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Abstract: CMC-1 trinoids (i.e. constant mean curvature one immersed surfaces of genus

zero with three regular embedded ends) in hyperbolic 3-space H3 are irreducible generically, and

the irreducible ones have been classified. However, the reducible case has not yet been fully

treated, so here we give an explicit description of CMC-1 trinoids in H3 that includes the

reducible case.
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1. Introduction. Let H3 denote the hyper-

bolic 3-space of constant sectional curvature �1.

A CMC-1 trinoid in H3 is a complete immersed

constant mean curvature one surface of genus

zero with three regular embedded ends. There are

CMC-1 trinoids with horospherical ends (i.e.

regular embedded ends which are asymptotic to a

horosphere). However, an irreducible trinoid admits

only catenoidal ends. The last two authors [9] gave

a classification of those CMC-1 trinoids in H3 that

are irreducible. In particular, they showed that the

moduli space of irreducible CMC-1 trinoids in H3

(i.e. the quotient space of such immersions by the

rigid motions of H3) corresponds to a certain open

dense subset of the set of irreducible spherical (i.e.

constant curvature 1) metrics with three conical

singularities (see Section 2). The paper [9] also

investigated the reducible case, but had not ob-

tained a complete classification there.

After that, Bobenko, Pavlyukevich, and

Springborn [1] developed a representation formula

for CMC-1 surfaces in H3 in terms of holomorphic

spinors and derived explicit parametrizations for

irreducible CMC-1 trinoids in H3 in terms of hyper-

geometric functions. The crucial step in [1] was a

direct reduction of the ordinary differential equation

that produces CMC-1 trinoids into a Fuchsian

differential equation with three regular singularities,

and we call this BPS-reduction. On the other hand,

Daniel [2] gave an alternative proof of the classi-

fication theorem for irreducible CMC-1 trinoids,

by applying Riemann’s classical work on minimal

surfaces in R3 bounded by three straight lines.

After the work [9] on the irreducible case,

Furuta and Hattori [4] gave a full classification of

spherical metrics with three conical singularities,

using a purely geometric method. Later,

Eremenko [3] proved it using hypergeometric equa-

tions. In this paper, using the argument in [3] and

the BPS-reduction, we describe a complete classi-

fication of reducible CMC-1 trinoids in H3.

2. Preliminaries. Let M2 be a 2-manifold,

and consider a CMC-1 immersion f : M2 ! H3.

The existence of such an immersion implies orient-

ability of M2. By the existence of isothermal

coordinates, there is a unique complex structure

on M2 such that the metric ds2
f induced by f is

conformal (i.e. ds2
f is Hermitian). In this situation,

there exists a holomorphic immersion (called a null

lift of f)

F : ~MM2 ! SLð2;CÞ

defined on the universal cover ~MM2 of M2 so that:

. F is a null holomorphic map, namely,

Fz :¼ dF=dz is of rank less than 2 on each

local complex coordinate ðU; zÞ of M2.
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. f � � ¼ �̂� � F , where � : ~MM2 !M2 is the cover-

ing projection and

�̂� : SLð2;CÞ ! H3 ¼ SLð2;CÞ= SUð2Þ

is the canonical projection.

Then there exist a meromorphic function g and a

holomorphic 1-form ! on ~MM2 such that

F�1dF ¼ g �g2

1 �g

� �
!;ð1Þ

and the first fundamental form ds2
f of f satisfies

ds2
f ¼ ð1þ jgj

2Þ2j!j2:

The second fundamental form of f is given by

h :¼ �Q� �QQþ ds2
f ðQ :¼ !dgÞ;

where the holomorphic 2-differential Q on M2 is

called the Hopf differential of f . The set of zeros of

Q corresponds to the set of umbilics of f . We set

F ¼
F11 F12

F21 F22

� �
:ð2Þ

Since detðdF Þ ¼ 0, one can easily show via (1) that

g ¼ �
dF12

dF11
¼ �

dF22

dF21
:ð3Þ

With �1ðM2Þ denoting the covering transformation

group on the universal cover ~MM2, for each � 2
�1ðM2Þ, there exists �ð�Þ 2 SUð2Þ such that

F � � ¼ F�ð�Þ;ð4Þ

which gives a representation (i.e. a group homo-

morphism) � : �1ðM2Þ ! SUð2Þ satisfying

g � ��1 ¼
a11gþ a12

a21gþ a22
¼: �ð�Þ ? g;ð5Þ

for each � 2 �1ðM2Þ, where �ð�Þ ¼ ðaijÞi;j¼1;2.

Definition 1. A representation � : �1ðM2Þ !
SUð2Þ is called reducible if �ð�1ðM2ÞÞ is abelian and

otherwise is called irreducible. A CMC-1 immersion

f : M2 ! H3 is called irreducible (reducible) if the

induced representation � is irreducible (reducible).

The meromorphic function (cf. [8])

G :¼ dF11

dF21
¼
dF12

dF22

is well-defined on M2, and is called the hyperbolic

Gauss map of f .

We now consider a CMC-1 immersion f

satisfying the following properties:

(a) The metric ds2
f induced by f is complete and of

finite total curvature.

By (a), there exists a closed Riemann surface �MM2

such that M2 is bi-holomorphic to �MM2 n fp1; � � � ; png,
where p1; � � � ; pn are distinct points of �MM2 called the

ends of f . Then, the Hopf differential Q has at most

a pole at each of p1; � � � ; pn.

Now, we suppose the second condition:

(b) All the ends p1; � � � ; pn of f are properly

embedded, namely, there is a neighborhood

Uj of pj in �MM2 such that the restriction f jUjnfpjg
is a proper embedding, for each j ¼ 1; � � � ; n.

Then, the condition (b) implies that G has at most a

pole at each end pj ( j ¼ 1; � � � ; n), namely, the ends

p1; � � � ; pn are all regular ends.

Definition 2 [7]. Let �MM2 be a closed

Riemann surface. Let d�2 be a conformal metric

on �MM2 n fp1; � � � ; png, where p1; � � � ; pn are distinct

points. Then d�2 has a conical singularity of order

�j at pj if �j > �1 and d�2=jzj2�j is positive definite

at pj, where z is a local coordinate so that z ¼ 0 at

pj. 2�ð1þ �jÞ is called the conical angle of d�2 at pj.

We set �MM2 ¼ S2 and consider conformal met-

rics that have exactly three conical singularities at

0; 1;1 on S2 ¼ C [ f1g. We denote byM3ðS2Þ the

set of such metrics having constant curvature 1 on

M2 :¼ C n f0; 1g, namely,M3ðS2Þ can be identified

with the moduli space of conformal metrics of

constant curvature 1 with three conical singular-

ities. We fix a metric d�2 2M3ðS2Þ, and then there

exists a developing map

g : ~MM2 ! S2 ¼ C [ f1g

so that d�2 ¼ 4dgd�gg=ð1þ jgj2Þ2, where ~MM2 is the

universal cover of M2ð¼ C n f0; 1gÞ. Then there is a

representation ([9, (2.15) and Lemma 2.2])

� : �1ðM2Þ ! SUð2Þð6Þ

satisfying (5). The metric d�2 is called irreducible if

� is irreducible.

We return to the previous situation of CMC-1

surfaces. Let K be the Gaussian curvature of the

CMC-1 immersion f. Then

d�2
f :¼ ð�KÞds2

f ¼
4 dg d�gg

ð1þ jgj2Þ2
:ð7Þ

This relation implies that d�2
f has constant curva-

ture 1 wherever d�2
f is positive definite. Moreover [8],

ds2
fd�

2
f ¼ 4Q �QQ
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implies that d�2
f has a conical singularity at a zero q

of Q, and the conical order of d�2
f at q equals Q’s

order there. The condition (a) implies that d�2
f has

also a conical singularity at each end pj.

Definition 3. Let f : M2 ! H3 be a CMC-1

immersion satisfying conditions (a) and (b). Then f

is called a CMC-1 n-noid if �MM2 is conformally

equivalent to the 2-sphere S2. An end p of a CMC-1

n-noid is called catenoidal if Q has a pole of order 2

at p. A CMC-1 n-noid is called catenoidal if all ends

are catenoidal.

Let f be a CMC-1 n-noid. When n ¼ 1, f is

congruent to the horosphere. When n ¼ 2, f is

congruent to a catenoid cousin or a warped catenoid

cousin (cf. [6]).

So it is natural to consider the case n ¼ 3. Since

the three ends are embedded, the Osserman-type

inequality [8] implies degðGÞ ¼ 2. We call a CMC-1

3-noid a trinoid (or a CMC-1 trinoid). We denote by

M3ðH3Þ the set of congruence classes of trinoids.

We now fix a trinoid f . As shown in [5], there are

only two possibilities:

(i) Q has poles of order 2 at p1, p2, p3.

(ii) Q has at most poles of order 2 at p1, p2, p3, but

at least one of the pj has a pole of order 1.

As CMC-1 trinoids satisfying (i) are catenoi-

dal, irreducible trinoids are catenoidal (see [9]).

CMC-1 immersions satisfying (ii) have been classi-

fied in [5, Theorems 4.5–4.7]. So from now on we

consider just the case (i). Without loss of generality

we may assume p1 ¼ 0, p2 ¼ 1, p3 ¼ 1. As men-

tioned above, the metric d�2
f given by (7) has

conical singularities at the zeros of Q and the three

ends p1, p2, p3. We denote by �jð> �1Þ the order of

d�2
f at pj, and by

Bj :¼ �ð1þ �jÞð> 0Þ ðj ¼ 1; 2; 3Þ

the half of the conical angle of d�2
f at pj ( j ¼ 1; 2; 3).

The group �ð�1ðM2ÞÞ is generated by three mono-

dromy matrices �1, �2, �3 which represent loops

surrounding z ¼ 0, 1, 1. Each �j ( j ¼ 1; 2; 3) has

eigenvalues � expð�iBjÞ. Then we have (cf. [9])

2Q ¼ c3z
2 þ ðc2 � c3 � c1Þzþ c1

z2ðz� 1Þ2
dz2;ð8Þ

where cj :¼ ��jð�j þ 2Þ=2 does not vanish by (i)

(i.e. Bj 6¼ �) for j ¼ 1, 2, 3, and

ðc1Þ2 þ ðc2Þ2 þ ðc3Þ2

2
6¼ c1c2 þ c2c3 þ c3c1:ð9Þ

We denote by q1, q2 the two roots of the equation

c3z
2 þ ðc2 � c3 � c1Þzþ c1 ¼ 0:ð10Þ

Since c3 6¼ 0, the Hopf differential Q has exactly two

zeros at q1 and q2. In fact, (9) is equivalent to the

condition q1 6¼ q2 (i.e. the discriminant of (10) does

not vanish). As shown in [9], the condition (b)

implies that G does not branch at the three ends 0,

1, 1, but has exactly two branch points at q1, q2.

Since G is of degree 2 and has the ambiguity of

Möbius transformations, we may set (cf. [9])

G :¼ zþ
ðq1 � q2Þ2

2ð2z� q1 � q2Þ
:ð11Þ

Take a solution F : ~MM2 ! SLð2;CÞ of the ordinary

differential equation

dFF�1 ¼ G �G2

1 �G

� �
Q

dG
:ð12Þ

If the image �ð�1ðM2ÞÞ of the representation � of F

is conjugate to a subgroup of SUð2Þ, then f ¼ �̂�ðFaÞ
gives a CMC-1 trinoid for a suitable choice of a 2
SLð2;CÞ (cf. (4)). We denote by MB1;B2;B3

ðH3Þ
(resp. MB1;B2;B3

ðS2Þ) the congruence classes of

trinoids f satisfying (i) (resp. of the metrics d�2 of

constant curvature 1) such that d�2
f (resp. d�2) has

conical angle 2Bjð6¼ 2�Þ at each pj.

Fact 1 [9]. For each B1, B2, B3 2 ð0;1Þ,
MB1;B2;B3

ðH3Þ (resp. MB1;B2;B3
ðS2Þ) consists of a

unique irreducible element if it satisfies (9) (resp. no

condition) and

cos2 B1 þ cos2 B2 þ cos2 B3ð13Þ
þ 2 cosB1 cosB2 cosB3 < 1:

Conversely, any irreducible trinoids (resp. any

irreducible metrics in M3ðS2Þ) are so obtained.

In particular, there is a unique catenoidal

trinoid f such that

. the hyperbolic Gauss map G is given by (11),

. the Hopf differential Q is given by (8),

. d�2
f has conical angle 2Bj at each end pj.

Fig. 1, left (resp. right) is an irreducible tri-

noid (resp. a cutaway view of an irreducible trinoid)

for B1 ¼ B2 ¼ B3ð¼ BÞ with B < � (resp. B > �).

Remark 1. Since the hyperbolic Gauss map

G changes under a rigid motion of H3, the above

trinoid f is uniquely determined without the ambi-

guity of isometries of H3 (cf. [9, Appendix B]).

After [9], Bobenko, Pavlyukevich and Springborn [1]

gave a different proof, whose underlying idea also
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appears in the next section. Also, Daniel [2] gave an

alternative proof of this fact (see the introduction).

For each Bj ( j ¼ 1; 2; 3) there exists a unique

real number B̂Bj 2 ½0; �� such that cosBj ¼ cos B̂Bj,

since cos t ¼ cosð2�� tÞ for t 2 ½0; 2�Þ. By defini-

tion, it holds that Bj � B̂Bj. Without loss of general-

ity, we may assume that B̂B1 	 B̂B2 	 B̂B3. We now

set B01 :¼ B̂B1, and for j ¼ 2; 3,

B0j :¼
B̂Bj if B̂B2 þ B̂B3 	 �,

�� B̂Bj if B̂B2 þ B̂B3 > �.

(

Then we have that

0 	 B01 þ B02; B01 þ B03; B02 þ B03 	 �;ð14Þ

and the condition (13) is equivalent to

cos2 B01 þ cos2 B02 þ cos2 B03
þ 2 cosB01 cosB02 cosB03 < 1;

which is equivalent to the condition

cos
B01 þ B02 þ B03

2
cos
�B01 þ B02 þ B03

2


 cos
B01 � B02 þ B03

2
cos

B01 þB02 � B03
2

< 0:

By (14), this then reduces to the condition

B01 þB02 þ B03 > �:ð15Þ

The condition (13) (or equivalently (15)) implies

Bj 62 �Z ( j ¼ 1; 2; 3), and is the same condition as

in [9], [4] or [3] that there exists an irreducible

metric in M3ðS2Þ with three conical angles 2B1,

2B2, 2B3.

3. Reducible trinoids. Let � be a 2
 2-

matrix valued meromorphic 1-form on C [ f1g.
Consider an ordinary differential equation

dEE�1 ¼ �;ð16Þ

which is called a Fuchsian differential equation

if it admits only regular singularities. For example,

the equation (12) with G, Q satisfying (11) and (8)

is a Fuchsian differential equation with regular

singularities at z ¼ 0, 1, 1, q1, q2. Let p1; � � � ; pn 2
C [ f1g be the regular singularities of the equa-

tion (16). We denote by ~MM2 the universal cover of

M2 :¼ C [ f1g n fp1; � � � ; png:

Then there exists a solution E : ~MM2 ! GLð2;CÞ
of (16). Since � is defined on M2, there exists a

representation 	 : �1ðM2Þ ! GLð2;CÞ such that

E � � ¼ E	ð�Þ. Let

GLð2;CÞ 3 a 7! ½a� 2 PGLð2;CÞ ¼ PSLð2;CÞ

be the canonical projection. Then

h1 :¼ �E12=E11; h2 :¼ �E22=E21

satisfy (see (5) for the definition of ?)

hi � ��1 ¼ 	ð�Þ ? hi ð� 2 �1ðM2Þ; i ¼ 1; 2Þ;

where E ¼ ðEjkÞj;k¼1;2. Thus the functions hi
(i ¼ 1; 2) induce a common group homomorphism

½	� : �1ðM2Þ ! PGLð2;CÞ which is called the

monodromy representation of the equation (16).

In particular, the representation ½�� for F as in (12)

is just the monodromy representation.

Definition 4. Let rðzÞ; sðzÞ be meromorphic

functions on C [ f1g and

X00 þ rX0 þ sX ¼ 0ð17Þ

be an ordinary differential equation with regular

singularities at z ¼ p1; � � � ; pn, where X0 ¼ dX=dz.
Then there exists a pair of solutions w1; w2 : ~MM2 !
C which are linearly independent, and fw1; w2g is

called a fundamental system of solutions. There

exists a representation 	 : �1ðM2Þ ! GLð2;CÞ for

each fundamental system fw1; w2g, such that

ðw1 � �; w2 � �Þ ¼ ðw1; w2Þ	ð�Þ;

where ðw1; w2Þ is a row vector. As a monodromy of

the function �w2=w1, the induced homomorphism

½	� : �1ðM2Þ ! PGLð2;CÞ is called the monodromy

representation of the equation (17).

To give a complete classification of trinoids,

the following reduction given in [1] is crucial: Let F

be a null lift of the catenoidal trinoid f whose

hyperbolic Gauss map G and Hopf differential Q are

given by (11) and (8), respectively. In the expres-

sion (12), we can write

G �G2

1 �G

� �
Q

dG
¼

P1P2 ðP1Þ2

�ðP2Þ2 �P1P2

 !
dz;

Fig. 1. Trinoids with B1 ¼ B2 ¼ B3.
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where Pi :¼ p0
i

z
þ p1

i

z� 1
þ p1i and p0

i ; p
1
i ; p
1
i (i ¼ 1; 2)

are constants depending only on B1, B2, B3. In [1],

the matrix � :¼ D�1F is defined by

D : ¼
ffiffiffiffiffiffiffiffiffiffiffi
z� 1
p P1 �1zþ �1

�P2 �2zþ �2

� �



1 0

k

zðz� 1Þ
1

z� 1

0
B@

1
CA # 0

1 1

� �
;

where �j, �j ( j ¼ 1; 2), k and # are all real constants

depending only on B1, B2, B3. Then there exist 2

2 matrices A0, A1 with real coefficients such that

d���1 ¼
A0

z
þ

A1

z� 1

� �
dz:ð18Þ

We call (18) the BPS-reduction of (12). (This

reduction does not work if f has a horospherical

end, but such trinoids would be in the case (ii)

mentioned before.) By (4), it holds that � � � ¼
��ð�Þ for each � 2 �1ðM2Þ. Obviously (18) has three

regular singularities at z ¼ 0, 1,1. Since A0 and A1

are both constant real matrices, it is well-known

that there exist real numbers a, b, c such that the

monodromy representation of the ordinary differ-

ential equation (called the hypergeometric equation)

zð1� zÞX00 þ ðc� ðaþ bþ 1ÞzÞX0 � abX ¼ 0ð19Þ

is conjugate to that of (18) (i.e. ½��). On the other

hand, if we express F as in (2), then X ¼ F11,

F12 satisfy the ordinary differential equation (cf.

[5, p. 32])

X00 � ðlogðQ̂Q=G0ÞÞ0X0 þ Q̂QX ¼ 0;ð20Þ

where Q ¼ Q̂QðzÞdz2 and G0 ¼ dG=dz. Thus the mono-

dromy representation of (20) with respect to ðF11; F12Þ
is equal to that of F . In particular, the monodromy

representation of (20) is conjugate to that of (19).

Hence, these two ordinary differential equations have

the same exponent (i.e. the difference of the two

solutions of the indicial equation) at each regular

singularity. Since (20) has the exponent B1=�, B2=�,

B3=� at z ¼ 0; 1;1, respectively, we have

�B1 ¼ �ð1� cÞ; �B2 ¼ �ða� bÞ;
�B3 ¼ �ðc� a� bÞ;

which is the same set of relations as in [3, (4)]. This

implies the classification of catenoidal trinoids

reduces to that of metrics inM3ðS2Þ. In particular,

the classification results for reducible metrics in

M3ðS2Þ given in Furuta-Hattori [4] and Eremenko

[3, Theorem 2] yield the following assertion.

Theorem. Suppose B1=� is an integer,

and Bj 6¼ � ( j ¼ 1; 2; 3). Then MB1;B2;B3
ðH3Þ (resp.

MB1;B2;B3
ðS2Þ) is non-empty if and only if B1, B2, B3

satisfy (9) (resp. no condition) and one of the

following two conditions:

ðC1Þ B2; B3 62 �Z, but either jB2 � B3j=� or

ðB2 þB3Þ=� is an integer m of opposite parity

from B1=�, and �m 	 B1 � �. In this case,

MB1;B2;B3
ðH3Þ (resp. MB1;B2;B3

ðS2Þ) is 1-

dimensional.

ðC2Þ B2; B3 2 �Z, and ðB1 þ B2 þ B3Þ=� is odd, and

each of B1, B2, B3 is less than the sum of

the others. In this case, MB1;B2;B3
ðH3Þ (resp.

MB1;B2;B3
ðS2Þ) is 3-dimensional.

Corollary 1. A catenoidal trinoid f is irre-

ducible if and only if B1=�, B2=�, B3=� are all non-

integers, and f is reducible if and only if at least one

of B1=�, B2=�, B3=� is an integer.

Proof. A trinoid f is irreducible if the repre-

sentation � as in (4) is irreducible. The representa-

tion � coincides with that of the corresponding

metric in M3ðS2Þ. The corresponding assertion for

metrics in M3ðS2Þ is proved in [9, Lemma 3.1]. �

Remark 2. Reducibility is equivalent to at

least one of B1=�, B2=�, B3=� being an integer. This

cannot be proved purely algebraically, as there are

diagonal matrices �1, �2, �3 in SUð2Þ with �1�2�3 ¼
id so that no eigenvalues of �1, �2, �3 are �1.

Remark 3. Eremenko [3, Theorem 2] asserts

the uniqueness of d�2 2MB1;B2;B3
ðS2Þ with prescri-

bed conical angles. This is correct in the irreducible

case, but if B1 2 �Z, then the metric has a non-

trivial deformation preserving its conical angles: A

metric d�2 2M3ðS2Þ has the same conical angles as

those of d�2 if and only if each developing map of

d�2 is given by k ¼ a ? h for suitable a 2 SLð2;CÞ,
where h is a developing map of d�2. So

MB1;B2;B3
ðS2Þ can be identified with the set

f�̂�ðaÞ; aðIm �Þa�1 � SUð2Þ; a 2 SLð2;CÞgð� H3Þ;

where �̂� : SLð2;CÞ ! H3 is the canonical projection

and Im � is the image of � as in (6). Then

MB1;B2;B3
ðS2Þ ¼ H3 if Bj=� ( j ¼ 1; 2; 3) are all

integers, and MB1;B2;B3
ðS2Þ is a geodesic line in H3

if one of Bj=� ( j ¼ 1; 2; 3) is not an integer (cf. [9]).

A metric d�2 inMB1;B2;B3
ðS2Þ is called symmetric if

the metric is invariant under an anti-holomorphic

involution. We denote by M̂MB1;B2;B3
ðS2Þ the subset
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consisting of symmetric metrics in MB1;B2;B3
ðS2Þ.

If Bj=� ( j ¼ 1; 2; 3) are all integers, M̂MB1;B2;B3
ðS2Þ

consists of a hyperbolic plane in H3. If one of Bj=�

( j ¼ 1; 2; 3) is not an integer, M̂MB1;B2;B3
ðS2Þ coin-

cides with MB1;B2;B3
ðS2Þ (cf. [9]). A metric d�2 in

M̂MB1;B2;B3
ðS2Þ with conical angles 2B1, 2B2 and 2B3

can be regarded as a doubling of the generalized

spherical triangle with angles B1, B2 and B3. Using

this, Furuta-Hattori [4] gave two operations in

M̂M3ðS2Þ for distinct fi; j; kg ¼ f1; 2; 3g:
ðBi;Bj; BkÞ 7! ðBi þ �;Bj þ �;BkÞ;
ðBi;Bj; BkÞ 7! ð�� Bi;Bj þ �;BkÞ;

with the second operation allowed only when

Bi < �. The first operation is attaching a closed

hemisphere in S2 to the edge BiBj of the spherical

triangle 4BiBjBk. The second operation is attach-

ing a geodesic 2-gon of equi-angles �� Bi to the edge

BiBj so that the initial vertexBi becomes an interior

point of an edge of the new triangle. Conditions (C1)

and (C2) are invariant under these two operations.

Moreover, the three angles ðB1; B2; B3Þ satisfying

conditions (C1) and (C2) are obtained from a given

initial data ðB01; B02; B03Þ by these two operations.

Furuta-Hattori proved this using a geometric

argument. On the other hand, Eremenko found

(C1) and (C2) from the viewpoint of hypergeometric

equations. We remark that spherical triangles of

arbitrary angles B1, B2, B3 2 ð0;1Þ were investi-

gated by Felix Klein in 1933 (see the end of [9]).

The trinoid shown in Fig. 2 is not symmetric,

although there does exist a symmetric trinoid with

the same conical angles and dihedral symmetry.

Finally, we group the surfaces by the signa-

tures of c1, c2, c3. For example, a trinoid f is said

to be of type ðþ;þ;þÞ if c1, c2, c3 are all positive,

and of type ð�;þ;þÞ if one of c1, c2, c3 is negative

and the other two are positive, etc. As remarked

in [6], by numerical experiment, it seems that

the four types ðþ;þ;þÞ, ð�;þ;þÞ, ð�;�;þÞ and

ð�;�;�Þ have distinct regular homotopy types (see

Fig. 3). Surfaces of type ðþ;þ;þÞ have absolute

total curvature less than 8�, and it seems that only

surfaces in this class can be embedded.
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