On Yoshida's conjecture on the derivative of Shintani zeta functions

By Minoru HIROSE

Department of Mathematics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

(Communicated by Shigefumi MORI, M.J.A., Dec. 13, 2010)

Abstract: The purpose of this paper is to prove a conjecture in Yoshida's book [2, p.33] on the higher derivative of Shintani zeta functions at s = 0. We use multivariable Shintani zeta functions to prove the conjecture.

Key words: Shintani's formula; multiple zeta function; Shintani zeta function.

1. Introduction. Let $A = (a_{ij}), 1 \le i \le n, 1 \le j \le r$ be an $n \times r$ -matrix. For $1 \le i \le n$, let $A^{(i)}$ denote the i-th row of A. We assume $a_{ij} > 0$ for all i and j. Let b be a column vector such that $b = (b_1, b_2, \ldots, b_n), b_i > 0$ for all i. We define the function $\zeta_0(s, A, b)$ for $s = (s_1, \ldots, s_n)$ by

$$\zeta_0(s, A, b) = \sum_{m_1, ..., m_r \ge 0} \prod_{i=1}^n (b_i + a_{i1}m_1 + \dots + a_{ir}m_r)^{-s_i}.$$

This definition is due to Hida's book [1, p.48]. This series converges absolutely and locally uniformly if $Re(s_1 + \cdots + s_n) > r$ (Lemma 2). It is known that $\zeta_0(s,A,b)$ can be continued meromorphically to the whole \mathbb{C}^n and we denote this (meromorphically continued) function by $\zeta(s, A, b)$. $\zeta_0((s, \ldots, s), A, b)$ can be continued meromorphically to the whole ${\bf C}$ (Lemma 5) and we denote it by Z(s, A, b). Z(s, A, b)is holomorphic at s=0. Shintani defined the one variable zeta functions Z(s, A, b) and expressed a Hecke L-function of a totally real field by sum of Z(s,A,b) using cone decomposition. Moreover, he expressed the first derivative at s = 0 of Z(s, A, b)by sum of first derivative at s=0 of $Z(s,A^{(i)},(b_i))$ and an elementary term (see [3-5]). There is a similar formula which express the first derivative at s = 0 of Z(s, A, b) by sum of $Z(s, A^{(i)}, (b_i))$ and $Z\left(s, \left(egin{array}{c} A^{(i_1)} \ A^{(i_2)} \end{array}
ight), \left(egin{array}{c} b_{i_1} \ b_{i_2} \end{array}
ight)
ight).$

$$\begin{aligned} \left(\frac{\partial}{\partial s}\right) Z(s, A, b) \Big|_{s=0} \\ (1) &= -\sum_{1 \le i \le n} \left(\frac{\partial}{\partial s}\right) Z(s, A^{(i)}, (b_i)) \Big|_{s=0} \\ &+ \frac{1}{n} \sum_{1 \le i_1, i_2 \le n} \left(\frac{\partial}{\partial s}\right) Z\left(s, \begin{pmatrix} A^{(i_1)} \\ A^{(i_2)} \end{pmatrix}, \begin{pmatrix} b_{i_1} \\ b_{i_2} \end{pmatrix}\right) \Big|_{s=0} . \end{aligned}$$

 $2000~{\rm Mathematics}$ Subject Classification. Primary 11M41.

There is a second derivate version of (1).

$$\left(\frac{\partial}{\partial s}\right)^{2} Z(s, A, b)\Big|_{s=0}
= \frac{n}{2} \sum_{1 \leq i \leq n} \left(\frac{\partial}{\partial s}\right)^{2} Z(s, A^{(i)}, (b_{i}))\Big|_{s=0}
(2) - \sum_{1 \leq i_{1}, i_{2} \leq n} \left(\frac{\partial}{\partial s}\right)^{2} Z\left(s, \left(\frac{A^{(i_{1})}}{A^{(i_{2})}}\right), \left(\frac{b_{i_{1}}}{b_{i_{2}}}\right)\right)\Big|_{s=0}
+ \frac{1}{2n} \sum_{1 \leq i_{1}, i_{2}, i_{3} \leq n} \left(\frac{\partial}{\partial s}\right)^{2} Z\left(s, \left(\frac{A^{(i_{1})}}{A^{(i_{2})}}\right), \left(\frac{b_{i_{1}}}{b_{i_{2}}}\right)\right)\Big|_{s=0}
+ \frac{1}{2n} \sum_{1 \leq i_{1}, i_{2}, i_{3} \leq n} \left(\frac{\partial}{\partial s}\right)^{2} Z\left(s, \left(\frac{A^{(i_{1})}}{A^{(i_{2})}}\right), \left(\frac{b_{i_{1}}}{b_{i_{2}}}\right)\right)\Big|_{s=0}
+ \frac{1}{2n} \sum_{1 \leq i_{1}, i_{2}, i_{3} \leq n} \left(\frac{\partial}{\partial s}\right)^{2} Z\left(s, \left(\frac{A^{(i_{1})}}{A^{(i_{2})}}\right), \left(\frac{b_{i_{1}}}{b_{i_{2}}}\right)\right)\Big|_{s=0}$$

In studying of derivative value of Artin L-function involving Hecke L-function at s=0, Yoshida gave and proved equation (1) and (2), and conjectured more general formula (Conjecture 3.2 in [2, p.33]). The purpose of this paper is to prove the following theorem which is equivalent to the conjecture.

Theorem 1. We have

$$\left(\frac{\partial}{\partial s}\right)^{p} Z(s, A, b) \Big|_{s=0}
= \frac{1}{n} \sum_{k=0}^{p} \frac{(-n)^{p-k}}{k!(p-k)!} \sum_{1 \le i_{1}, \dots, i_{k+1} \le n}
\left(\frac{\partial}{\partial s}\right)^{p} Z \left(s, \begin{pmatrix} A^{(i_{1})} \\ \vdots \\ A^{(i_{k+1})} \end{pmatrix}, \begin{pmatrix} b_{i_{1}} \\ \vdots \\ b_{i_{k+1}} \end{pmatrix}\right) \Big|_{s=0}$$

2. Some lemmas. To prove the theorem, we will need some lemmas.

Lemma 2. $\zeta_0(s, A, b)$ converges absolutely and locally uniformly if $Re(s_1 + \cdots + s_n) > r$.

Proof. To prove this lemma, it is sufficient to prove that $\zeta_0(s, A, b)$ converges if $s_1, \ldots, s_n \in \mathbf{R}$ and $s_1 + \cdots + s_n > r$. Since $(b_i + a_{i1}m_1 + \cdots + a_{ir}m_r)/r$

 $(1 + r + m_1 + \cdots + m_r)$ and its inverse are bounded, the convergence of $\zeta_0(\mathbf{s}, A, b)$ is followed from the convergence of the left hand side of inequality

$$\Sigma (1+r+m_1+\cdots+m_r)^{-(s_1+\cdots+s_r)}$$

$$\leq \int_0^\infty \cdots \int_0^\infty (1+m_1+\cdots+m_r)^{-(s_1+\cdots+s_r)}$$

$$dm_1\cdots dm_r$$

The convergence of the right hand side of this inequality is obvious. \Box

Lemma 3. $\zeta(s, A, b)$ has the following expression

$$\zeta(s, A, b) = \frac{f(s)}{e^{2\pi i(s_1 + \dots + s_n)} - 1},$$

where f(s) is a holomorphic function on \mathbb{C}^n .

Proof. In the case n=1, it follows from Theorem 1 in Section 2.4 in [1, p.53]. We assume $n \geq 2$. $\zeta(s, A, b)$ has the following expression from Theorem 1 in Section 2.4 in [1, p.53].

$$\zeta(s, A, b) = \frac{f_1(s)}{(e^{2\pi i(s_1 + \dots + s_n)} - 1) \prod_{i=1}^n (e^{2\pi i s_i} - 1)}$$

where $f_1(s)$ is holomorphic on the whole \mathbb{C}^n . $f_1(s) = 0$ when $s_1 + \cdots + s_n$ is large enough and $s_j - m = 0$ for some $m \in \mathbb{Z}$ and some j with $1 \le j \le n$, since $\zeta(s, A, b)$ is holomorphic when $s_1 + \cdots + s_n$ is large enough. By analytic continuation, we see that $(s_j - m)$ is not a polar divisor of $f_1(s)/(s_j - m)$. It follows that

$$f(s) = \frac{f_1(s)}{\prod_{i=1}^{n} (e^{2\pi i s_i} - 1)}$$

is holomorphic on \mathbb{C}^n .

Lemma 4. $\zeta(s, A, b) \times (s_1 + \cdots + s_n)$ is holomorphic at $s = (0, \dots, 0)$. The constant term of Taylor expansion of $\zeta(s, A, b) \times (s_1 + \cdots + s_n)$ at $s = (0, \dots, 0)$ is 0.

Proof. It follows from the Theorem 1 in Section 2.4 in [1, p.53].

Lemma 5. If $t_1 + \cdots + t_n > 0$ then $\zeta_0((st_1, \ldots, st_n), A, b)$ can be continued meromorphically to the whole C and this analytic continuation is given by

$$\zeta((st_1,\ldots,st_n),A,b).$$

Proof. It follows from Lemma 3.

Lemma 6. Let the Taylor expansion of $\zeta(s, A, b) \times (s_1 + \cdots + s_n)$ at $s = (0, \dots, 0)$ be

$$\zeta(\mathbf{s}, A, b) \times (s_1 + \dots + s_n) = \sum_{d=1}^{\infty} F_d(s_1, \dots, s_n),$$

where $F_d(s_1, \ldots, s_n)$ is a homogeneous polynomial of s_1, \ldots, s_n of degree d. Then for all $p \geq 0$ and $t_1 + \cdots + t_n \neq 0$ the following identity holds.

$$\left(\frac{\partial}{\partial s}\right)^{p} \zeta((st_{1},\ldots,st_{n}),A,b)\Big|_{s=0} \times (t_{1}+\cdots+t_{n})$$

$$= p! \times F_{p+1}(t_{1},\ldots,t_{n})$$

Proof. It is obvious from the following expansion.

$$\zeta((st_1,\ldots,st_n),A,b)\times(t_1+\cdots+t_n)$$

$$=\sum_{d=0}^{\infty}s^dF_{d+1}(t_1,\ldots,t_n).$$

Lemma 7. Let h be any homogeneous polynomial function of degree $d \ge 1$ on a vector space V. Then the following identity holds for any $X_1, \ldots, X_n \in V$.

(3)
$$= \sum_{k=0}^{d} \frac{(-n)^{d-k}}{k!(d-k)!} \sum_{1 \le i_1, \dots, i_k \le n} h(X_{i_1} + \dots + X_{i_k}).$$

Proof. First we prove that the following identity holds as polynomial in variables Y_1, \ldots, Y_n .

$$(4) \qquad (Y_1 + \dots + Y_n)^d \\ = \sum_{k=1}^d \frac{(-n)^{d-k}}{k!(d-k)!} \sum_{1 \le i_1, \dots, i_k \le n} (Y_{i_1} + \dots + Y_{i_k})^d.$$

The right hand side of (4) equals coefficient of t^d of

(5)
$$\sum_{k=0}^{d} \frac{(-n)^{d-k}}{k!(d-k)!} \sum_{1 \le i, \dots, i_k \le n} e^{t(Y_{i_1} + \dots + Y_{i_k})} \times d!$$

and (5) equals

$$(e^{tY_1} + \cdots + e^{tY_n} - n)^d$$
.

It follows that the equation (4) holds.

Let $H(x_1, ..., x_d)$ be a symmetric multilinear form such that H(x, ..., x) = h(x). We define the linear function j on the vector space consisting of homogeneous polynomial in $Y_1, ..., Y_n$ of degree dby

$$j(Y_{i_1} \times \cdots \times Y_{i_d}) = H(X_{i_1}, \dots, X_{i_d}).$$

Now applying j to the both sides of (4), we get the (3).

3. Proof of the theorem. Set

$$h'(\mathbf{t}) = p! F_{p+1}(t_1, \dots, t_n),$$

where $t = (t_1, ..., t_n) \in \mathbb{C}^n$. We apply Lemma 7 for $V = \mathbb{C}^n$, h = h', $X_1 = (1, 0, ..., 0)$, $X_2 = (0, 1, 1)$

 $(0,\ldots,0), \cdots, X_n=(0,\ldots,0,1)$. Then by using Lemma 5 and Lemma 6, we have

$$\left(\frac{\partial}{\partial s}\right)^{p} Z(s, A, b)\Big|_{s=0} \times n$$

$$= \sum_{k=1}^{p+1} \frac{(-n)^{p+1-k}}{k!(p+1-k)!} \sum_{1 \le i_{1}, \dots, i_{k} \le n}$$

$$\left(\frac{\partial}{\partial s}\right)^{p} Z\left(s, \begin{pmatrix} A^{(i_{1})} \\ \vdots \\ A^{(i_{k})} \end{pmatrix}, \begin{pmatrix} b_{i_{1}} \\ \vdots \\ b_{i_{k+1}} \end{pmatrix}\right)\Big|_{s=0} \times k.$$

It is equivalent to the theorem.

References

- [1] H. Hida, Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge Univ. Press, Cambridge, 1993.
- [2] H. Yoshida, Absolute CM-periods, Mathematical Surveys and Monographs, 106, Amer. Math. Soc., Providence, RI, 2003.
- [3] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at nonpositive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 2, 393–417.
- [4] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 167–199.
- [5] T. Shintani, On values at s = 1 of certain L functions of totally real algebraic number fields, in Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 201–212, Japan Soc. Promotion Sci., Tokyo.