2þ1 � 22n1

� 3 � 22n2 � 2n1þn2þ1 þ 1Þ;
2 � n1 < n2 ¼ n3;

Q3n2

t¼1

ð23n2 � 2t�1Þ

6ðn2 þ 1Þ!3
ð6 � 23n2 � 6 � 22n2 þ 1Þ;

2 � n1 ¼ n2 ¼ n3:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Theorem 5. When 2 � n2 � n3, the number

of equivariant cobordism classes of small covers over

I ��n2
��n3

is

Qn2þn3þ1

t¼1

ð2n2þn3þ1 � 2t�1Þ

2ðn2 þ 1Þ!ðn3 þ 1Þ!
� ð22n2þn3 þ 2n2þ2n3 þ 22n2 þ 22n3

� 2n2þ1 � 2n3þ1 � 2n2þn3 þ 1Þ þ 1;

2 � n2 < n3;

Q2n2þ1

t¼1

ð22n2þ1 � 2t�1Þ

4ðn2 þ 1Þ!2
ð23n2þ1 þ 22n2 � 2n2þ2 þ 1Þ

þ 1;

2 � n2 ¼ n3:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Theorem 6. When n3 � 2, the number of

equivariant cobordism classes of small covers over

I2 ��n3
is

Qn3þ2

t¼1

ð2n3þ2 � 2t�1Þ

8ðn3 þ 1Þ! ð3 � 22n3 � 2n3þ2 þ 1Þ þ 1:

The paper is organized as follows. In Section 2,

we review some basic facts about small covers and

the tangential representation. In Section 3, using

characteristic functions and Stong homomorphism,

we prove Theorem 1 and Theorem 3.

2. Preliminaries.

A convex polytope Pn of dimension n is said to

be simple if every vertex of Pn is the intersection of

exactly n facets (i.e. faces of dimension ðn� 1Þ). An n-

dimensional smooth closed manifoldMn is said to be a

small cover if it admits a smooth ðZ2Þn–action such

that the action is locally isomorphic to a standard

action of ðZ2Þn on Rn and the orbit space Mn=ðZ2Þn
is a simple convex polytope of dimension n.

Let Pn be a simple convex polytope of dimension

n and F ðPnÞ ¼ fF1; � � � ; F‘g be the set of facets of Pn.

Suppose that � : Mn ! Pn is a small cover over Pn.

Then there are ‘ connected submanifolds ��1ðF1Þ; � � � ;
��1ðF‘Þ. Each submanifold ��1ðFiÞ is fixed pointwise by

a Z2–subgroup Z2ðFiÞ of ðZ2Þn, so that each facet Fi
corresponds to the Z2–subgroup Z2ðFiÞ. Obviously, the

Z2–subgroup Z2ðFiÞ actually agrees with an element �i
in ðZ2Þn as a vector space. For each face F of codimen-

sion u, since Pn is simple, there are u facets Fi1 ; � � � ; Fiu
such that F ¼ Fi1 \ � � � \ Fiu . Then, the corresponding

submanifolds ��1ðFi1Þ; � � � ; ��1ðFiuÞ intersect transver-

sally in the ðn� uÞ-dimensional submanifold ��1ðF Þ,
and the isotropy subgroup Z2ðF Þ of ��1ðF Þ is a subtorus

of rank u and is generated by Z2ðFi1Þ; � � � ;Z2ðFiuÞ (or is

determined by �i1 ; � � � ; �iu in ðZ2Þn). Thus, this actually

gives a characteristic function [4]

� : FðPnÞ �! ðZ2Þn

defined by �ðFiÞ ¼ �i such that whenever the

intersection Fi1 \ � � � \ Fiu is non-empty, �ðFi1Þ; � � � ;
�ðFiuÞ are linearly independent in ðZ2Þn.

In fact, Davis and Januszkiewicz gave a recon-

struction process of a small cover by using a character-

istic function � : FðPnÞ �! ðZ2Þn. Let Z2ðFiÞ be the

subgroup of ðZ2Þn generated by �ðFiÞ. Given a point

p 2 Pn, by F ðpÞ we denote the minimal face contain-

ing p in its relative interior. Assume F ðpÞ ¼ Fi1 \
� � � \ Fiu and Z2ðF ðpÞÞ ¼

Lu
j¼1 Z2ðFijÞ. Note that

Z2ðF ðpÞÞ is a u-dimensional subgroup of ðZ2Þn. Let

Mð�Þ denote Pn � ðZ2Þn= �, where ðp; gÞ � ðq; hÞ if

p ¼ q and g�1h 2 Z2ðF ðpÞÞ. The free action of ðZ2Þn on

Pn � ðZ2Þn descends to an action on Mð�Þ with

quotient Pn. Thus Mð�Þ is a small cover over Pn [4].

By �ðPnÞ we denote the set of all characteristic

functions on Pn. Then we have
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Theorem 2.1. Let � : Mn ! Pn be a small

cover over a simple convex polytope Pn. Then all

small covers over Pn are given by fMð�Þj� 2 �ðPnÞg
from the viewpoint of cobordism.

Remark 2. Generally speaking, we can’t

make sure that there always exist small covers over a

simple convex polytope Pn when n � 4. For example,

see [4, Nonexample 1.22]. From [4, Example 1.1], we

know that the n-dimensional torus Tn is a small cover

over In. From [4, Example 1.2], there also exists a

small cover RPni over �ni for i ¼ 1; 2; 3, and the

product of these projective spaces is a small cover over

the product of corresponding simplices.

Next we recall some results in [5]. Let G ¼ ðZ2Þn
and �0 the trivial element in HomðG;Z2Þ (the set of

all homomorphisms from G to Z2). The irreducible

real G-representations are all one-dimensional and

correspond to all elements in HomðG;Z2Þ. Given an

element � ofMn, let ðMn; �Þ be a representative of �

such that Mn is a small cover. Take an isolated point

p in the fixed point set ðMnÞG, then the G-represen-

tation at p can be written as 	pðMnÞ ¼
L

�6¼�0
�
q�
� ,

where �� : G� R �! R, ðg; xÞ 7! �ðgÞ � x with � 2
HomðG;Z2Þ is the irreducible real G-representation

and ��6¼�0
q� ¼ n and if q� 6¼ 0, then q� ¼ 1. NMn ¼

f½	pðMnÞ	jp 2 ðMnÞGg is called the tangential repre-

sentation set of ðMn; �Þ, where by ½	pðMnÞ	we denote

the isomorphism class of 	pðMnÞ.
The homomorphisms �i : ðg1; � � � ; gnÞ 7�! gi

form a standard basis of HomðG;Z2Þ. Let RnðGÞ
denote the vector space over Z2 generated by

the representation classes of dimension n. Then

R�ðGÞ ¼
P

n�0 RnðGÞ is isomorphic to the graded

polynomial algebra Z2½�1; � � � ; �n	. Each ½	pðMnÞ	 of

NMn uniquely corresponds to a monomial of degree

n in Z2½�1; � � � ; �n	 such that all n factors of the

monomial form a basis of HomðG;Z2Þ. In [7], Stong

showed that the natural homomorphism (Stong

homomorphism) 
n :Mn �! RnðGÞ defined by


nð½Mn; �	Þ ¼
P

p2ðMnÞG ½	pðMnÞ	

is a monomorphism. This implies that for each � in

Mn, there exists a representative ðMn; �Þ of � such

that NMn is prime (i.e. either all elements of NMn

are distinct or NMn is empty) and NMn is in-

dependent of the choice of representatives of �.

Thus we can define N � :¼ NMn . Obviously we have

�1 ¼ �2 () N �1
¼ N �2

, for �1; �2 2Mn.

Let � : Mn ! Pn be a small cover over a simple

convex polytope Pn. The set of the vertices of Pn is

just the image of ðMnÞG under the map �. Let E

denote an edge (1-dimensional face) of Pn, then

��1ðEÞ is a connected 1-dimensional G-submanifold

of Mn by [4, Lemma 1.3]. For p 2 ðMnÞG and

�ðpÞ 2 E, p is also a fixed point of this submanifold.

We have a 1-dimensional real tangential represen-

tation 	pð��1ðEÞÞ of G at p. Suppose that

Ei1 ; � � � ; Ein are the n edges that meet at �ðpÞ. ThenLn
k¼1 	pð��1ðEikÞÞ just gives 	pðMnÞ. The isotropy

group of ��1ðEÞ is of rank n-1. Thus the tangential

representation 	pð��1ðEÞÞ is determined by the

vector orthogonal to the isotropy group (regarded

as a subspace of ðZ2Þn). Each edge is the

intersection of n-1 facets. Suppose E ¼
Tn�1
k¼1 Fjk ,

where Fjk denotes a facet. The vectors �ðFjkÞ;
k ¼ 1; � � � ; n� 1, span the isotropy group of

��1ðEÞ. So the characteristic function uniquely

determines the tangential representation 	pðMnÞ.
3. The number of small covers.

We only prove Theorem 1 and Theorem 3

because in the similar way we can give the proofs of

Theorems 2, 4, 5. In fact, In ¼ I � I � � � � � I|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n

. Let

a11; a12 be two vertices of the first I-factor, a21; a22

be two vertices of the second I-factor, � � �, and an1; an2

be two vertices of the last I-factor. Let F1 ¼
a11 � In�1; F2 ¼ a12 � In�1, F3 ¼ I � a21 � In�2,

F4 ¼ I � a22 � In�2; � � �, F2n�1 ¼ In�1 � an1, and

F2n ¼ In�1 � an2. Then FðInÞ ¼ fF1; F2; F3; F4; � � � ;
F2n�1; F2ng. Using characteristic functions and Stong

homomorphism, we first give the proof of Theorem 1.

The proof of Theorem 1. Let e1; e2; � � � ; en
be the standard basis of ðZ2Þn. We choose F1;

F3; � � � ; F2n�1 from FðInÞ such that they meet at

one vertex of In. Without loss of generality, let

�ðF2h�1Þ ¼ eh; 1 � h � n. By the linear independ-

ence condition of characteristic functions, we have

�ðF2Þ ¼ e1 or e1 þ ek1
þ � � � þ eki , 2 � k1 < � � � <

ki � n; 1 � i � n� 1. But when �ðF2Þ ¼ e1, by

Stong homomorphism, we see that the small cover

constructed from such � equivariantly bounds. Here

we only consider non-bounding small covers. Thus

�ðF2Þ ¼ e1 þ ek1
þ � � � þ eki , 2 � k1 < � � � < ki � n,

1 � i � n� 1. Since k1 � 2, Without loss of general-

ity, suppose k1 ¼ 2 (if k1 > 2, we may consider

�ðF2k1
Þ in the same way). In this case, by the linear

independence condition of characteristic functions

and Stong homomorphism, we have �ðF4Þ ¼ e2 þ
et1 þ � � � þ etj , 3 � t1 < � � � < tj � n, 1 � j � n� 2.

Since t1 � 3, we may suppose t1 ¼ 3. In the similar
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way, we have �ðF6Þ ¼ e3 þ el1 þ � � � þ elm , 4 �
l1 < � � � < lm � n, 1 � m � n� 3. We continue in

the above way. Finally, we have �ðF2nÞ ¼ en. By

Stong homomorphism, small covers constructed

from these � equivariantly bound. If we choose

other basis of ðZ2Þn, the result is the same as

above. Thus, all small covers over In equivariantly

bound. �

For convenience, we introduce the following

marks. By F 01; � � � ; F 0n1þ1 we denote all facets of n1-

simplex �n1
, and by F 0n1þ2; � � � ; F 0n1þn2þ2 we denote

all facets of n2-simplex �n2
. Set F 0 ¼ fFi ¼

F 0i ��n2
j1 � i � n1 þ 1g, and F 00 ¼ fFi ¼ �n1

�
F 0i jn1 þ 2 � i � n1 þ n2 þ 2g. Then F ð�n1

��n2
Þ ¼

F 0
S
F 00.
The proof of Theorem 3. Let e1; � � � ; en1þn2

be the standard basis of ðZ2Þn1þn2 . For �n1
��n2

with 2 � n1 < n2, we choose F1; � � � ; Fn1
from F 0 and

Fn1þ2; � � � ; Fn1þn2þ1 from F 00 such that F1; � � � ; Fn1
;

Fn1þ2; � � � ; Fn1þn2þ1 meet at one vertex of �n1
��n2

.

Without loss of generality, let �ðFiÞ ¼ ei, 1 � i �
n1;�ðFiÞ ¼ ei�1, n1 þ 2 � i � n1 þ n2 þ 1. By the

linear independence condition of characteristic func-

tions, we have �ðFn1þn2þ2Þ ¼ en1þ1 þ � � � þ en1þn2
þ

ek1
þ � � � þ eki , 1 � k1 < � � � < ki � n1, 0 � i � n1.

When �ðFn1þn2þ2Þ ¼ en1þ1 þ � � � þ en1þn2
, �ðFn1þ1Þ ¼

e1 þ � � � þ en1
þ et1 þ � � � þ etj , n1 þ 1 � t1 < � � � <

tj � n1 þ n2, 0 � j � n2. When �ðFn1þn2þ2Þ ¼
en1þ1 þ � � � þ en1þn2

þ ek1
þ � � � þ eki , 1 � k1 < � � � <

ki � n1, 1 � i � n1, we have �ðFn1þ1Þ ¼ e1 þ � � � þ
en1

. So the values of � have 2n1 þ 2n2 � 1 possible

choices. There are

Qn1þn2

t¼1

ð2n1þn2�2t�1Þ

ðn1þ1Þ!ðn2þ1Þ! choices for a basis of

ðZ2Þn1þn2 if we consider equivariant cobordism clas-

sification by Stong homomorphism. Thus, there are
Qn1þn2

t¼1

ð2n1þn2�2t�1Þ

ðn1þ1Þ!ðn2þ1Þ! ð2n1 þ 2n2 � 1Þ non-bounding small

covers over �n1
��n2

for 2 � n1 < n2.

For �n1
��n2

with 2 � n1 ¼ n2, let �ðFiÞ ¼ ei,
1 � i � n1; �ðFiÞ ¼ ei�1, n1 þ 2 � i � n1 þ n2 þ 1.

Using the above method, we see that the values of

� have 2n1þ1 � 1 possible choices. But there areQ2n1

t¼1

ð22n1�2t�1Þ

2ðn1þ1Þ!2 choices for a basis of ðZ2Þ2n1 in this case.

Thus, there are

Q2n1

t¼1

ð22n1�2t�1Þ

2ðn1þ1Þ!2 ð2n1þ1 � 1Þ non-bounding

small covers over �n1
��n2

for 2 � n1 ¼ n2.

For �1 ��n2
with n2 > 1, F 0 ¼ fF1; F2g;F 00 ¼

fF3; � � � ; Fn2þ3g and Fð�1 ��n2
Þ ¼ F 0

S
F 00. Let

�ðF1Þ ¼ e1; �ðFiÞ ¼ ei�1; 3 � i � n2 þ 2. By the linear

independence condition of characteristic functions,

we have �ðFn2þ3Þ ¼ e2 þ � � � þ en2þ1 or e2 þ � � � þ
en2þ1 þ e1. When �ðFn2þ3Þ ¼ e2 þ � � � þ en2þ1, �ðF2Þ ¼
e1 or e1 þ ek1

þ � � � þ eki , 2 � k1 < � � � < ki � n2 þ 1,

1 � i � n2. But when �ðFn2þ3Þ ¼ e2 þ � � � þ en2þ1

and �ðF2Þ ¼ e1, by Stong homomorphism, the small

cover constructed from such � equivariantly bounds.

Here we only consider non-bounding small covers.

Then when �ðFn2þ3Þ ¼ e2 þ � � � þ en2þ1, �ðF2Þ ¼ e1 þ
ek1
þ � � � þ eki , 2 � k1 < � � � < ki � n2 þ 1, 1 � i � n2.

When �ðFn2þ3Þ ¼ e2 þ � � � þ en2þ1 þ e1, we have

�ðF2Þ ¼ e1. Similarly using Stong homomorphism,

the small cover constructed from such � equivar-

iantly bounds. So the values of � have 2n2 � 1

possible choices. In this case, there are

Qn2þ1

t¼1

ð2n2þ1�2t�1Þ

2ðn2þ1Þ!

choices for a basis of ðZ2Þn2þ1 if we consider
equivariant cobordism classification by Stong homo-

morphism. Thus, there are

Qn2þ1

t¼1

ð2n2þ1�2t�1Þ

2ðn2þ1Þ! ð2n2 � 1Þ

non-bounding small covers over �1 ��n2
. Adding

the small cover that equivariantly bounds, we

determine the number of small covers over �1 �
�n2

up to equivariant cobordism for n2 > 1. �
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