Comparability of clopen sets in a zero-dimensional dynamical system

By Hisatoshi YUASA

17-23-203 Idanakano-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0034, Japan

(Communicated by Masaki KASHIWARA, M.J.A., Sept. 12, 2011)

Abstract: Let φ be a homeomorphism on a totally disconnected, compact metric space X. We introduce a binary relation on the family of clopen subsets of X, which is described in terms of the φ -invariant probability measures. We show that φ is uniquely ergodic if and only if any two clopen subsets of X are comparable with respect to the binary relation.

Key words: Unique ergodicity; totally ordered group; countable Hopf-equivalence; ordered Bratteli diagram; Bratteli-Vershik system.

1. Introduction. Let φ be a homeomorphism on a totally disconnected, compact metric space X. Let M_{φ} denote the set of φ -invariant probability measures. For clopen sets $A, B \subset X$, we write $A \geq B$ either if $\mu(A) > \mu(B)$ for all $\mu \in M_{\varphi}$, or if $\mu(A) = \mu(B)$ for all $\mu \in M_{\varphi}$. If φ is minimal, then $A \geq B$ induces an embedding of B into A via finite or countable Hopf-equivalence [9]. The embedding plays significant roles in analyses of orbit structures of Cantor minimal systems [8,9,11] and also in those for locally compact Cantor minimal systems [13]. We refer the reader to [14,16] for other facts concerning Hopf-equivalence.

Another important object in analyses of the orbit structures is ordered group. Let G_{φ} denote the quotient group of the abelian group $C(X, \mathbb{Z})$ of integer-valued continuous functions on X by a subgroup:

Let

$$G_{\varphi}^+ = \{ [f] \in G_{\varphi} | f \ge 0 \},\$$

 $Z_{\varphi} = \{ f \in C(X, \mathbf{Z}) | \int_{Y} f d\mu = 0 \text{ for all } \mu \in M_{\varphi} \}.$

where [f] is the equivalence class of $f \in C(X, \mathbb{Z})$. If φ is minimal, then the ordered group $(G_{\varphi}, G_{\varphi}^+)$ with the canonical order unit is a complete invariant for orbit equivalence [7].

If φ is uniquely ergodic, then any clopen subsets of X are comparable (with respect to \geq). As is mentioned above, if in addition φ is minimal, then one of any two clopen subsets of X is embedded into the other clopen subset via countable Hopf-equivalence. These facts may lead us to have questions:

- does a non-uniquely ergodic system always have incomparable clopen sets?
- does a non-uniquely ergodic system always have a pair of clopen sets neither of which is embedded into the other clopen set via countable Hopf-equivalence?

The goal of this paper is to give an affirmative answer to these questions in the following way.

Theorem 1.1. The following are equivalent:

- (i) φ is uniquely ergodic;
- (ii) any two clopen subsets of X are comparable;
- (iii) the ordered group $(G_{\varphi}, G_{\varphi}^+)$ is totally ordered.

By presenting some examples, we also demonstrate in Section 4 that, in general, neither of the conditions:

• the quotient group $K^0(X, \varphi)$ of $C(X, \mathbf{Z})$ by the coboundary subgroup:

$$B_{\varphi} = \{ f \circ \varphi - f | f \in C(X, \mathbf{Z}) \}$$

is totally ordered;

• one of any two clopen subsets of X is embedded into the other via countable Hopf-equivalence is equivalent to any condition of Theorem 1.1.

Throughout this paper, we freely use terminology concerning (partially) ordered group, dimension group, ordered Bratteli diagram, tail equivalence relation, Bratteli-Vershik system and etc. See for precise definitions of them [3–5,7,10,12,15].

2. Preliminaries. Put

$$K^0(X,\varphi)^+ = \{ [f] \in K^0(X,\varphi) | f \ge 0 \}.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 37B05; Secondary 37A55.

The quotient group of $K^0(X,\varphi)$ by a subgroup Z_{φ}/B_{φ} is order isomorphic to G_{φ} . If any point in X is chain recurrent for φ , then $(K^0(X,\varphi), K^0(X,\varphi)^+)$ becomes an ordered group; see [2]. This fact is proved also in [16] by means of finite Hopf-equivalence. If φ is minimal (resp. almost minimal), then $(K^0(X,\varphi), K^0(X,\varphi)^+)$ becomes a simple (resp. almost simple) dimension group; see [12] (resp. [3]). In each of these cases, $(K^0(X,\varphi), K^0(X,\varphi)^+)$ with the canonical order unit $[\chi_X]$ is a complete invariant for strong orbit equivalence; see [3,7], where χ_X is the characteristic function of X.

Suppose that φ has a unique minimal set. By [12, Theorem 1.1], any point in X is chain recurrent for φ . Given $\mu \in M_{\varphi}$, define a state τ_{μ} on $(K^0(X,\varphi), [\chi_X])$ by for $f \in C(X, \mathbb{Z})$,

$$\tau_{\mu}([f]) = \int_{X} f d\mu.$$

The map $\mu \mapsto \tau_{\mu}$ is a bijection between M_{φ} and the set of states on $(K^0(X, \varphi), [\chi_X])$; see [12, Theorem 5.5].

Proposition 2.1. $(G_{\varphi}, G_{\varphi}^+)$ is an ordered group.

Proof. Suppose that $[f] \in G_{\varphi}^+ \cap (-G_{\varphi}^+)$ with $f \in C(X, \mathbf{Z})$. There are nonnegative $g_1, g_2 \in C(X, \mathbf{Z})$ such that $f - g_1, f + g_2 \in Z_{\varphi}$. Since for all $\mu \in M_{\varphi}$,

$$0 = \int_X (g_1 + g_2) d\mu \ge \int_X g_1 d\mu \ge 0$$

we obtain $[f] = [g_1] = 0$, i.e. $G_{\varphi}^+ \cap (-G_{\varphi}^+) = \{0\}$. Other requirements for $(G_{\varphi}, G_{\varphi}^+)$ to be an ordered group are readily verified.

Definition 2.2. Clopen sets $A, B \subset X$ are said to be *countably Hopf-equivalent* if there exist $\{n_i \in \mathbf{Z} | i \in \mathbf{Z}^+\}$ and disjoint unions

$$A = \bigcup_{i \in \mathbf{N}} A_i \cup \{x_0\}$$
 and $B = \bigcup_{i \in \mathbf{N}} B_i \cup \{y_0\}$

of nonempty clopen sets A_i, B_i and singletons $\{x_0\}, \{y_0\}$ such that

• $\varphi^{n_0}(x_0) = y_0;$

- $\varphi^{n_i}(A_i) = B_i$ for every $i \in \mathbf{N}$;
- the map $\alpha: A \to B$ defined by

$$lpha(x) = egin{cases} arphi^{n_i}(x) & ext{if } x \in A_i ext{ and } i \in \mathbf{N}; \ y_0 & ext{if } x = x_0 \end{cases}$$

is a homeomorphism.

We shall refer to α as a *countable equivalence map* from A onto B.

Lemma 2.3. Suppose that φ is minimal. Let $A, B \subset X$ be clopen. Put

 $D_{\varphi} = \{ [\chi_C] \in G_{\varphi} | C \subset X \text{ is clopen.} \}.$

Then, the following are equivalent:

- (a) $A \geq B;$
- (b) B is countably Hopf-equivalent to a clopen subset of A;
- (c) $[\chi_A] [\chi_B] \in D_{\varphi}$.

Proof. By [9, Proposition 2.6], (a) is equivalent to (b). If $\alpha : B \to \alpha(B) \subset A$ is a countable equivalence map, then

$$[\chi_A] - [\chi_B] = [\chi_A] - [\chi_{\alpha(B)}] = [\chi_{A \setminus \alpha(B)}] \in D_{\varphi}.$$

Hence, (b) implies (c). If $[\chi_A] - [\chi_B] = [\chi_C]$ for some clopen set $C \subset X$, then $\mu(A) - \mu(B) = \mu(C) \ge 0$ for all $\mu \in M_{\varphi}$. Then, the minimality of φ implies $A \ge B$. Hence, (c) implies (a). This completes the proof.

3. A proof of Theorem 1.1. (ii) \Rightarrow (iii): We first show that φ must have a unique minimal set on which any φ -invariant probability measure is supported. Let $Y \subset X$ be a minimal set and $\mu \in M_{\varphi}$ be supported on Y. Suppose $\nu \in M_{\varphi} \setminus \{\mu\}$. Assume that $\nu(A) > 0$ for a clopen set $A \subset X \setminus Y$. Define $\nu' \in M_{\varphi}$ by for a Borel set $U \subset X$,

$$\nu'(U) = \frac{\nu(U \setminus Y)}{\nu(X \setminus Y)}.$$

By regularity, there exists a clopen set *B* containing *Y* such that $\nu'(B) < \nu'(A)$. However,

$$\mu(B) = 1 > 0 = \mu(A).$$

This contradicts (ii).

In the remainder of this proof, we tacitly use Lemma 2.3. The fact proved in the preceding paragraph allows us to assume the minimality of φ . Given $a \in G_{\varphi}$, choose

$$\{a_i, b_j \in D_{\varphi} \setminus \{0\} | 1 \le i \le n, 1 \le j \le m\}$$

so that

$$a = a_1 + a_2 + \dots + a_n - b_1 - b_2 - \dots - b_m$$

The following procedure, consisting of at most m steps, determines $a \ge 0$ or $a \le 0$. Step 1. If

$$\sum_{i=1}^{n} a_i - b_1 \le 0,$$

then $a \leq 0$, and the procedure ends. Otherwise, there is k_1 for which

$$c_{k_1} := \sum_{i=1}^{k_1} a_i - b_1 \in D_{\varphi} \setminus \{0\};$$

$$a = c_{k_1} + a_{k_1+1} + \dots + a_n - b_2 - b_3 - \dots - b_m.$$

By this operation, the number of terms b_i decreases by one. We may write

$$a = a_{k_1} + a_{k_1+1} + \dots + a_n - b_2 - b_3 - \dots - b_m.$$

Step 2. If

$$\sum_{i=k_1}^n a_i - b_2 \le 0,$$

then $a \leq 0$, and the procedure ends. Otherwise, there is $k_2 \geq k_1$ for which

$$c_{k_2} := \sum_{i=k_1}^{k_2} a_i - b_2 \in D_{\varphi} \setminus \{0\};$$

 $a = c_{k_2} + a_{k_2+1} + \dots + a_n - b_3 - b_4 - \dots - b_m.$

By this operation, the number of terms b_i decreases by one. We may write

$$a = a_{k_2} + a_{k_2+1} + \dots + a_n - b_3 - b_4 - \dots - b_m.$$

Now, it is clear how we should execute each step. The procedure necessarily ends by Step m. We obtain $a \ge 0$ exactly when the procedure ends at Step m.

(iii) \Rightarrow (i): Assume the existence of a clopen set $A \subset X$ such that

$$c_2 := \inf_{\mu \in M_{\varphi}} \int_X \chi_A d\mu < \sup_{\mu \in M_{\varphi}} \int_X \chi_A d\mu =: c_1.$$

Since M_{φ} is compact, there exist $\mu_i \in M_{\varphi}$, i = 1, 2, such that for each i = 1, 2,

$$c_i = \int_X \chi_A d\mu_i.$$

Take $m, n \in \mathbf{N}$ so that

$$c_2 < \frac{n}{m} < c_1.$$

Then,

$$\int_X (m\chi_A - n)d\mu_1 > 0;$$

$$\int_X (m\chi_A - n)d\mu_2 < 0.$$

This contradicts (iii), completing the proof of Theorem 1.1.

The proof of (ii) \Rightarrow (iii) developed above is based on an idea implied in the first paragraph of [6, Subsection 5.4]. G. Elliott showed in [6] that given an AF-algebra A, any two projections in the AF-algebra A are comparable in the sense of Murray and von Neumann if and only if the dimension group associated with the AF-algebra A is totally ordered. The author believes that this result would not immediately lead to Theorem 1.1.

4. Examples. We first provide an example of a non-uniquely ergodic, minimal homeomorphism having incomparable clopen sets. Since \mathbf{Q}^2 with the strict ordering is a simple dimension group, there exists a properly ordered Bratteli diagram B such that $K^0(X_B, \lambda_B)$ is order isomorphic to \mathbf{Q}^2 by an isomorphism ι mapping the canonical order unit $[\chi_{X_B}]$ to (1,1), where (X_B,λ_B) is the Bratteli-Vershik system associated with the properly ordered Bratteli diagram B. See for details [4,7,12]. See also [1,7.7.3]. The homeomorphism λ_B has exactly two ergodic probability measures. The measures μ_i correspond to states $\tau_i: \mathbf{Q}^2 \to \mathbf{Q}$ (i = 1, 2) which are the projections to the *i*-th coordinate. By [9, Lemma 2.4], there exist clopen sets $C, D \subset X_B$ such that

$$\iota([\chi_C]) = \left(\frac{2}{3}, \frac{1}{2}\right) \text{ and } \iota([\chi_D]) = \left(\frac{1}{2}, \frac{2}{3}\right).$$

Since

$$\mu_1(C) = \frac{2}{3} > \frac{1}{2} = \mu_1(D);$$

$$\mu_2(C) = \frac{1}{2} < \frac{2}{3} = \mu_2(D),$$

the clopen sets C and D are incomparable.

Let V and E denote the vertex set and the edge set of the properly ordered Bratteli diagram B, respectively. The set V is decomposed into pairwise disjoint, finite subsets V_0 (a singleton), V_1, V_2, \ldots . The set E is also decomposed into pairwise disjoint, finite subsets E_1, E_2, \ldots so that for each $i \in \mathbf{N}$, each edge in E_i starts from V_{i-1} and terminates at V_i . Since the Bratteli diagram (V, E) is simple, by telescoping B if necessary, we may assume that for each $i \in \mathbf{N}$, there exists an edge from a given vertex in V_{i-1} to a given vertex in V_i . For each $i \in \mathbf{N}$, set

$$V_i' = V_i \cup \{v_i\}$$

No. 8]

with an additional vertex v_i . For each integer $i \ge 2$, add edges to E_i , denoting by E'_i the resulting set, so that in E'_i ,

- (a) at least two edges exist from v_{i-1} to a given vertex in V_i ;
- (b) only one edge exists from v_{i-1} to v_i ;
- (c) there exist no edges from V_{i-1} to v_i .

Put an additional edge e_1 from v_0 to v_1 , where $V_0 = \{v_0\}$. Set

$$E_1' = E_1 \cup \{e_1\}.$$

We obtain a Bratteli diagram (V', E'), where

$$V' = V_0 \cup \bigcup_{i=1}^{\infty} V'_i$$
 and $E' = \bigcup_{i=1}^{\infty} E'_i$.

For each i = 1, 2, extend the measure μ_i on X_B to a measure μ'_i on $X_{(V',E')}$ by assigning each cylinder set $C \subset X_{(V',E')} \setminus X_B$ terminating at $\bigcup_{i=1}^{\infty} V_i$ the μ_i measure of a cylinder subset of X_B terminating at the range vertex of C; see [15, Lemma 4.4]. By adding more edges to each E'_i with $i \geq 2$ which start from v_{i-1} and terminate at V_i if necessary, we may assume that each μ'_i is infinite. The properties of the Bratteli diagram (V', E') allow us to put a partial order \geq' on E' so that $B' = (V', E', \geq')$ becomes an almost simple, ordered Bratteli diagram. This implies that the associated Bratteli-Vershik system $(X_{B'}, \lambda_{B'})$ is almost minimal; see [3]. Since each μ'_i is invariant under the tail equivalence relation on $X_{(V',E')}$, it is also $\lambda_{B'}$ -invariant. The homeomorphism $\lambda_{B'}$ is uniquely ergodic, because there exists a one-to-one correspondence between the set of $\lambda_{B'}$ invariant measures on $X_{B'}$ which are finite on any clopen set disjoint from a fixed point z of $\lambda_{B'}$ and the set of λ_B -invariant finite measures on X_B ; see [15, Lemma 4.4]. The unique invariant probability measure is the point mass concentrated on z. Let $C, D \subset X_B$ be as in the preceding paragraph. Observe that

$$\begin{split} \mu_1'(C) &= \frac{2}{3} > \frac{1}{2} = \mu_1'(D); \\ \mu_2'(C) &= \frac{1}{2} < \frac{2}{3} = \mu_2'(D). \end{split}$$

It follows from these inequalities that neither C nor D is embedded into the other via countable Hopf-equivalence. Let F denote a subgroup:

$$\{[f] \in K^0(X_{B'}, \lambda_{B'}) | z \notin \operatorname{supp}(f), f \in C(X, \mathbf{Z})\},\$$

$$supp(f) = \{x \in X_{B'} | f(x) \neq 0\}.$$

Define group homomorphisms $\rho_i: F \to \mathbf{R} \ (i = 1, 2)$ by

$$\rho_i([f]) = \int_{X_{B'}} f d\mu'_i.$$

Observe that for any $a \in F \cap K^0(X_{B'}, \lambda_{B'})^+$,

$$0 \le \rho_i(a) < \infty.$$

If the equivalence classes of C and D are comparable in $K^0(X_{B'}, \lambda_{B'})$, then we may obtain a contradiction to the above inequalities. Hence, $K^0(X_{B'}, \lambda_{B'})$ is not totally ordered.

Acknowledgement. Although the previous version of this paper was rejected by a journal, the referee gave the author useful comments, which made a proof of Theorem 1.1 much shorter. The author appreciates it.

References

- B. Blackadar, K-theory for operator algebras, second edition, Mathematical Sciences Research Institute Publications, 5, Cambridge Univ. Press, Cambridge, 1998.
- M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169–210.
- [3] A. I. Danilenko, Strong orbit equivalence of locally compact Cantor minimal systems, Internat. J. Math. 12 (2001), no. 1, 113–123.
- F. Durand, B. Host and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), no. 4, 953–993.
- [5] E. G. Effros, Dimensions and C*-algebras, CBMS Regional Conference Series in Mathematics, 46, Conf. Board Math. Sci., Washington, DC, 1981.
- G. A. Elliott, On totally ordered groups, and K₀, in Ring theory (Proc. Conf., Univ. Waterloo, Waterloo, 1978), 1–49, Lecture Notes in Math., 734 Springer, Berlin.
- [7] T. Giordano, I. F. Putnam and C. F. Skau, Topological orbit equivalence and C^{*}-crossed products, J. Reine Angew. Math. 469 (1995), 51–111.
- [8] T. Giordano, I. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems, Israel J. Math. 111 (1999), 285–320.
- [9] E. Glasner and B. Weiss, Weak orbit equivalence of Cantor minimal systems, Internat. J. Math. 6 (1995), 559–579.
- [10] T. Hamachi, M. S. Keane and M. K. Roychowdhury, Finitary orbit equivalence and measured Bratteli diagrams, Colloq. Math. 110 (2008), no. 2, 363-

382.

- [11] T. Hamachi, M. S. Keane and H. Yuasa, Universally measure preserving homeomorphisms of Cantor minimal systems, J. Anal. Math., 113 (2011), 1–15.
 [12] R. H. Herman, I. F. Putnam and C. F. Skau,
- [12] R. H. Herman, I. F. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), no. 6, 827–864.
- H. Matui, Topological orbit equivalence of locally compact Cantor minimal systems, Ergodic Theory Dynam. Systems 22 (2002), no. 6,

1871 - 1903.

- [14] H. Yuasa, Hopf-equivalences for zero-dimensional dynamical systems, Japan. J. Math. (N.S.) 28 (2002), no. 2, 299–312.
- H. Yuasa, Invariant measures for the subshifts arising from non-primitive substitutions, J. Anal. Math. **102** (2007), 143–180.
- H. Yuasa, Not finitely but countably Hopfequivalent clopen sets in a Cantor minimal system, Topol. Methods Nonlinear Anal. 33 (2009), no. 2, 355–371.