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Abstract: For a positive integer k and a certain arithmetic progression A, there exist

infinitely many quadratic fields Qð
ffiffiffiffiffiffiffi
�d
p

Þ whose class numbers are divisible by k and d 2 A. From

this, we have a linear congruence of the representation numbers of integers as sums of three

squares.
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1. Introduction. Let rðnÞ be the represen-

tation numbers of integers as sum of three squares.

Then rðnÞ are Fourier coefficients of weight 3
2

modular form �0ðzÞ3 of �0ð4Þ.P1
n¼0 rðnÞqn :¼ �0ðzÞ3

¼ 1þ 6q þ 12q2 þ 8q3 þ 6q4 þ 24q5 þ � � � :
Gauss showed that rðnÞ is a multiple of

Hurwitz-Kronecker class number.

rðnÞ ¼

12Hð4nÞ if n � 1; 2 mod 4

24HðnÞ if n � 3 mod 8

rðn=4Þ if n � 0 mod 4

0 if n � 7 mod 8.

8>>><>>>:
If �N ¼ Df2 where D is a negative fundamen-

tal discriminant, then HðNÞ is given by class

number hðDÞ of imaginary quadratic field Qð
ffiffiffiffi
D
p
Þ.

HðNÞ ¼
hðDÞ
wðDÞ

X
djf

�ðdÞ
D

d

� �
�1

f

d

� �
where wðDÞ is half of the number of units in

Qð
ffiffiffiffi
D
p
Þ and �1ðnÞ is the sum of the positive divisors

of n. Hence divisibility of rðnÞ is equivalent to

divisibility of class numbers of imaginary quadratic

fields. Kohnen and Ono [2] showed indivisibility of

class numbers of imaginary quadratic fields by

prime numbers in an ingenious way under this

observation. Nagell [4], Ankeny and Chowla [1],

Kuroda [3], Soundararajan [6] and many other

mathematicians showed that for given integer k,

there are infinitely many imaginary quadratic fields

Qð
ffiffiffiffiffiffiffi
�d
p

Þ whose class numbers are divisible by k.

Especially in Ankeny and Chowla [1], �d is always

congruent to 3 modulo 4, this implies that for given

k, there exist infinitely many square-free integers n

such that n � 1 mod 4 and rðnÞ � 0 mod 12k.

From these observations, we are motivated

to study divisibility problem of class numbers of

imaginary quadratic fields with discriminants in an

arithmetic progression.

For an odd positive square-free integer M and

an integer a, we define an arithmetic progression

Aða;MÞ be

Aða;MÞ ¼ fn 2 Z j n � a mod Mg:

Throughout this article, we assume that for a given

prime number p, p and M are co-prime or M is

divided by p with order 1. So M is factorized into

p1p2 � � � ps for the former case and into pp1p2 � � � ps for

the latter case.

Now we can state two main theorems in this

article.

Theorem 1. Let k be a positive integer and

m be a quadratic residue modulo M. Let p be an odd

prime number bigger than 3 with cðp;MÞ > 0 where

cðp;MÞ ¼ 9
4 � �2

6 þ 1
p2 þ

Ps
i¼1

1
pi2
� 1

pi

� �� �
.

If p jM, we assume that m is a non-zero

quadratic residue modulo M and modulo p simulta-

neously. Then, there are infinitely many positive

square-free d such that

hð�dÞ � 0 mod k and �d 2 Aðm� pk;MÞ

where hð�dÞ is the class number of imaginary

quadratic field Qð
ffiffiffiffiffiffiffi
�d
p

Þ.
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From Ankeny and Chowla [1] and the argu-

ment of the proof of Theorem 1, we have a linear

congruence property of rðnÞ.
Theorem 2. Let rðnÞ be the representation

numbers of integers as sum of three squares. Then,

1) For any given integer k, there are infinitely many

square-free n such that

n � 1 mod 4 and rðnÞ � 0 mod 12k:

2) For any given odd integer k, there are infinitely

many square-free n such that

n � 2 mod 4 and rðnÞ � 0 mod 12k:

3) For any given odd integer k, there are infinitely

many square-free n such that

n � 3 mod 8 and rðnÞ � 0 mod 24k:

Remark 1. We can state Theorem 1

and Theorem 2 in more quantitative way.

For example, proof of Theorem 1 implies

j f0 < n < X j n : square-free, n � 1 mod 4 and

rðnÞ � 0 mod 12kg j� X1=2.

We will prove Theorem 1 and its corollary in

section 2 and prove Theorem 2 in section 3.

2. Proof of Theorem 1. We clearly men-

tion that main ideas of proofs in this article comes

from Ankeny and Chowla [1]. To prove above

Theorem 1, we need the following two Lemmas. In

this section, we assume that k is sufficiently large.

Lemma 3. Let Nðk; p; r;MÞ be the number of

the square free integers d ¼ pk � l2, such that l is

even, l � r mod M and 0 < l <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 4Þpk�1

p
.

If p jM, we assume that r is a non-zero residue

modulo M and modulo p simultaneously. Then we

have

Nðk; p; r;MÞ > eccðp;MÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 4Þpk�1

p
:

where eccðp;MÞ ¼ ðp�1Þcðp;MÞ
2pM

if p - M

cðp;MÞ
2M

if p jM.

8<:
Proof. First, we assume that p and M

are coprime. We define Sðk; p; r; a;MÞ :¼
fpk � l2 j l : even, l � r mod M, l � a mod p and

0 < l <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 4Þpk�1

p
g where a is any nonzero

residue modulo p. Then we obtain that

jSðk; p; r; a;MÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 4Þpk�1

p
2pM

þOð1Þ:

Then any d in Sðk; p; r;MÞ is not divisible by

p2. We exclude d such that p1
2 j d from Sðk; p;

r; a;MÞ where p1 is a prime divisor of M. Let m1 be

the smallest integer such that pk � ðrþm1MÞ2 is

divided by p1
2. Then if m2 is another integer with

the same property, then we have that m2 �m1 is

divided by p1 or r is divided by p1. But the latter

induces that p is divisible by p1. So there are at most�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp�4Þpk�1
p

2p1pM

k
þ 1
�

integers d which are divisible

by ðp1Þ2.
Next, we exclude d such that q1

2 j d from

Sðk; p; r; a;MÞ where q1 is not a prime divisor of

M. Let m1 be the smallest integer such that pk �
ðrþm1MÞ2 is divided by q1

2. Then if m2 is another

integer with the same property, then we have that

m2 �m1 is divided by q1
2 or m2 � m1 � 2rþm1M

M

modulo q1
2. But the latter induces that l2 ¼ rþ

m2M is congruent to �r modulo M. So there are at

most
�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp�4Þpk�1
p

2q1
2pM

k
þ 1
�

integers d which are divis-

ible by ðq1Þ2. Let Nðk; p; r; a;MÞ be the number of

the square free integers in Sðk; p; r; a;MÞ.
Then we have

Nðk; p; r; a;MÞ
> ð1� 1

p1
� 1

p2
� � � � 1

ps
�
P

3�q�pk=2;ðq;pMÞ¼1
1
q2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp�4Þpk�1
p

2pM
� ð
P

3�q�pk=2 1Þ þOð1Þ

where M ¼ p1p2 � � � ps.
By Prime number theorem and �ð2Þ ¼ �2

6 ,

Nðk; p; r; a;MÞ >
9
4�

�2

6 þ
1
p2 þ

Ps
i¼1

1
pi2
� 1

pi

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp�4Þpk�1
p

2pM :

Since there are p� 1 distinct nonzero residue

modulo p, we showed the case when p and M are

coprime.

When p divides M, we define Sðk; p; r;MÞ :¼
fpk � l2 j l : even, l � r mod M, and 0 < l <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 4Þpk�1

p
g where r is a nonzero residue modulo

M and modulo p simultaneously. Then every d in

Sðk; p; r;MÞ is not divisible by p2. Like above, we

exclude d from Sðk; p; r;MÞ divisible by p2
1 prime

divisor of M or by q2
1 not prime divisor of M. Then

we can show the latter case. �

For a square-free integer d, let K ¼ Qð
ffiffiffiffiffiffiffi
�d
p

Þ
and hð�dÞ be the class number of K and CLð�dÞ be

the class group of K. Then we have the following

lemma.

Lemma 4. For a positive integer k and a

prime number p bigger than 3, let d ¼ pk � l2 be a
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square free integer with 0 < l <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 4Þpk�1

p
: Then

the integer k divides hð�dÞ.
Proof. Since �d � l2 mod p, a discriminant of

K is a quadratic residue modulo p. So the prime p is

split in K. Hence we have

ðpÞ ¼ p1p2

for the prime ideals p1, p2 in K.

Let m be the order of the ideal p1 in a group

CLð�dÞ. We assume that

m < k:

Then for the integers u and v,

p
m
1 ¼

uþ v
ffiffiffiffiffiffiffi
�d
p

2

 !
and

ðpÞm ¼
uþ v

ffiffiffiffiffiffiffi
�d
p

2

 !
u� v

ffiffiffiffiffiffiffi
�d
p

2

 !
¼ u2 þ v2d

4

� �
:

Since f1;�1g is the set of units of an imaginary

quadratic field K whose discriminant is greater

than 6, we have

pm ¼
u2 þ v2d

4

This implies,

d > 4pk�1 � 4pm ¼ u2 þ v2d:

So we have v ¼ 0 so pm1 ¼ pm2 , hence p1 ¼ p2.

This is a contradiction that p is split in K. Thus the

order of an ideal p1 in CLð�dÞ is k. Finally, we find

that k divides hð�dÞ. This complete the proof. �

Now, using Lemma 3 and Lemma 4, we prove

Theorem 1.

Proof of Theorem 1. First, consider the

case of ðp;MÞ ¼ 1. By Lemma 3 and Lemma 4, there

are at least eccðp;MÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 4Þpk�1

p
imaginary quad-

ratic fields Qð
ffiffiffiffiffiffiffi
�d
p

Þ with �d 2 Aðr2 � pk;MÞ and

hð�dÞ � 0 mod k.

Now, we suppose that there exist finitely many

imaginary quadratic fields Qð
ffiffiffiffiffiffiffi
�d
p

Þ with �d 2
Aðr2 � pk;MÞ and hð�dÞ � 0 mod k. Then there

exists an integer e such that kð�ðMÞ þ 1Þe does not

divide hð�dÞ for any d we constructed. By applying

Lemma 3 and Lemma 4 again, we obtain that there

are at least eccðp;MÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 4Þpkð�ðMÞþ1Þe�1

p
imaginary

quadratic fields Qð
ffiffiffiffiffiffiffi
�d
p

Þ with �d 2 Aðr2 � pk;MÞ
and hð�dÞ � 0 mod k distinct from previous ones.

By repeating this process, the result we want follows.

In case that p divides M, also by Lemma 3 and

Lemma 4, there are at least eccðp;MÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 4Þpk�1

p
imaginary quadratic fields Qð

ffiffiffiffiffiffiffi
�d
p

Þ with

�d 2 Aðr2 � pk;MÞ and hð�dÞ � 0 mod k. Since

pð�ðM=pÞþ1Þ � p mod M, for any positive integer e

we have pkð�ðM=pÞþ1Þe � pk mod M. Now choose e

such that kð�ðM=pÞ þ 1Þe does not divide hð�dÞ for

any d we constructed. Then, we can also show this

case similarly like above.

When M is a prime number, using Perron’s

Theorem [5] of distribution of quadratic residues of

Z=qZ, we can get the following result.

Corollary 5. If q ¼ 4s� 1 (resp. q ¼ 4sþ 1)

is a prime number bigger than 3, then there are at

least 3s (resp. 3sþ 1) distinct arithmetic progres-

sions modulo q satisfying Theorem 1. In particular,

if q ¼ 5, then, for any fixed k, there are infinitely

many positive square-free d such that

hð�dÞ � 0 mod k and � d 2 Aða; 5Þ

where a is any fixed integer 2 f0; 1; 3; 4g.
Proof. In Theorem 1, choose M ¼ q and p ¼ q

where q is a prime number bigger than 3. Then,

if q ¼ 4s� 1, there are 2s� 1 non-zero quadratic

residues modulo q. Therefore, there exist 2s� 1
arithmetic progressions modulo q satisfying

Theorem 1. If we put p ¼ q0 which is congruent 1

modulo q, then, by Perron’s Theorem on the

distribution of quadratic residues of Z=qZ, we have

additional sþ 1 arithmetic progressions modulo q

holding Theorem 1. In case of q ¼ 4sþ 1, we can

show that there are 3sþ 1 arithmetic progressions

modulo q satisfying Theorem 1 with the same

argument. �

Remark 2. We can extend Theorem 1

for an odd integer M ¼ pe1

1 p
e2

2 � � � pess or M ¼
ppe1

1 p
e2

2 � � � pess . Then we have more restriction on a

quadratic residue m modulo M. The restriction

is that pk �m is not congruent to 0 modulo p2
i for

all ei � 2.

3. Proof of Theorem 2. For convenience,

we state Theorem 2 here again.

Theorem 2. Let rðnÞ be the representation

numbers of integers as sum of three squares. Then,

1) For any given integer k, there are infinitely many

square-free n such that

n � 1 mod 4 and rðnÞ � 0 mod 12k:

2) For any given odd integer k, there are infinitely

many square-free n such that
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n � 2 mod 4 and rðnÞ � 0 mod 12k:

3) For any given odd integer k, there are infinitely

many square-free n such that

n � 3 mod 8 and rðnÞ � 0 mod 24k:

Proof. From the relationship between rðnÞ
and the class number of Qð

ffiffiffiffiffiffiffi
�n
p

Þ mentioned in

the Introduction, we can see easily the following

identity. For a positive square-free integer n bigger

than 3,

rðnÞ ¼
12hð�nÞ if n � 1; 2 mod 4

24hð�nÞ if n � 3 mod 8.

�
Hence, Ankeny and Chowla [1] implies the first

statement as we explained in the Introduction.

Secondly, for an odd integer k, we consider

square-free integers n of the form n ¼ 7k � l2 where

l is of the form 1þ 4m� 7. Such n is congruent to 2

modulo 4 and hð�nÞ is divisible by k by Lemma 4.

Since n is always congruent to 2 modulo 4, n is not

divisibly by 4. Then by the argument of the proof of

Lemma 3, we can show that there are infinitely

many such n. This together with the above identity

proves the second statement.

Thirdly, for an odd integer k, we consider

square-free integer n of the form n ¼ 7k � l2 where

l is of the form 2þ 4m� 7. Then we have n � 3
modulo 8 and hð�nÞ is divisible by k by Lemma 4.

Then by the argument of the proof of Lemma 3, we

can show that there are infinitely many such n. This

together with the above identity proves the third

statement. �

Remark 3. Using Lemma 4, we can find n

satisfying Theorem 2 explicitly. For example, if

we put p ¼ 5, k ¼ 6, then rðnÞ is divisible by 72

and n � 1 mod 4 for all n 2 f12709; 12921; 13321;

13861; 14181; 14329; 14469; 14601; 15049; 15301; 15369;

15429; 15481; 15589; 15621g.
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