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Abstract: We consider another application of the Ogg-Shafarevich-Grothendieck formula

(abbr. OSG) to pencils of plane curves of degree d with certain extremal properties of

reducibility. Besides some new results for extremal pencils we treat also various aspects of the

topics, e.g. pencils with small number of special fibres, families with ð2IVdÞ, etc.
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Introduction. The problem of classifying

non-trivial families of curves of genus g � 1 over

P1 with small number of singular fibres was

motivated by the function field analogue of the

second Shafarevich conjecture stating that there are

no such smooth families (cf. [11–13]). A new interest

to reducible fibres, in particular completely reduci-

ble fibres, comes from the other branches of

mathematics ([7,10,14–18]). Unless otherwise stated

the ground field k is assumed algebraically closed of

any characteristic. By ‘‘tame condition’’ on charac-

teristic we mean either charðkÞ ¼ 0, or > 2gþ 1.

The concept of total order of reducibility � was

traced back to Poincaré since 1891. Stein’s theorem

([15]) asserts that �ðpÞ � d� 1 for a non-composite

polynomial p 2 C½x; y� of degree d. Lorenzini ([10])

extended this result to pencils of curves in P2ðkÞ
with bound �ðp=qÞ � d2 � 1. We are mainly inter-

ested in the extremal case in both estimates above.

For pencils of complex generically smooth plane

curves of degree d Ruppert ([14]) showed that the

number of reducible fibres srd � 3d� 3. We derive

Ruppert’s bound as a direct consequence of the

OSG formula. Moreover the equality holds only for

Ruppert’s pencils.

Examples of polynomials with (maximal) srd ¼
d� 1 were constructed in [10]. It will be shown in §2

that these are the only polynomials with srdðpÞ ¼
d� 1 (up to coordinate change). We prove also a

uniqueness theorem for extremal polynomial map-

pings on A2 with two reducible fibres.

Along the same line of ideas one can give an

algebraic approach to the problem of classifying

normal forms of polynomials A2 with one singular

fibre (cf. [19,20] and §3).

By analogy with Kodaira-Néron classification

of elliptic degenerations let us denote by IVd the

degenerate configuration consisting of d concurrent

lines. In §4 we deduce some results for families of

curves with ð2IVdÞ extending previously known

results (cf. [17]). In the final paragraph some results

related to the Hesse cubic pencil in characteristic 6¼ 3

3xy� tðx3 þ y3 þ 1Þ ¼ 0ðH Þ

are given. In particular it is established that ðH Þ is

the only extremal pencil, i.e. with maximal �ðp=qÞ ¼
d2 � 1 (Theorem 5.2). It is of interest in view of recent

results and ‘‘4 completely reducible fibres conjecture’’

à la Libgober, Yuzvinsky et al. ([9,17,18]).

1. Total reducibility order of a pencil.

Let p; q 2 k½x; y�, maxðdeg p; deg qÞ ¼ d. Standard

homogeneous extensions of these polynomials define

two curves in the projective plane P2 which are

denoted by C0 and C1 respectively. We assume

that C0 and C1 intersect in finitely many points.

Consider a pencil of curves defined by pðx; yÞ �
tqðx; yÞ ¼ 0; t 2 k, or equally speaking the pencil

defined by the rational function p=q. In homoge-

neous coordinates it is

Ct :¼ fðx : y : zÞ 2 P2 : zdpðx=z; y=zÞ
� tzdqðx=z; y=zÞ ¼ 0g; t 2 k:
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Definition ([15]). The total reducibility or-

der of the pencil p=q is defined to be

�ðp=qÞ :¼
X
t2k
ðrt � 1Þ;

where rt denotes the number of irreducible compo-

nents of Ct.

Theorem 1.1 ([10]). We have �ðp=qÞ �
d2 � 1.

We give here a new interpretation of this result

in term of the virtual Mordell-Weil rank rMW

introduced in [11]. The rational function p=q gives

rise to a rational map: P2 n fC0 \ C1g ! P1. By

resolving indeterminacy at intersection points of C0

and C1 via a finite sequence of blowing-ups we get a

morphism f : X ! P1. The exceptional divisors

that map onto P1 under f are called horizontal

components of f and we denote their number by nh.

From the formula relating the Picard number of X

and rMW ([11,12]) we infer

�ðp=qÞ ¼ nh � r1 � rMWð1:1Þ

where r1 - the number of irreducible components of

C1. The conclusion of Theorem 1.1 now follows

from ð1:1Þ by remarking that nh � #fblow-upsg �
d2.

Remark. (i) For polynomial mappings on A2

it would be interesting to interpret rMW in ð1:1Þ as

an affine counterpart for the generalized Jacobians;

(ii) In fact Lorenzini gave in [10] a more precise

bound by generalizing Lin’s remark (cf. [7]): if

general curve C� is of type ðg; nð�ÞÞ, i.e. a smooth

curve of genus g with nð�Þ ‘punctures’, then nh �
nð�Þ.

Corollary 1.2 (cf. [7,15]). For a non-com-

posite polynomial p : A2 ! A1 of degree d we have

�ðpÞ � d� 1.

Polynomials p with �ðpÞ ¼ d� 1 are called

extremal. Since for non-composite polynomial map-

pings nh � nð�Þ � d, we come to Corollary 1 in [10]

and the following corollaries.

Corollary 1.3. Fibres of extremal polyno-

mials are reduced.

Remark. It should be worth emphasizing the

following two extremal subcases: (i) xd � yd ¼ t
having only one reducible fibre of type IVd over

t ¼ 0; (ii) p1;d�1ðx; yÞ :¼ y
Qd�1

i¼1

ðx� aiÞ þ x ¼ t with

distinct ai having d� 1 reducible fibres over

t ¼ ai, i ¼ 1; . . . ; d� 1.

Corollary 1.4. A non-composite polynomial

mapping p : A2 ! A1 has at most one completely

reducible fibre.

Indeed if pðx; yÞ ¼
Qr0

i¼1

liðx; yÞei with linear

liðx; yÞ, i ¼ 1; . . . ; r, so �ðpÞ ¼ r0 � 1.

2. Ruppert’s pencils and their affine ana-

logues. Over C Ruppert proved that the number

of reducible members in a pencil of non-singular

plane curves of degree d is at most 3d� 3 ([14], Satz

6). Furthermore he produced pencils with exactly

3d� 3 reducible members as follows: Consider the

following net of non-singular plane curves of degree

d � 3: xðyd�1 � 1Þ þ �yðxd�1 � 1Þ þ � ðxd�1 � yd�1Þ.
Then a generic line in the plane of parameters ð�; �Þ
gives rise to a pencil with 3d� 3 reducible curves as

its singular members each of them is a union of a

line and a smooth curve of degree ðd� 1Þ intersect-

ing transversally at ðd� 1Þ points. We call such a

pencil Ruppert’s pencil. As in §1 we work over any

characteristic.

Theorem 2.1. Let f : X ! P1 be the result-

ing morphism obtained from a pencil of generically

non-singular plane curves of degree d by a finite

sequence of blow-ups as in x1. Let srdðfÞ denote

the number of reducible fibres of f. Then srdðfÞ �
3d� 3. Moreover the equality implies that f is

obtained from a Ruppert pencil.

In the situation above the OSG formula for f

([12]) gives usX
t2S
½g� gð eXXtÞ þ nt � 1� � 3ðd� 1Þ2ð2:1Þ

where S denotes the set of singular fibres of f ,

g = genus of a general fibre, eXXt is the normalization

of fibre Xt over t and nt - the number of its

irreducible components. By using the genus formula

for plane (reducible) curves one has

g� gð eXXtÞ þ nt � 1 � d� 1:ð2:2Þ

The conclusion of Theorem 2.1 now follows from

(2.1), (2.2) and equalities in both of them imply

that all singular fibres of f are semi-stable ([12],

Lemma 1) with same configurations, as in a

Ruppert pencil.

We have the following affine version of

Theorem 2.1.

Theorem 2.2. Up to coordinate change non-

composite polynomials in two variables with ðd� 1Þ
reducible fibres are p1;d�1ðx; yÞ.
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The first statement follows from Corollary 1.2.

Moreover if p has ðd� 1Þ reducible fibres, then all

these fibres are reduced (Corollary 1.3) and each of

them consists of two irreducible components. Since

intersections of components in reducible fibres give

rise to a contribution to the total Milnor number

and by Bézout’s theorem it follows that each

reducible fibre contains a line, say liðx; yÞ for the

fibre over ai, i ¼ 1; . . . ; d� 1. It can be seen that

these ðd� 1Þ lines have the same direction to

infinity. Then by choosing an lj as new coordinate

X, all li in the new coordinate system have form

X � bi. Putting P ðx; yÞ ¼ pðX; Y Þ, an arithmetics

shows that P ðX; Y Þ �X ¼ lðX; Y Þ
Qd�1

i¼1

ðX � biÞ.

Extremal polynomials with two reducible

fibres have many similar properties of generalized

Chebyshev polynomials in one variable, e.g. all

their critical points are lying in two fibres and the

number of components in these fibres equals to

ðdþ 1Þ, e.g. p1;2ðx; yÞ from the series above. In fact

one may slightly modify series p1;d�1ðx; yÞ to get

extremal polynomials with two singular fibres. Let

qmðxÞ be a polynomial of degree m having distinct

roots and let qmðxÞ � 1 ¼
Qm
i¼1

ðx� aiÞ with distinct

ai. For 1 � k � m� 1 consider p1;m;kðx; yÞ :¼

y qmðxÞ
Qk
i¼1

ðx� aiÞ þ qmðxÞ. Then p1;m;kðx; yÞ are

extremal with two singular fibres (over t ¼ 0; 1).

Conversely in a similar way as in the proof of

Theorem 2.2 we have

Theorem 2.3. Extremal polynomials with

two reducible fibres are obtained as above.

Remark. (i) Theorem 2.3 says that extremal

polynomials with two reducible fibres are semi-

stable (cf. conjecture after Theorem 7 in [12]); (ii)

Examples of semi-stable polynomial mappings

with three singular fibres can serve polynomials

TnðxÞ � TmðyÞ, where TnðxÞ is the Chebyshev poly-

nomial of the first kind defined by TnðxÞ :¼
cosðn arccosxÞ.

3. Some pencils with small s. Let

f : X ! P1 be a relatively minimal fibration of

curves of genus g � 1 over an algebraically closed

field k. Let us assume ‘‘tame condition’’ in this

paragraph (and additionally f has no multiple fibres

in non-zero characteristic). Let s denote the number

of singular fibres. It is known that s � 2 for a non-

trivial family f .

Conjecture 3.1 ([12]). Surfaces X as above

with s ¼ 2 are unirational.

A result towards this conjecture was reported

at the Symposium ‘‘AGEA II’’.

Theorem 3.2 ([13]). Conjecture 1.1 is true

in the case k ¼ C.

A deep part of the proof of Theorem 3.2

relies on the theory of complex affine surfaces due

to Fujita, Ramanujam, Miyanishi, Gurjar, Shatri

et al.

A particular case of polynomial mappings on

A2 with one singular fibre is quite interesting. In

fact Zaidenberg and Lin were able to describe all

normal forms of such polynomials over C ([19,20]).

Let us adopt the following notation: pðx; yÞ ¼Qr0

i¼1

piðx; yÞei , �0;i :¼ fpiðx; yÞ ¼ 0g, i ¼ 1; . . . ; r0;

a; b; ei; r 2 Zþ, l;m; n; li 2 N, �ðx; yÞ :¼ xryþ �ðxÞ,
deg � < r and �ð0Þ 6¼ 0 for r > 0.

Theorem 3.3 (cf. [20]). Let p : A2 ! A1 be

a non-composite polynomial mapping with only one

singular fibre, say �0 over t ¼ 0. Then all �0;i,

possibly but one, are simply connected, or simply

connected at infinity. More precisely the classifica-

tion is divided into 3 classes depending on appear-

ance of ‘exceptional’ components.

(I) All �0;i are simply connected: P1ðx; yÞ ¼

xayb
Q
i

ðxm � �iynÞei , or P2ðx; yÞ ¼ qðxÞyl.

(II) There are components simply connected

at infinity (viz. �ð�0;iÞ ¼ 0Þ: P3ðx; yÞ ¼ xa�bQ
i

ðxm � �i�nÞli ; r > 0, P4ðx; yÞ ¼ xa�b
Q
i

ðxm�n �

�iÞli , ða > 0; ðm;nÞ ¼ 1Þ, or P5ðx; yÞ ¼ qðxÞ�l;
r > 0; qð0Þ ¼ 0.

(III) There is a �0;i with �ð�0;iÞ < 0: P6ðx; yÞ ¼

q1ðxÞðy
Qm
j¼1

ðx� 	jÞli � q2ðxÞÞl, m � 2, 	j-pairwise

distinct, q1ð	jÞ ¼ 0; q2ð	jÞ 6¼ 0; j ¼ 1; . . .m,

deg q2 <
Pm
j¼1

lj.

Let f : X ! P1 be the associated morphism

obtained after blowing-up base points as in §1.

By ð1:1Þ we have nh ¼ r0. Next in view of [12],

Theorem 6, the equality on the right-hand side of

(3) (Lemma 1, loc.cit.) holds for the fibre X0. Hence

irreducible components of X0 are rational with at

worst singularities of cuspidal type (unibranch) and

the dual graph of X0 is a generalized tree (e.g. type

IVd). This gives us a severe restriction on inter-

196 V. Kh. NGUYEN [Vol. 87(A),



section relations of components. So there is at least

one simply connected component in �0. It is a line,

or quasihomogeneous ([1,19]). Note that the proof

of Zaidenberg-Lin theorem in [19] is essentially

algebraic, except a step using Milnor’s theory,

which was filled up in [1] (cf. also [20]). A detailed

consideration leads to the classes (I)–(III) in the

theorem.

Remark. The arguments above also show

that pencils of plane curves having only two

singular fibres, one of them is irreducible, are those

coming from polynomial ones.

4. Pencils with (2IVd). Under the tame

condition consider the following pencil

ðxd � 1Þ � tðyd � 1Þ ¼ 0:ð3IVdÞ

Over C it is known that up to projective

isomorphism pencils with ð3IVdÞ are unique with

equation above ([17], Prop. 3.3). In the theorem

below we strengthen this result.

For a field k and a 2 k the Dickson polynomial

of the first kind Dnðx; aÞ of degree n is defined by

the following recurrence relation

D0ðx; aÞ ¼ 2; D1ðx; aÞ ¼ x;
Dnðx; aÞ ¼ xDn�1ðx; aÞ � aDn�2ðx; aÞ; n � 2:

Sometimes for the definition of Dnðx; aÞ one

takes the relation Dnðxþ a=x; aÞ ¼ xn þ ða=xÞn
coming from a well-known polynomial identity in

the theory of symmetric functions: xn1 þ xn2 ¼
Dnðx1 þ x2; x1x2Þ. Dickson polynomial Dnðx; aÞ,
a 6¼ 0 and Chebyshev polynomial TnðxÞ are related

by the formula: Dnðx; aÞ ¼ 2an=2Tnðx=2a1=2Þ, hence

TnðxÞ ¼ Dnð2x; 1Þ.
Consider a pencil of Chebyshev-Dickson type

of plane curves of degree d defined by

Ddðx; aÞ � tDdðy; aÞ ¼ 0; a 2 k�:ðDdÞ

The pencil ðDdÞ has two singular fibres of

type IVd over t ¼ 0;1. Besides it has two other

singular fibres at t ¼ �1 which is a union of a line

and ½d=2� conics, if d odd. In the case d > 2 even,

the fibre over t ¼ �1 is a union of d=2 conics; the

fibre over t ¼ 1 is a union of two lines and ðd=2� 1Þ
conics. In both cases fibres over t ¼ �1 are semi-

stable.

Theorem 4.1. Let f : X ! P1 be a fibra-

tion of curves having two singular fibres of type IVd;

ðiÞ If f has one more completely reducible fibre, then

it arises from a pencil of type ð3IVdÞ above; ðiiÞ If f

has a reducible fibre consisting completely of lines

and conics, then it arises from pencil ð3IVdÞ, or from

pencil ðDdÞ described above.

Clearly f arises from a pencil of plane curves

with ð2IVdÞ. By choosing a suitable coordinate

system one may assume that two fibres of type

IVd have concurrent lines at (0:1:0) and (1:0:0)

respectively. Thus we are led to the pencil pðxÞ �
tqðyÞ ¼ 0, where p; q are polynomials of degree d

with distinct roots. One may also assume that a

third singular fibre in the theorem is over t ¼ 1.

Statement ðiÞ now follows by a direct argument:

pðxÞ � qðyÞ has a linear factor if and only if pðxÞ ¼
qðaxþ bÞ, and since pðxÞ � qðyÞ is completely fac-

torized we come to the pencil ð3IVdÞ. For ðiiÞ one

can apply results of [3,5,8] to our situation.

Remark. It should be noted that results due

to Fried, Bilu, Cassou-Noguès, Couveignes et al.

(using the classification of finite simple groups) give

a complete answer concerning factors of pðxÞ � qðyÞ
in the indecomposable case (see [3,4,6,8] and refer-

ences therein). Along the same line of ideas one can

have also a finer result for pencils with ð2IVdÞ and a

reducible fibre consisting completely of low degree

curves.

5. The Hesse cubic pencil. Pencils with

maximal total order of reducibility and ðH Þ give

rise to families f : X ! P1 with rMW ¼ 0.

Theorem 5.1. Let f : X ! P1 be a fibra-

tion of curves of genus g � 1. Let s0 denote the

number of fibres with gð eXXtÞ ¼ 0, where eXXt denotes

the normalization of a fibre Xt. Assume that the

Mordell-Weil rank rMW ¼ 0, then s0 � 4 and s0 ¼ 4

is attained only if f arises from one of six cubic

pencils listed in [2].

Indeed by the OSG formula ([12])P
t2S
½g� gð eXXtÞ� � 4g. So s0 � 4. Equality implies that

f has exactly four singular semi-stable fibres. It

remains to refer to [2,11].

Remark. (i) Pencil ðDdÞ gives rise to a

family f : X ! P1 with s0 ¼ 4, but with rMW ¼
2g. It has 4 ‘‘almost’’ completely reducible fibres (cf.

conjecture of Libgober, Yuzvinsky et al. mentioned

in the Introduction) (ii) Pencil Ddðx; aÞ þ
2Ddðy; aÞ � t½Ddðx; aÞ � 2Ddðy; aÞ� ¼ 0, has �ðp=qÞ ¼
3d� 3 (iii) Note a trivial case of equality in

Theorem 1.1, when d ¼ 2, Ruppert’s pencil, pencil

ðDdÞ lead to the same pencil ð3IV2Þ with maximal

�ðp=qÞ ¼ 3.
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Theorem 5.2. Extremal pencil of curves of

degree d > 2, i.e. with �ðp=qÞ ¼ d2 � 1, arises from

the pencil ðH Þ.
From Theorem 1.1 of §1 it follows that C0 and

C1 intersect transversally in d2 points which give

rise to nh ¼ d2 horizontal components. In particular

the general fibres of the pencil are smooth. We need

the following technical lemma which strengthens

(2.2).

Lemma 5.3. In the situation above

g� gð eXXtÞ þ nt � 1 � ðnt � 1Þ d�
nt

2

� �
ð5:1Þ

Now (5.1) combined with the OSG formula gives

d � 3.
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