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Abstract: We prove the main theorem on the structure of everywhere integral sections on a

rational elliptic surface, which is formulated in the �rst part of the paper with the same title [18]. A

few examples are given to illustrate it, and some open questions in the case of higher arithmetic ge-
nus will be discussed.
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1. Introduction. In this paper, we prove the

main theorem on the structure of everywhere integral
sections on a rational elliptic surface, which is formu-

lated in the part I [18, Theorem 2.1]. We restate the

main theorem below, after recalling the necessary
notation (cf. [18, x1]).

First a section of an elliptic surface f : S !
C ¼ P1 is called everywhere integral [16] if it is dis-

joint from the zero-section. Denote the set of every-

where integral sections by P and the de�ning ideal
of P by I � R ¼ k½xj; yk�. By considering its pri-

mary decomposition I ¼ \iqi, the multiplicity of
each Pi 2 P is de�ned as �ðPiÞ ¼ dimk R=qi (cf.

[3, 9]). Then the linear dimension dimk R=I is equal

to the number of everywhere integral sections on S

counted with multiplicities.

On the other hand, given a rational elliptic sur-

face S with the zero-section O, let T ¼ TS denote the
trivial lattice of S, which is embedded as a sublattice

of the negative-de�nite root lattice E�8 :

T ¼ �v2Rf
Tv � E�8

where Rf denotes the set of v 2 C such that the

�bre f�1ðvÞ is reducible, and Tv is a sublattice of the

N�eron-Severi lattice NSðSÞ spanned by the irreduc-

ible components �v; i of f �1ðvÞ not intersecting the

zero-section (cf. [10, 11]; also [6, 7, 19]). We some-

times view T � E8 by changing the sign.

Now the main theorem asserts the following
Theorem 1.1. Assume that S is a rational

elliptic surface. Then (i) the number of everywhere

integral sections is at most 240: 0 � n ¼ #P � 240.

Moreover it is 240 if and only if S has no reducible

�bres.

(ii) The linear dimension dimk R=I is equal to

240� �ðTÞ, where �ðTÞ is the number of roots in

the trivial lattice T.

(iii) For each i � n, the multiplicity �ðPiÞ is

equal to the combinatorial multiplicity mðPiÞ which

is de�ned as the number of the distinguished roots in

the root graph associated with Pi (see De�nition 2.2

of [18]).
The proof is given in the next section. In x3,

a few examples are given as illustration of the main

theorem. Actually rational elliptic surfaces are clas-
si�ed by Oguiso-Shioda [10] in terms of the trivial

lattice and Mordell-Weil lattice. For every type, we

have determined the data n;mðP ÞðP 2 PÞ appear-
ing in Theorem 1.1, but the results will be reported

in some other occasion. In the �nal section x4, we

discuss some open questions in case � > 1.
2. Proof of the main theorem.

2.1. The case T ¼ 0. First we consider the

case T ¼ 0, i.e. no reducible �bres. In this case,
Theorem 1.1 reduces to the following

Theorem 2.1. Assume that S is a rational

elliptic surface with no reducible �bres. Then we have

n ¼ dimk R=I ¼ 240; �ðP Þ ¼ mðP Þ ¼ 1ð2:1Þ
for all P 2 P.

Proof. We have only to prove the equality:

dimR=I ¼ 240:ð2:2Þ
In fact, by [18, Lemma 3.1], we know that n ¼
#P ¼ 240 and that mðP Þ ¼ 1 for each P 2 P. The
latter holds, because the root graph �ðP Þ consists

of the vertex DðP Þ alone as T ¼ 0. In view of the

Chinese Remainder equality [18, (1.15)], we see that
the claim (2.2) is equivalent to the following
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�ðP Þ ¼ 1 for all P 2 P:ð2:3Þ
Thus we proceed as follows to show (2.2) (see

Lemma 2.4 below).
First we write down a ‘‘universal’’ rational ellip-

tic surface. Let S� denote the elliptic surface de�ned

by the Weierstrass equation:

y2 þ a1ðtÞxyþ a3ðtÞy ¼ x3 þ a2ðtÞx2 þ a4ðtÞxþ a6ðtÞ
where

� ¼ ðai; jÞ ðj � iÞ; aiðtÞ ¼
Xi

j¼0

ai; j t
j ði ¼ 1; 2; 3; 4; 6Þ:

Let

� ¼ f�jS� is a RESgð2:4Þ

and

�0 ¼ f� 2 �jS� has no reducible fibresg:ð2:5Þ
In characteristic di�erent from 2 and 3, one can

choose aiðtÞ ¼ 0 ði ¼ 1; 2; 3Þ (i.e. ai; j ¼ 0 for i ¼
1; 2; 3 and all j) without loss of generality. In any

case, � is open in an af�ne space of suitable dimen-

sion, and �0 is an open subset of �.
We denote by P� and I� the set of everywhere

integral sections P of S� and its de�ning ideal, and

by V ðI�Þ the 0-dimensional af�ne scheme de�ned by
I�.

Lemma 2.2. Under the assumption that � ¼
1, fV ðI�Þj� 2 �g forms a �at family over �.

Proof. (I owe this remark to Takeshi Saito.) For

any �, the ideal I� is generated by 6�þ 1 elements

by de�nition, while the number of variables xi; yj is
ð2�þ 1Þ þ ð3�þ 1Þ ¼ 5�þ 2. Hence, if � ¼ 1, V ðI�Þ
is a complete intersection, and the �atness follows

from [4, Ch. IV]. r
Lemma 2.3. Under the same assumption,

fV ðI�Þj� 2 �0g forms a �nite �at family over �0.

Proof. For any (geometric) point � 2 �0, V ðI�Þ
consists of 240 points by [18, Lemma 3.1]. The af�ne

coordinates of these points in the ambient af�ne
space of V ðI�Þ are given by zðPmÞ ð1 � m � 240Þ
(see [18, (1.7)]), if we set P� ¼ fPm ð1 � m � 240Þg.

Now �x any � 2 �0. Let ~� be a generic point of

�0, and let zð ~P Þ be a generic point of ~V :¼ V ðI~�Þ.
Take any specialization � : ~�! �, and any special-

ization ~� of zð ~P Þ over �. Since ~V is specialized to

V ðI�Þ, bijectively as the point sets consisting of

240 points, the point zð ~P Þ must specialize to one of

zðPmÞ0s, which are obviously �nite. This is the case

for any choice of specialization ~�, and hence the
family in question is a proper family (cf. [5, Ch. II]

or [20, Ch. VII]). Since it is a family of 0-dimensional
schemes, the assertion follows. r

Lemma 2.4. (i) The dimension dimk R=I� is

constant for any � 2 �0ðkÞ. (ii) The constant value

is equal to 240.

Proof. The claim (i) follows from a general re-

sult for �nite �at morphisms (see e.g. [8, Prop. 8,
Lect. 6]). Thus, to prove (ii), it suf�ces to check it at

one point � 2 �0ðkÞ. For instance, take � correspond-

ing to the rational elliptic surface y2 ¼ x3 þ t5 þ 1
treated in [18, Ex. 1.4]. (Actually, as the referee has

kindly pointed out, it works only in characteristic

p 6¼ 2; 3; 5. But we can always �nd a suitable equa-
tion which works in a given characteristic such as

y2 ¼ x3 þ t5 � t in case p ¼ 5.) r
This completes the proof of Theorem 2.1.
2.2. General case. Now we prove Theorem

1.1 without assumption.

For any � 2 �, let D� denote the set of roots in
the E8-frame on S�. Recall that, for each P 2 P�,
DðP Þ :¼ ðP Þ � ðOÞ � F is an element of D�.

Let ~� be a generic point of �0, and let P ~� ¼
f ~Pi ð1 � i � 240Þg. The set D ~� consists of Dð ~PiÞ’s
by [18, Lemma 3.1].

Take any point � 2 �ðkÞ and any specialization

� : ~�! �. By [18, Lemma 3.2], D ~� is mapped bi-

jectively to D� under the specialization, and by

[18, Lemma 3.3], each Dð ~PiÞ is mapped either to

some element of T or to an element of the form D �
DðP Þ þ � for some P 2 P� and � 2 T . For a �xed

P 2 P�, the number of ~Pi’s corresponding to P in
the above sense is equal to the multiplicity �ðP Þ, be-

cause each ~Pi has multiplicity 1 by (2.3) which has
just been established above. Comparing this with

the decomposition of the set D ¼ D� in [18, Theorem

3.4], we conclude that �ðP Þ ¼ mðP Þ for each P 2 P�.
This proves the claim (iii) of Theorem 1.1.

Next, to prove (ii), we note from the Chinese

Remainder theorem and (iii) just proven above that

dimk R=I� ¼
X

P 2P
�ðP Þ ¼

X

P 2P
mðP Þ

By [18, Theorem 3.4], this implies

dimk R=I� ¼ 240� �ðT Þ:
Thus we have proven the claim (ii) of Theorem 1.1.

The claim (i) is now obvious: we have

n ¼ #P � dimk R=I � 240;

28 T. SHIODA [Vol. 86(A),



where the second inequality follows from (ii) above.
This completes the proof of Theorem 1.1. r

2.3. Further information in a special case

(cf. [12, 13]). The idea of the above proof is

adapted from our previous work [12, x8] and [13],

treating a slightly less general family which admits a
singular �bre of type II (a cuspidal cubic). We re-

mark here that, if we restrict our attention to that

family, everything in the above proof becomes clearer
and more explicit.

Namely we consider

E� : y2 ¼ x3 þ
X3

i¼0

pit
i

 !
xþ

X3

j¼0

qjt
j þ t5ð2:6Þ

� ¼ ðp0; . . . ; q3Þ 2 A8:

[From the viewpoint of topology of singularities, the

above equation is called the universal deformation of

E8-singularity y2 ¼ x3 þ t5 locally near the origin of

C3. Our approach based on Mordell-Weil lattices is
more algebraic and global, but both viewpoints are

very closely connected.]

Assume that � is generic (i.e. p0; . . . ; q3 are alge-
braically independent) over Q, and let k be the alge-

braic closure of k0 :¼ Qð�Þ ¼ Qðp0; . . . ; q3Þ. Then the

elliptic surface S� is a RES without reducible �bres
and M� ¼ E�ðkðtÞÞ is isomorphic to the root lattice

E8. Take a basis fP1; . . . :P8g forming the Dynkin

diagram of type E8, and let ui ¼ sp1ðPiÞ 2 k, where

sp1 : E�ðkðtÞÞ ! kð2:7Þ

denotes the specialization homomorphism: for any

P , sp1ðP Þ is de�ned as the unique intersection point

of the section ðP Þ and the singular �bre of type II

f�1ð1Þ.
By the fundamental theorems for the algebraic

equations of type E8 [12, Theorems 8.3, 8.4, 8.5], we
have the following results:

(i) K ¼ Qðu1; . . . ; u8Þ is the splitting �eld of

E�=Qð�ÞðtÞ, i.e. we have E�ðKðtÞÞ ¼ E�ðkðtÞÞ
and K is the smallest extension of Qð�Þ with

this property.

(ii) K=Qð�Þ is a Galois extension with Galois group
W ðE8Þ (the Weyl group of type E8).

(iii) W ðE8Þ acts on the polynomial ring Q½u1; . . . ;

u8�, and the ring of invariants is equal to
Q½�� :¼ Q½p0; . . . ; q3�. In other words, fp0; . . . ;

q3g forms a set of fundamental invariants of

W ðE8Þ (of weight 20; 14; 8; 2; 30; 24; 18; 12 re-
spectively).

(iv) The minimal polynomial 	ðXÞ of u1 over Qð�Þ
splits completely in K and it has coef�cients in

Q½��:

	ðX; �Þ ¼
Y240

i¼1

ðX � uiÞ 2 Q½��½X�;ð2:8Þ

where each root ui is Z-linear combination of

u1; . . . ; u8. The 240 ui form a root system of type E8.

(v) For each i � 240, there is a section Pi 2
E�ðkðtÞÞ of the form:

Pi ¼
1

u2
i

t2 þ atþ b; 1

u3
i

t3 þ ct2 þ dtþ e
� �

;ð2:9Þ

sp1ðPiÞ ¼ ui
where the coef�cients a; b; c; d; e belong to Qð�ÞðuiÞ \
Q½u1; . . . ; u8�.

Let u :¼ ðu1; . . . ; u8Þ 2 A8. Then it follows from

(iii) above that the map � : u 7! � ¼ �ðuÞ de�nes a

�nite rami�ed Galois covering A8 ! A8 with Galois

group W ðE8Þ, which is unrami�ed on the open set

U � A8 where the ‘‘discriminant’’ 	ð�Þ (cf. [1]) does
not vanish:

	ð�Þ ¼ 	ð0; �Þ ¼
Y240

i¼1

ui:ð2:10Þ

Furthermore Su :¼ S�ðuÞ de�nes a smooth family of

rational elliptic surfaces parametrized by the a�ine

space A8 upstairs (see [13, Prop. 4.3] and references
given there).

Now we consider specializing the generic point

of the af�ne space upstairs u ¼ ðu1; . . . ; u8Þ to some

u0 ¼ ðu0
1; . . . ; u0

8Þ. It induces a unique specializa-

tion � ¼ �ðuÞ ! �0 ¼ �ðu0Þ in the af�ne space

downstairs. By (v) above, we can write each Pi as

PiðuÞ with its coef�cients of t lying in Qð�ÞðuiÞ \
Q½1=ui; u1; . . . ; u8�. Hence, as far as u0

i 6¼ 0, Pi has

a unique specialization P 0
i with sp1ðP 0

i Þ ¼ u0
i .

Thus, if 	ð�0Þ 6¼ 0, Pi ! P 0
i gives a bijection

of the set of 240 roots in the Mordell-Weil lattice

M� to that in M�0 . (N.B. The map ui ! u0
i is not

necessarily injective even if we assume 	ð�0Þ 6¼ 0.

See [12, p. 685] for such an example.)

On the other hand, if 	ð�0Þ ¼ 0, then there ex-

ist some i such that u0
i ¼ 0. In this case, Pi must

specialize to O in M�0 . The number � of such i’s

is equal to �ðT Þ, the number of roots in the trivial
lattice T � NSðS�0Þ. In other words, the multiplicity

of the factor X in the polynomial 	ðX; �0Þ is equal to

�ðT Þ. If we set P�0 ¼ fQ1; . . . ; Qng, then we have
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(2.11)

	ðX; �0Þ ¼
Y240

i¼1

ðX � u0
i Þ ¼ X�

Yn

j¼1

ðX � sp1ðQjÞÞmðQjÞ:

Thus, for a �xed u0 ¼ u0
i , the multiplicity of ðX �

u0Þ in 	ðX; �0Þ is equal to the sum of mðQjÞ’s such

that sp1ðQjÞ ¼ u0.

3. Examples. By [10], the Mordell-Weil lattice

(abbreviated as MWL) of a rational elliptic surface is

classi�ed into 74 types by the triple fT ; L;Mg, where
(i) T is the trivial lattice, with the opposite sign,

embedded in E8, (ii) L is the narrow MWL EðKÞ0
which is isomorphic to the orthogonal complement
of T in E8, and (iii) M is the MWL EðKÞ which is

the direct sum of the dual lattice of L and the torsion

group T 0=T , where T 0 is the primitive closure of T
in E8.

For each type fT; L;Mg, we have determined

the set P �M, n ¼ #P, and the combinatorial mul-
tiplicities mðP Þ for each P 2 P. The summary will be

reported at some other occasion, where some Q-split

examples (cf. [12, 14]) of every type will be given to
simplify the direct veri�cation via Gr€obner basis

computation (cf. [3, 9]).

Here we illustrate our results with a few classical
examples. Examples in x3.1 are the prototype of the

present work treated in the earlier paper [13]. Next

x3.2 shows more complicated new features, dealing
with the familiar Legendre curve.

3.1. Cases of higher Mordell-Weil rank (cf.

[13, xxxx5]). For a rational elliptic surface, the rank
r ¼M is bounded by 8 and the higher MW-rank

cases correspond to the cases of smaller rkT . The

�rst four cases in [10] (cf. [12, 13, 15]) are the follow-
ing (where rkT � 2):

(i) T ¼ 0; L ¼M ¼ E8,
(ii) T ¼ A1; L ¼ E7;M ¼ E �7 ,

(iii) T ¼ A2; L ¼ E6;M ¼ E �6 ,

(iv) T ¼ A�2
1 ; L ¼ D6;M ¼ D �6 :

The set P of everywhere integral sections in M

consists of the roots in the root lattice L and the

minimal vectors of M ¼ L� (the dual lattice of L)

for the �rst three cases. Thus n ¼ #P is equal to
the number �ðLÞ of the roots in L, plus the number

of minimal vectors in case (ii) or (iii): that is (i)

n ¼ 240, (ii) n ¼ 126þ 56 ¼ 182, (iii) n ¼ 72þ 54 ¼
126.

If P 2 P is a root of L, then the multiplicity

mðP Þ is 1, because the root graph consists of the
single vertex DðP Þ. On the other hand, if P is a

minimal vector of M ¼ L�, then the multiplicity

mðP Þ is equal to mðP Þ ¼ 2 in case (ii) and mðP Þ ¼
3 in case (iii), because then the root graph �ðP Þ is
given, respectively, by Figure 1. Here the root DðP Þ
is denoted by the encircled vertex and other roots

�v; i in [18, (2.11)] by the black vertices. (We write 


for � in the following �gures.)
In case (iv), the set P consists of 60 roots of

L ¼ D6, 12 minimal vectors of height hP; P i ¼ 1 in

M ¼ D�6, plus 64 Q 2M with height hQ;Qi ¼ 3=2.

We have mðP Þ ¼ 4 and mðQÞ ¼ 2, as shown by

Figure 1 (iv) or (ii) respectively. Compare [13, x5].
In each case, check the identity:

126 	 1þ 56 	 2 ¼ 238 ¼ 240� 2; 2 ¼ �ðA1Þð3:1Þ

72 	 1þ 54 	 3 ¼ 234 ¼ 240� 6; 6 ¼ �ðA2Þð3:2Þ

60 	 1þ 64 	 2þ 12 	 4 ¼ 236 ¼ 240� 4;ð3:3Þ

4 ¼ �ðA�2
1 Þ:

3.2. The Legendre surface. Let E be de-
�ned by the Legendre form:

E : y2 ¼ xðx� 1Þðx� tÞ:ð3:4Þ
Let K ¼ kðtÞ where k is any �eld of characteristic
6¼ 2. The elliptic surface de�ned by this equation is

obviously a rational surface, since the function �eld

KðEÞ ¼ kðt; x; yÞ is equal to kðx; yÞ.
There are two singular �bres of type I2 at t ¼

0; 1 and one of type I�2 at t ¼ 1. The trivial sub-

lattice T ¼ A�2
1 �D6 is of index 4 in E8, and the

Mordell-Weil group is M ¼ E8=T ffi ðZ=2ZÞ2, a tor-

sion group of order 4. More explicitly, we have

(3.5)

EðKÞ ¼ fO;P1 ¼ ð0; 0Þ; P2 ¼ ð1; 0Þ; P3 ¼ ðt; 0Þg
Thus P consists of three 2-torsions fP1; P2; P3g and
n ¼ #P ¼ 3. Figure 2 shows how each section

ðPjÞ intersects the irreducible components 
v; iðv ¼
0; 1;1Þ of three singular �bres. (N.B. Two di�erent

sections do not intersect. The picture is not correct

in that ðP1Þ and ðP3Þ look as if they intersect.)
We can determine their (combinatorial) multi-

plicities as follows:

Fig. 1. Root graph �ðP Þ.
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mðP1Þ ¼ 64; mðP2Þ ¼ 64; mðP3Þ ¼ 48ð3:6Þ
Indeed the root graph �ðP Þ for P ¼ P1 is shown

by Figure 3 (and similarly for P ¼ P2), while �ðP Þ
for P ¼ P3 is as in Figure 4.

Then, by counting the number of distinguished

roots in the root graph �ðP Þ, (3.6) can be veri�ed.

For instance, to show that mðP1Þ ¼ 64, consider �rst
the distinguished roots � ¼ DðP Þ þ 	 	 	 not contain-

ing the vertex 
0;1 in Figure 3. Thus we seek for the

number of ‘‘positive roots’’ in the Dynkin diagram

of type E7 whose coef�cient of DðP Þ is 1. As is well-
known (see [1, 2]), there exist 33 positive roots in the

Dynkin diagram of type E7 containing the left vertex

DðP Þ, but one of them is of the form 2DðP Þ þ 	 	 	.
Hence we have exactly 32 � of the required form.

Then, considering � þ 
0;1 for each such �, we obtain

another set of 32 distinguished roots. In this way, we

check that the number of distinguished roots in the
root graph �ðP1Þ is equal to 2 	 32, i.e. mðP1Þ ¼ 64.

Incidentally, it should be remarked that the root
graph of an everywhere integral section P is a visual

counterpart of the height formula for P . For in-
stance, the height formula for P ¼ Pi above reads as

hP1; P1i ¼ 2þ 0� 6=4� 1=2� 0ð3:7Þ

hP2; P2i ¼ 2þ 0� 6=4� 0� 1=2ð3:8Þ

hP3; P3i ¼ 2þ 0� 1� 1=2� 1=2ð3:9Þ

where the local contribution terms contrvðP Þ (see
[11, p. 229]) on the right hand side are written in

the order of v ¼ 1; 0; 1.

Now Theorem 1.1 implies that, if I denotes the
de�ning ideal of P in this case, then the primary de-

composition of I is of the form I ¼ q1 \ q2 \ q3, with

q i corresponding to Piði ¼ 1; 2; 3Þ, and we have

dimk R=q i ¼ 64ði ¼ 1; 2Þ; dimk R=q3 ¼ 48;ð3:10Þ

implying dimk R=I ¼ 176. As mentioned before,
Gr€obner basis computations allow one to make a

direct veri�cation of such a result.

4. Open questions. When the arithmetic
genus � is greater than 1, Question 1.3 posed in the

Introduction of part I [18] remains open. Let us pose

a few more speci�c questions here.
We use the same notation as in [18, x1]. In par-

ticular, P denotes the set of everywhere integral sec-

tions on a given elliptic surface S over P1 of arith-

metic genus �, and I denotes its de�ning ideal.

Question 4.1. Assume that P 2 P has height

hP;Pi ¼ 2�. Is the multiplicity �ðPÞ equal to 1?

The assumption is equivalent to saying that

P 2 P belongs to the narrow Mordell-Weil lattice,
or that the sections ðP Þ and ðOÞ intersect the same

irreducible component for every reducible �bre. Ques-

tion 4.1 is true if � ¼ 1 by Theorem 1.1, since the
assumption implies that the combinatorial multi-

plicity mðP Þ ¼ 1.

In particular, we ask:
Question 4.2. Assume that the trivial lattice

T ¼ 0, or equivalently, there are no reducible �bres.

Then is it true that I ¼
ffiffiffi
I
p

?

Next consider the case � ¼ 2, i.e. S is an elliptic

K3 surface.
Question 4.3. What is the maximum cardi-

nality n ¼ #P when S varies among elliptic K3

surfaces?
In characteristic 0, the largest value of n we

know at the moment is n ¼ 5820, attained by the

elliptic K3 surface:

Fig. 2. Legendre elliptic surface.

Fig. 3. Root graph �ðP Þ for P ¼ P1.

Fig. 4. Root graph �ðP Þ for P ¼ P3.
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y2 ¼ x3 þ ðt5 � t�5 � 11Þð4:1Þ
which has MWL of rank 18 (cf. [17]).

Its reduction modulo p ¼ 11 is a supersingular

K3 surface, and the induced elliptic �bration has

MWL of rank 20 which attains n ¼ 12540. This is
the largest value of n known to us.

Question 4.4. Assume � ¼ 2. Can one give

some combinatorial description of the multiplicity

�ðPÞ for P 2 P?
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