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Abstract: We introduce new simplicial complexes by using various invariants and local

moves for knots, which give generalizations of the Gordian complex defined by Hirasawa and

Uchida. In particular, we focus on the simplicial complex defined by using the Alexander-Conway

polynomial and the Delta-move, and show that the simplicial complex is Gromov hyperbolic and

quasi-isometric to the real line.
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1. Introduction. A knot is an ambient iso-

topy class of a simple closed curve smoothly

embedded in the 3–sphere. Let K be the set of all

knots. Let � be a local move on knots, that is a local

operation deforming a knot (see [24, Section 2] for

the precise definition of a local move). The �-

Gordian distance d�ðK;K0Þ between knots K

and K0 is defined to be the minimal number of

the local moves � needed to deform K into K0.
If such a minimum does not exist, then we set

d�ðK;K0Þ ¼ 1. Let x denote the crossing change

which is a local move as shown in Figure 1. In the

case where � ¼ x, dx is called the Gordian distance.

Using the Gordian distance, Hirasawa and

Uchida [11] defined the Gordian complex denoted

by Gx. More generally, the �-Gordian complex G�

introduced by Nakanishi and Ohyama [22, Section 1]

is the simplicial complex defined by the following;

. the set of vertices (i.e. 0–simplices) of G� is K,

and

. nþ 1 vertices K0; . . . ; Kn span an n–simplex

if and only if d�ðKi;KjÞ ¼ 1 holds for each

i 6¼ j 2 f 0; . . . ; n g.

We call the 1–skelton of Gx (resp. G�) the Gordian

graph (resp. the �-Gordian graph), and denote it by

Gx (resp. G�). Assuming that every edge has length

1, each connected component of G� is regarded as

a metric space which turns to a geodesic space

(see Section 2). Then one of the problems we are

interested in is to reveal properties of such spaces.

In particular, we are interested in global properties,

and the Gromov hyperbolicity [7] (for a brief

review, see Section 2) is an important one. There

are several studies on simplicial complexes arising

in geometry and topology. In particular, the curve

complex introduced by Harvey [10] is widely

studied (see also [9] for a survery). Masur and

Minsky proved that curve complexes are Gromov

hyperbolic [18]. On the other hand, there is no

known fact on the Gromov hyperbolicity of G�

except for the following

Proposition 1.1 [5, Theorem C]. TheGordian

graph Gx is not Gromov hyperbolic.

Here we will introduce new simplicial

complexes and graphs by using knot invariants

and local moves, which give generalizations of

the �-Gordian complex and the �-Gordian graph.

Let � be a knot invariant, that is, a function

on K such that �ðKÞ and �ðK0Þ coincide if K is

equivalent to K0. We write K �� K
0 if �ðKÞ ¼ �ðK0Þ

holds. Clearly the binary relation �� provides

an equivalence relation on K. Let ½K�� denote

the equivalence class of K, and set K� ¼
f½K�� j K 2 Kg.

Definition 1.2. Let � be a knot invari-

ant, and let � be a local move on knots. The

ð�; �Þ-Gordian complex G�
� is defined by the follow-

ing
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Fig. 1. The crossing change.
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. The set of vertices of G�
� is K�, and

. nþ 1 vertices ½K0��; . . . ; ½Kn�� span an n–

simplex if and only if for each i 6¼ j 2
f0; . . . ; ng, there exists a pair of knots

Ki;j 2 ½Ki�� and Kj;i 2 ½Kj�� such that d�ðKi;j;

Kj;iÞ ¼ 1.
We call the 1–skelton of G�

� , denoted by G�
� , the

ð�; �Þ-Gordian graph. Assuming that every edge has

length 1, we regard G�
� as a metric space. Then we

denote by d�� the metric on G�
� , and call it the ð�; �Þ-

Gordian distance.

Let rK be the Conway polynomial [3] of a

knot K, which is a polynomial in z2 with integer

coefficients. The Conway polynomial is also called

the Alexander-Conway polynomial since it is re-

garded as a normalized Alexander polynomial [1].

We refer the reader to [14] for basic terminologies

of knot theory. The Delta-move, denoted by the

symbol �, is a local move on knots as shown in

Figure 2, which was introduced by Matveev [19]

and Murakami and Nakanishi [20] independently.

It is known that the Delta-move is equivalent to a

C2-move (see Figure 3), which is one of Cn-moves

introduced by Goussarov [6] and Habiro [8] inde-

pendently.

Using the Conway polynomial and the Delta

move, the ðr;�Þ-Gordian graph G�
r is defined. In

this paper, we show the following

Theorem 1.3. The ðr;�Þ-Gordian graph

G�
r is 2-hyperbolic. Further it is quasi-isometric to

the real line R.

Remark 1.4. In Section 5 we will see that

G�
r and G�

r coincide (see Proposition 1). Thus, G�
r is

also 2-hyperbolic and quasi-isometric to R.

This paper is constructed as follows: In Sec-

tion 2, we give a brief review on a Gromov hyper-

bolic space to study G�
r. In Section 3, we study

the ðr;�Þ-Gordian distance. In Section 4, we prove

Theorem 1.3. In Section 5, we give observations on

the complexes Gx
r and G�

r. We also give some

remarks and questions related to our study.

2. Preliminaries. In this section, we give

a brief review on a Gromov hyperbolic space. For

details, see [2] or [7]. Let X be a geodesic space, that

is, a metric space such that the distance between any

two points is equal to the length of a geodesic

segment joining them. We denote by sðx; yÞ a geo-

desic segment joining two points x and y. A geodesic

triangle T in X is a triple of points x; y; z 2 X

together with three geodesic segments sðx; yÞ, sðy; zÞ,
and sðz; xÞ called the sides of T . For � � 0, a geodesic

triangle is said to be �-slim if each side of a triangle

belongs to the �-neighborhood of the union of the

other two sides. We say that X is �-hyperbolic (or

Gromov hyperbolic) if there exists a constant � � 0

such that any geodesic triangle inX is �-slim. Clearly

if a geodesic space is �-hyperbolic for a particular �,

then it is also �0-hyperbolic for all �0 � �.

Let � be a connected graph. We denote by vv0

an edge connecting vertices v and v0. In general,

assuming that each edge has length 1, the graph

� is regarded as a metric space, and it turns to a

geodesic space.

As mentioned in Section 1, we regard G�
r as a

geodesic space with the metric d�r induced by the

above setting. Note that G�
r is a connected graph

since the Delta-move is an unknotting operation

[20]. Recall that the vertex set of G�
r is Kr. From

now, unless otherwise specified, we use the symbol

½K� to refer to the vertex ½K�r for brevity. Note that

for two vertices ½K� and ½K0� with d�rð½K�; ½K0�Þ ¼ p,

a geodesic segment sð½K�; ½K0�Þ is of the form v0v1 [
v1v2 [ � � � [ vp�1vp for some vertices v0; v1; . . . ; vp 2
Kr with v0 ¼ ½K� and vp ¼ ½K0�.

Let X and X0 be metric spaces with metric

functions d and d0 respectively. A map f : X ! X0 is
a quasi-isometry if there exist constants A;E � 0,

B;C;D > 0 such that Adðx; yÞ � B � d0ðfðxÞ;
fðyÞÞ � Cdðx; yÞ þD holds for any x; y 2 X, and

for any x0 2 X0 there exists x 2 X such that

d0ðx0; fðxÞÞ � E. Then we say that X is quasi-

isometric to X0. It is known that the Gromov

hyperbolicity is preserved by quasi-isometries.

3. ðr;�Þ-Gordian distance. In this sec-

tion, we study the ðr;�Þ-Gordian distance. Let

anðKÞ be the n-th coefficient of rK . The following

lemma due to Okada shows a fundamental relation-

ship between the Conway polynomials and the

Delta-move.

Fig. 2. The Delta-move.

Fig. 3. A C2-move.
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Lemma 3.1 [25]. For K;K0 2 K with d�ðK;

K0Þ ¼ 1, we have a2ðKÞ � a2ðK0Þ ¼ �1. Further-

more, for any ½K�; ½K0� 2 Kr, we have

d�rð½K�; ½K0�Þ � ja2ðKÞ � a2ðK0Þj;
and

d�rð½K�; ½K0�Þ 	 ja2ðKÞ � a2ðK0Þj mod 2:

Note that a2ðK1Þ ¼ a2ðK2Þ holds for any

K1; K2 2 ½K�. The following lemma gives the for-

mula to detect the ðr;�Þ-Gordian distance be-

tween any pair of vertices.

Lemma 3.2. For ½K� 6¼ ½K0� 2 Kr, we have

the following

d�rð½K�; ½K0�Þ ¼
ja2ðKÞ� a2ðK0Þj a2ðKÞ 6¼ a2ðK0Þ,
2 a2ðKÞ ¼ a2ðK0Þ.

�

Proof. It is known that every vertex ½K�
contains an unknotting number one knot [16,27].

Let J 2 ½K� be an unknotting number one knot.

Then for any sequence of integers ðm4; . . . ;m2lÞ,
there exists a knot J 0 satisfying d�ðJ; J 0Þ ¼ 1,
a2ðJÞ � a2ðJ 0Þ ¼ 1, and a2jðJÞ � a2jðJ 0Þ ¼ m2j for

j ¼ 2; . . . ; l [22, Lemma A].

. If a2ðKÞ 6¼ a2ðK0Þ, then by the above argu-

ment, we have d�rð½K�; ½K0�Þ � ja2ðKÞ � a2ðK0Þj.
On the other hand, by Lemma 3.1, we have

d�rð½K�; ½K0�Þ � ja2ðKÞ � a2ðK0Þj. Hence we

have d�rð½K�; ½K0�Þ ¼ ja2ðKÞ � a2ðK0Þj.
. If a2ðKÞ ¼ a2ðK0Þ, then by Lemma 3.1 and the

assumption ½K� 6¼ ½K0�, d�rð½K�; ½K0�Þ is a non-

zero even integer, namely d�rð½K�; ½K0�Þ � 2.

On the other hand, by the above argument,

we have d�rð½K�; ½K0�Þ � 2. Hence we have

d�rð½K�; ½K0�Þ ¼ 2.

Now we complete the proof of Lemma 3.2. �

4. Proof of Theorem 1.3. For " � 0,
let Nðp; "Þ be the "-neighborhood of a point

p 2 G�
r, and NðP; "Þ the "-neighborhood of a subset

P 
 G�
r, that is, Nðp; "Þ ¼ fq 2 G�

r j d�rðp; qÞ � "g
and NðP; "Þ ¼

S
p2P Nðp; "Þ. Let Vn ¼ f½K� 2

Kr j a2ðKÞ ¼ ng. Then we have the following.

Lemma 4.1. For any ½K� 2 Kr with

a2ðKÞ ¼ n, we have

Nð½K�; 2Þ � NðVn; 1Þ:

Proof. Recall that a vertex-induced subgraph

is a subset of the vertices together with all edges

whose endpoints are both in this subset. Then we

see that NðVn; 1Þ is the vertex-induced subgraph

which is induced by the subset Vn�1 [ Vn [ Vnþ1

of vertices. By Lemma 3.2, we have d�rð½K�; vnÞ ¼ 2
for any vn 6¼ ½K� 2 Vn, and d�rð½K�; vn�1Þ ¼ 1 for

any vn�1 2 Vn�1. This completes the proof of

Lemma 4.1. �

Now we start the proof of Theorem 1.3.

Proof of Theorem 1.3. Let T be a geodesic

triangle in G�
r with sides sðx; yÞ, sðy; zÞ, and sðz; xÞ.

We only consider the case where x, y, and z are in

Kr since the other cases (i.e. the cases where some

of x, y, and z are not contained in Kr) are proved

in a similar way. Let x ¼ ½K�, y ¼ ½J�, and z ¼ ½L�.
Without loss of generality, we may assume that

a2ðKÞ � a2ðJÞ � a2ðLÞ. Let k ¼ a2ðJÞ � a2ðKÞ and

k0 ¼ a2ðLÞ � a2ðJÞ. Let

sðx; yÞ ¼ x0x1 [ x1x2 [ � � � [ xp�1xp;

sðy; zÞ ¼ y0y1 [ y1y2 [ � � � [ yq�1yq;

sðz; xÞ ¼ z0z1 [ z1z2 [ � � � [ zr�1zr;

where x0; . . . ; xp; y0; . . . ; yq; z0; . . . ; zr are in Kr with

x0 ¼ x ¼ zr, y0 ¼ y ¼ xp, and z0 ¼ z ¼ yq. We show

that T is 2-slim, that is, G�
r is 2-hyperbolic.

Case 1. k � 1, k0 � 1. By Lemma 3.2, we

have p ¼ k, q ¼ k0, and r ¼ kþ k0. Figure 4 is an

example of a geodesic triangle for p ¼ q ¼ 4. (In

Figure 4, we plot vertices with respect to the

coefficients of the Conway polynomial.) First we

show that Nðsðx; yÞ [ sðy; zÞ; 2Þ � sðz; xÞ. Note that

the second coefficients of the polynomials yj and

zq�j coincide. By Lemma 4.1, we have

Nðyj; 2Þ � zq�jþ1zq�j; zq�jzq�j�1

for each j ¼ 1; � � � ; q � 1. Thus, we have

Nðsðy; zÞ; 2Þ � Nðy1 [ � � � [ yq�1; 2Þ
� zqzq�1 [ � � � [ z1z0:

Similarly, we have

Nðsðx; yÞ; 2Þ � Nðx1 [ � � � [ xp�1; 2Þ
� zrzr�1 [ � � � [ zqþ1zq:

Therefore we have Nðsðx; yÞ [ sðy; zÞ; 2Þ � sðz; xÞ.
Remaining two conditions Nðsðy; zÞ [ sðz; xÞ; 2Þ �
sðx; yÞ and Nðsðz; xÞ [ sðx; yÞ; 2Þ � sðy; zÞ are shown

by the similar argument. Therefore the geodesic

triangle T is 2-slim.

Case 2. k ¼ 0, k0 � 1. By Lemma 3.2, we

have p ¼ 2, q ¼ r ¼ k0. Then by Lemma 4.1, we see

that T is 2-slim.

Case 3. k � 1, k0 ¼ 0. This case is proved by

the same argument applied in Case 2.
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Case 4. k ¼ 0, k0 ¼ 0. By Lemma 3.2, we

have p ¼ q ¼ r ¼ 2. Then by Lemma 4.1, we see

that T is 1-slim.

Therefore G�
r is 2-hyperbolic.

Next we show that G�
r is quasi-isometric to the

real line R. Let f : G�
r ! R be a map defined by the

following; fðvn�1vnÞ ¼ ½n� 1; n� for vn�1 2 Vn�1 and

vn 2 Vn. Here ½n� 1; n� denotes the closed interval

bounded by n� 1 and n. Then, by Lemma 3.2, the

map f is a quasi-isometry. �

5. Known facts and questions. In this

section, we introduce some facts and remarks

related to the diameters and the dimensions of

complexes, and propose questions for further stud-

ies.

First we focus on the ðr;�Þ-Gordian complex

G�
r. By Lemma 3.2, there exists no 2–simplex in G�

r
(see [23, Proposition 2.3]). This implies the follow-

ing

Proposition 5.1. The dimension of G�
r is

one. Therefore G�
r and G�

r coincide.

Next we focus on the ðr; xÞ-Gordian complex

Gx
r and the ðr; xÞ-Gordian graph Gx

r. As mentioned

in the proof of Lemma 3.2, any Alexander-Conway

polynomial of a knot is realized by an unknotting

number one knot [16,27]. (There are several studies

on the realization problem of the Alexander-Con-

way polynomial. See [4,12,13,17,21,26,28].) Thus,

the diameter of Gx
r and that of Gx

r are less than or

equal to two. Since a geodesic space with a finite

diameter r is r-hyperbolic, and it is quasi-isometric

to a point, we have the following

Proposition 5.2. The ðr; xÞ-Gordian graph

Gx
r is 2-hyperbolic, and it is quasi-isometric to a point.

Remark 5.3. For any n 2 N, there exists

vertices ½K� and ½K0� such that d�rð½K�; ½K0�Þ ¼ n.

Actually, we have d�rð½K0�; ½Kn�Þ ¼ n, where K0 and

Kn are twist knots depicted in Figure 5. Thus, the

diameter of G�
r is infinite.

Recently, Kawauchi [15] showed that

dxrð½K1�; ½K�1�Þ ¼ 2 by using duality theorems on

the infinite cyclic covering space of a knot exterior.

Here K1 denotes the trefoil knot and K�1 denotes

the figure-eight knot as shown in Figure 5. Thus,

the diameter of Gx
r is just two. Kawauchi also

showed that the dimension of the ðr; xÞ-Gordian

complex Gx
r is infinite [15], that is, an n–simplex is

contained in Gx
r for any n 2 N.

Remark 5.4. The dimension of the Gordian

complex Gx is infinite, which was shown by Hirasawa

and Uchida [11]. For a Cn-move with n � 3, the

dimension of the Cn-Gordian complex GCn is also

infinite, which was shown by Ohyama [23]. Here we

note that a C1-move is equivalent to the crossing

change and a C2-move is equivalent to the Delta-move.

Finally we propose some questions. For several

local moves and knot invariants, it is interesting

to consider the Gromov hyperbolicity of G�
� . As

mentioned in Remark 5.4, the crossing change is

equivalent to a C1-move and the Delta-move is

equivalent to a C2-move. Then the following ques-

tion is natural to ask.

Question 5.5. For n � 3, is each connected

component of the ðr; CnÞ-Gordian graph GCn

r Gro-

mov hyperbolic?

Note that GCn

r consists of infinitely many

connected components by results of Goussarov [6]

and Habiro [8].

It is also interesting to study the �-Gordian

graph. In particular, Gx
r and G�

r are Gromov

hyperbolic, but Gx is not Gromov hyperbolic.

Question 5.6. Is the �-Gordian graph G�

Gromov hyperbolic?
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Fig. 5. A twist knot Km.

Fig. 4. The case where p ¼ 4 and q ¼ 4.
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