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Abstract: Let ’ be a homeomorphism on a totally disconnected, compact metric space X.

We introduce a binary relation on the family of clopen subsets of X, which is described in terms of

the ’-invariant probability measures. We show that ’ is uniquely ergodic if and only if any two

clopen subsets of X are comparable with respect to the binary relation.
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1. Introduction. Let ’ be a homeomor-

phism on a totally disconnected, compact metric

space X. Let M’ denote the set of ’-invariant

probability measures. For clopen sets A;B � X, we

write A � B either if �ðAÞ > �ðBÞ for all � 2M’, or

if �ðAÞ ¼ �ðBÞ for all � 2M’. If ’ is minimal, then

A � B induces an embedding of B into A via finite

or countable Hopf-equivalence [9]. The embedding

plays significant roles in analyses of orbit structures

of Cantor minimal systems [8,9,11] and also in those

for locally compact Cantor minimal systems [13].

We refer the reader to [14,16] for other facts

concerning Hopf-equivalence.

Another important object in analyses of the

orbit structures is ordered group. Let G’ denote

the quotient group of the abelian group CðX;ZÞ
of integer-valued continuous functions on X by a

subgroup:

Z’ ¼ ff 2 CðX;ZÞj
Z
X

fd� ¼ 0 for all � 2M’g:

Let

Gþ’ ¼ f½f � 2 G’jf � 0g;

where ½f � is the equivalence class of f 2 CðX;ZÞ. If

’ is minimal, then the ordered group ðG’;G
þ
’ Þ with

the canonical order unit is a complete invariant for

orbit equivalence [7].

If ’ is uniquely ergodic, then any clopen

subsets of X are comparable (with respect to �).

As is mentioned above, if in addition ’ is minimal,

then one of any two clopen subsets of X is

embedded into the other clopen subset via count-

able Hopf-equivalence. These facts may lead us to

have questions:

. does a non-uniquely ergodic system always

have incomparable clopen sets?

. does a non-uniquely ergodic system always

have a pair of clopen sets neither of which is

embedded into the other clopen set via count-

able Hopf-equivalence?

The goal of this paper is to give an affirmative

answer to these questions in the following way.

Theorem 1.1. The following are equivalent:

(i) ’ is uniquely ergodic;

(ii) any two clopen subsets of X are comparable;

(iii) the ordered group ðG’;G
þ
’ Þ is totally ordered.

By presenting some examples, we also demon-

strate in Section 4 that, in general, neither of the

conditions:

. the quotient group K0ðX;’Þ of CðX;ZÞ by the

coboundary subgroup:

B’ ¼ ff � ’� f jf 2 CðX;ZÞg

is totally ordered;

. one of any two clopen subsets of X is embedded

into the other via countable Hopf-equivalence

is equivalent to any condition of Theorem 1.1.

Throughout this paper, we freely use terminol-

ogy concerning (partially) ordered group, dimen-

sion group, ordered Bratteli diagram, tail equiv-

alence relation, Bratteli-Vershik system and etc.

See for precise definitions of them [3–5,7,10,12,15].

2. Preliminaries. Put

K0ðX;’Þþ ¼ f½f � 2 K0ðX;’Þjf � 0g:
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The quotient group of K0ðX;’Þ by a subgroup

Z’=B’ is order isomorphic to G’. If any point in X

is chain recurrent for ’, then ðK0ðX;’Þ; K0ðX;’ÞþÞ
becomes an ordered group; see [2]. This fact is

proved also in [16] by means of finite Hopf-

equivalence. If ’ is minimal (resp. almost minimal),

then ðK0ðX;’Þ;K0ðX;’ÞþÞ becomes a simple (resp.

almost simple) dimension group; see [12] (resp. [3]).

In each of these cases, ðK0ðX;’Þ; K0ðX;’ÞþÞ with

the canonical order unit ½�X� is a complete invariant

for strong orbit equivalence; see [3,7], where �X is

the characteristic function of X.

Suppose that ’ has a unique minimal set. By

[12, Theorem 1.1], any point in X is chain recurrent

for ’. Given � 2M’, define a state �� on

ðK0ðX;’Þ; ½�X�Þ by for f 2 CðX;ZÞ,

��ð½f�Þ ¼
Z
X

fd�:

The map � 7! �� is a bijection between M’ and

the set of states on ðK0ðX;’Þ; ½�X�Þ; see

[12, Theorem 5.5].

Proposition 2.1. ðG’;G
þ
’ Þ is an ordered

group.

Proof. Suppose that ½f � 2 Gþ’ \ ð�Gþ’ Þ with f 2
CðX;ZÞ. There are nonnegative g1; g2 2 CðX;ZÞ
such that f � g1; f þ g2 2 Z’. Since for all � 2M’,

0 ¼
Z
X

ðg1 þ g2Þd� �
Z
X

g1d� � 0;

we obtain ½f � ¼ ½g1� ¼ 0, i.e. Gþ’ \ ð�Gþ’ Þ ¼ f0g.
Other requirements for ðG’;G

þ
’ Þ to be an ordered

group are readily verified. �

Definition 2.2. Clopen sets A;B � X are

said to be countably Hopf-equivalent if there exist

fni 2 Zji 2 Zþg and disjoint unions

A ¼
[
i2N

Ai [ fx0g and B ¼
[
i2N

Bi [ fy0g

of nonempty clopen sets Ai;Bi and singletons

fx0g; fy0g such that

. ’n0ðx0Þ ¼ y0;

. ’niðAiÞ ¼ Bi for every i 2 N;

. the map � : A! B defined by

�ðxÞ ¼
’niðxÞ if x 2 Ai and i 2 N;

y0 if x ¼ x0

�

is a homeomorphism.

We shall refer to � as a countable equivalence map

from A onto B.

Lemma 2.3. Suppose that ’ is minimal. Let

A;B � X be clopen. Put

D’ ¼ f½�C � 2 G’jC � X is clopen.g:

Then, the following are equivalent:

(a) A � B;

(b) B is countably Hopf-equivalent to a clopen

subset of A;

(c) ½�A� � ½�B� 2 D’.

Proof. By [9, Proposition 2.6], (a) is equivalent

to (b). If � : B! �ðBÞ � A is a countable equiv-

alence map, then

½�A� � ½�B� ¼ ½�A� � ½��ðBÞ� ¼ ½�An�ðBÞ� 2 D’:

Hence, (b) implies (c). If ½�A� � ½�B� ¼ ½�C � for some

clopen set C � X, then �ðAÞ � �ðBÞ ¼ �ðCÞ � 0

for all � 2M’. Then, the minimality of ’ implies

A � B. Hence, (c) implies (a). This completes the

proof. �

3. A proof of Theorem 1.1. (ii) ) (iii):

We first show that ’ must have a unique mini-

mal set on which any ’-invariant probability

measure is supported. Let Y � X be a minimal

set and � 2M’ be supported on Y . Suppose

� 2M’ n f�g. Assume that �ðAÞ > 0 for a clopen

set A � X n Y . Define �0 2M’ by for a Borel set

U � X,

�0ðUÞ ¼
�ðU n Y Þ
�ðX n Y Þ :

By regularity, there exists a clopen set B containing

Y such that �0ðBÞ < �0ðAÞ. However,

�ðBÞ ¼ 1 > 0 ¼ �ðAÞ:

This contradicts (ii).

In the remainder of this proof, we tacitly use

Lemma 2.3. The fact proved in the preceding

paragraph allows us to assume the minimality of

’. Given a 2 G’, choose

fai; bj 2 D’ n f0gj1 � i � n; 1 � j � mg

so that

a ¼ a1 þ a2 þ � � � þ an � b1 � b2 � � � � � bm:

The following procedure, consisting of at most

m steps, determines a � 0 or a � 0.

Step 1. If

Xn
i¼1

ai � b1 � 0;
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then a � 0, and the procedure ends. Otherwise,

there is k1 for which

ck1
:¼
Xk1

i¼1

ai � b1 2 D’ n f0g;

a ¼ ck1
þ ak1þ1 þ � � � þ an � b2 � b3 � � � � � bm:

By this operation, the number of terms bi decreases

by one. We may write

a ¼ ak1
þ ak1þ1 þ � � � þ an � b2 � b3 � � � � � bm:

Step 2. If
Xn
i¼k1

ai � b2 � 0;

then a � 0, and the procedure ends. Otherwise,

there is k2 � k1 for which

ck2
:¼
Xk2

i¼k1

ai � b2 2 D’ n f0g;

a ¼ ck2
þ ak2þ1 þ � � � þ an � b3 � b4 � � � � � bm:

By this operation, the number of terms bi decreases

by one. We may write

a ¼ ak2
þ ak2þ1 þ � � � þ an � b3 � b4 � � � � � bm:

Now, it is clear how we should execute each

step. The procedure necessarily ends by Step m. We

obtain a � 0 exactly when the procedure ends at

Step m.

(iii) ) (i): Assume the existence of a clopen set

A � X such that

c2 :¼ inf
�2M’

Z
X

�Ad� < sup
�2M’

Z
X

�Ad� ¼: c1:

Since M’ is compact, there exist �i 2M’, i ¼ 1; 2,

such that for each i ¼ 1; 2,

ci ¼
Z
X

�Ad�i:

Take m;n 2 N so that

c2 <
n

m
< c1:

Then, Z
X

ðm�A � nÞd�1 > 0;

Z
X

ðm�A � nÞd�2 < 0:

This contradicts (iii), completing the proof of

Theorem 1.1.

The proof of (ii) ) (iii) developed above is

based on an idea implied in the first paragraph of

[6, Subsection 5.4]. G. Elliott showed in [6] that

given an AF-algebra A, any two projections in

the AF-algebra A are comparable in the sense

of Murray and von Neumann if and only if the

dimension group associated with the AF-algebra

A is totally ordered. The author believes that

this result would not immediately lead to

Theorem 1.1.

4. Examples. We first provide an example

of a non-uniquely ergodic, minimal homeomorphism

having incomparable clopen sets. Since Q2 with the

strict ordering is a simple dimension group, there

exists a properly ordered Bratteli diagram B such

that K0ðXB; �BÞ is order isomorphic to Q2 by an

isomorphism � mapping the canonical order unit

½�XB
� to ð1; 1Þ, where ðXB; �BÞ is the Bratteli-

Vershik system associated with the properly or-

dered Bratteli diagram B. See for details [4,7,12].

See also [1, 7.7.3]. The homeomorphism �B has

exactly two ergodic probability measures. The

measures �i correspond to states �i : Q2 ! Q

(i ¼ 1; 2) which are the projections to the i-th

coordinate. By [9, Lemma 2.4], there exist clopen

sets C;D � XB such that

�ð½�C �Þ ¼
2

3
;
1

2

� �
and �ð½�D�Þ ¼

1

2
;
2

3

� �
:

Since

�1ðCÞ ¼
2

3
>

1

2
¼ �1ðDÞ;

�2ðCÞ ¼
1

2
<

2

3
¼ �2ðDÞ;

the clopen sets C and D are incomparable.

Let V and E denote the vertex set and the edge

set of the properly ordered Bratteli diagram B,

respectively. The set V is decomposed into pairwise

disjoint, finite subsets V0 (a singleton), V1; V2; . . . .

The set E is also decomposed into pairwise disjoint,

finite subsets E1; E2; . . . so that for each i 2 N,

each edge in Ei starts from Vi�1 and terminates

at Vi. Since the Bratteli diagram ðV ;EÞ is simple,

by telescoping B if necessary, we may assume that

for each i 2 N, there exists an edge from a given

vertex in Vi�1 to a given vertex in Vi. For each

i 2 N, set

V 0i ¼ Vi [ fvig

No. 8] Comparability of clopen sets 125



with an additional vertex vi. For each integer i � 2,

add edges to Ei, denoting by E0i the resulting set, so

that in E0i,
(a) at least two edges exist from vi�1 to a given

vertex in Vi;

(b) only one edge exists from vi�1 to vi;

(c) there exist no edges from Vi�1 to vi.

Put an additional edge e1 from v0 to v1, where

V0 ¼ fv0g. Set

E01 ¼ E1 [ fe1g:

We obtain a Bratteli diagram ðV 0; E0Þ, where

V 0 ¼ V0 [
[1
i¼1

V 0i and E0 ¼
[1
i¼1

E0i:

For each i ¼ 1; 2, extend the measure �i on XB to

a measure �0i on XðV 0;E0Þ by assigning each cylinder

set C � XðV 0;E0Þ nXB terminating at
S1
i¼1 Vi the �i-

measure of a cylinder subset of XB terminating at

the range vertex of C; see [15, Lemma 4.4]. By

adding more edges to each E0i with i � 2 which start

from vi�1 and terminate at Vi if necessary, we may

assume that each �0i is infinite. The properties of the

Bratteli diagram ðV 0; E0Þ allow us to put a partial

order �0 on E0 so that B0 ¼ ðV 0; E0;�0Þ becomes

an almost simple, ordered Bratteli diagram. This

implies that the associated Bratteli-Vershik system

ðXB0 ; �B0 Þ is almost minimal; see [3]. Since each �0i
is invariant under the tail equivalence relation on

XðV 0;E0Þ, it is also �B0-invariant. The homeomor-

phism �B0 is uniquely ergodic, because there exists a

one-to-one correspondence between the set of �B0-

invariant measures on XB0 which are finite on any

clopen set disjoint from a fixed point z of �B0 and

the set of �B-invariant finite measures on XB; see

[15, Lemma 4.4]. The unique invariant probability

measure is the point mass concentrated on z. Let

C;D � XB be as in the preceding paragraph.

Observe that

�01ðCÞ ¼
2

3
>

1

2
¼ �01ðDÞ;

�02ðCÞ ¼
1

2
<

2

3
¼ �02ðDÞ:

It follows from these inequalities that neither C nor

D is embedded into the other via countable Hopf-

equivalence. Let F denote a subgroup:

f½f � 2 K0ðXB0 ; �B0 Þjz =2 suppðfÞ; f 2 CðX;ZÞg;

where

suppðfÞ ¼ fx 2 XB0 jfðxÞ 6¼ 0g:
Define group homomorphisms 	i : F ! R (i ¼ 1; 2)

by

	ið½f �Þ ¼
Z
XB0

fd�0i:

Observe that for any a 2 F \K0ðXB0 ; �B0 Þþ,

0 � 	iðaÞ <1:

If the equivalence classes of C and D are compara-

ble in K0ðXB0 ; �B0 Þ, then we may obtain a con-

tradiction to the above inequalities. Hence,

K0ðXB0 ; �B0 Þ is not totally ordered.
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