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Abstract:

We prove the main theorem on the structure of everywhere integral sections on a

rational elliptic surface, which is formulated in the first part of the paper with the same title [18]. A
few examples are given to illustrate it, and some open questions in the case of higher arithmetic ge-

nus will be discussed.

Key words:

1. Introduction. In this paper, we prove the
main theorem on the structure of everywhere integral
sections on a rational elliptic surface, which is formu-
lated in the part I [18, Theorem 2.1]. We restate the
main theorem below, after recalling the necessary
notation (cf. [18, §1]).

First a section of an elliptic surface f:S5 —
C = P! is called everywhere integral [16] if it is dis-
joint from the zero-section. Denote the set of every-
where integral sections by P and the defining ideal
of P by I C R = k[zj,y;]. By considering its pri-
mary decomposition I = N;q;, the multiplicity of
each P, € P is defined as p(P;) = dimy R/q; (cf.
[3, 9]). Then the linear dimension dimy, R/I is equal
to the number of everywhere integral sections on S
counted with multiplicities.

On the other hand, given a rational elliptic sur-
face S with the zero-section O, let T' = Ts denote the
trivial lattice of S, which is embedded as a sublattice
of the negative-definite root lattice Eg :

T= Duery T,C Eg
where R; denotes the set of v € C such that the
fibre f~1(v) is reducible, and T}, is a sublattice of the
Néron-Severi lattice NS(S) spanned by the irreduc-
ible components ©,; of f~1(v) not intersecting the
zero-section (cf. [10, 11]; also [6, 7, 19]). We some-
times view T' C Eg by changing the sign.

Now the main theorem asserts the following

Theorem 1.1. Assume that S is a rational
elliptic surface. Then (i) the number of everywhere
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integral sections is at most 240: 0 < n = #P < 240.
Moreover it is 240 if and only if S has no reducible
fibres.

(ii) The linear dimension dimy R/I is equal to
240 — v(T), where v(T) is the number of roots in
the trivial lattice T.

(iii) For each i <mn, the multiplicity p(P;) is
equal to the combinatorial multiplicity m(P;) which
is defined as the number of the distinguished roots in
the root graph associated with P; (see Definition 2.2
of [18)).

The proof is given in the next section. In §3,
a few examples are given as illustration of the main
theorem. Actually rational elliptic surfaces are clas-
sified by Oguiso-Shioda [10] in terms of the trivial
lattice and Mordell-Weil lattice. For every type, we
have determined the data n,m(P)(P € P) appear-
ing in Theorem 1.1, but the results will be reported
in some other occasion. In the final section §4, we
discuss some open questions in case x > 1.

2. Proof of the main theorem.

2.1. The case T =0. First we consider the
case T =0, i.e. no reducible fibres. In this case,
Theorem 1.1 reduces to the following

Theorem 2.1. Assume that S is a rational
elliptic surface with no reducible fibres. Then we have

(2.1) n=dim; R/I =240, u(P)=m(P) =1

forall P € P.
Proof. We have only to prove the equality:

(2.2) dim R/I = 240.

In fact, by [18, Lemma 3.1], we know that n =
#P =240 and that m(P) =1 for each P € P. The
latter holds, because the root graph A(P) consists
of the vertex D(P) alone as T =0. In view of the
Chinese Remainder equality [18, (1.15)], we see that
the claim (2.2) is equivalent to the following
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(2.3) w(P)=1forall P€P.

Thus we proceed as follows to show (2.2) (see
Lemma 2.4 below).

First we write down a “universal” rational ellip-
tic surface. Let S) denote the elliptic surface defined
by the Weierstrass equation:

VP + ay(t)zy + az(t)y = 23 + ag(t) 2 + ay(t)z + ag(t)

where

A=(ai;) (j<i), ai(t) = a;;t! (i=1,2,3,4,6).
=0

Let

(2.4) A ={)\S, is a RES}

and

(2.5)  Ag = {X € A|S) has no reducible fibres}.

In characteristic different from 2 and 3, one can
choose a;(t) =0 (i=1,2,3) (ie. a;;=0 for i =
1,2,3 and all j) without loss of generality. In any
case, A is open in an affine space of suitable dimen-
sion, and A is an open subset of A.

We denote by P, and I, the set of everywhere
integral sections P of S\ and its defining ideal, and
by V(I)) the 0-dimensional affine scheme defined by
1.

Lemma 2.2. Under the assumption that x =
1, {V(L)|X € A} forms a flat family over A.

Proof. (I owe this remark to Takeshi Saito.) For
any x, the ideal I is generated by 6x + 1 elements
by definition, while the number of variables z;,y; is
(2x+ 1)+ (Bx+1) =5x + 2. Hence, if x =1, V(1)
is a complete intersection, and the flatness follows
from [4, Ch. IV]. O

Lemma 2.3. Under the same assumption,
{V(L)|X € Ao} forms a finite flat family over Ag.

Proof. For any (geometric) point A € Ag, V(1))
consists of 240 points by [18, Lemma 3.1]. The affine
coordinates of these points in the ambient affine
space of V(Iy) are given by z(P,) (1 <m < 240)
(see [18, (1.7)]), if we set Py = { P, (1 < m < 240)}.

Now fix any A € Ag. Let A be a generic point of
Ag, and let z(P) be a generic point of V := V(I;).
Take any specialization o : A — A, and any special-
ization & of z(P) over o. Since V is specialized to
V(I,), bijectively as the point sets consisting of

240 points, the point z(P) must specialize to one of
2(P,,)'s, which are obviously finite. This is the case
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for any choice of specialization &, and hence the
family in question is a proper family (cf. [5, Ch. II]
or [20, Ch. VII]). Since it is a family of 0-dimensional
schemes, the assertion follows. O

Lemma 2.4. (i) The dimension dimy R/I is
constant for any X € Ao(k). (ii) The constant value
is equal to 240.

Proof. The claim (i) follows from a general re-
sult for finite flat morphisms (see e.g. [8, Prop. 8,
Lect. 6]). Thus, to prove (ii), it suffices to check it at
one point A € Ag(k). For instance, take A correspond-
ing to the rational elliptic surface y? =23 +¢° +1
treated in [18, Ex. 1.4]. (Actually, as the referee has
kindly pointed out, it works only in characteristic
p # 2,3,5. But we can always find a suitable equa-
tion which works in a given characteristic such as
v =23 +1° —tincase p =5.) O

This completes the proof of Theorem 2.1.

2.2. General case. Now we prove Theorem
1.1 without assumption.

For any A € A, let D, denote the set of roots in
the Eg-frame on Sy. Recall that, for each P € Py,
D(P) := (P) — (O) — F is an element of D,.

Let X\ be a generic point of Ay, and let P; =
{P, (1 <i<240)}. The set D; consists of D(P;)’s
by [18, Lemma 3.1].

Take any point A € A(k) and any specialization
o:A— A By [18, Lemma 3.2], D; is mapped bi-
jectively to D, under the specialization, and by

[18, Lemma 3.3], each D(FP;) is mapped either to
some element of T or to an element of the form D =
D(P) +~ for some P € P, and v € T. For a fixed
P € P,, the number of P’s corresponding to P in
the above sense is equal to the multiplicity u(P), be-
cause each P; has multiplicity 1 by (2.3) which has
just been established above. Comparing this with
the decomposition of the set D = D, in [18, Theorem
3.4], we conclude that p(P) = m(P) for each P € Pj.
This proves the claim (iii) of Theorem 1.1.

Next, to prove (ii), we note from the Chinese
Remainder theorem and (iii) just proven above that

dimy R/Iy =Y p(P) =Y m(P)
Pep Pep
By [18, Theorem 3.4], this implies
dimk R/I)\ =240 — V(T)
Thus we have proven the claim (ii) of Theorem 1.1.
The claim (i) is now obvious: we have

n =#P < dim; R/I < 240,
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where the second inequality follows from (ii) above.
This completes the proof of Theorem 1.1. O

2.3. Further information in a special case
(cf. [12, 13]). The idea of the above proof is
adapted from our previous work [12, §8] and [13],
treating a slightly less general family which admits a
singular fibre of type IT (a cuspidal cubic). We re-
mark here that, if we restrict our attention to that
family, everything in the above proof becomes clearer
and more explicit.

Namely we consider

3 3
Ey:yf =25+ <Z pﬁ)x +) gt?
i=0 =0
A= (po,- -

[From the viewpoint of topology of singularities, the
above equation is called the universal deformation of

(2.6)

7Q3) € AS'

Eg-singularity y? = 2 + ¢° locally near the origin of
C3. Our approach based on Mordell-Weil lattices is
more algebraic and global, but both viewpoints are
very closely connected.]

Assume that A is generic (i.e. py, ..., g3 are alge-
braically independent) over Q, and let k be the alge-
braic closure of ky := Q(X) = Q(po, - - -, g3). Then the
elliptic surface Sy is a RES without reducible fibres
and M, = E,(k(t)) is isomorphic to the root lattice
Es. Take a basis {Py,....Ps} forming the Dynkin
diagram of type Es, and let u; = spoo(P;) € k, where

(2.7) oo+ EN(K(1)) — k

denotes the specialization homomorphism: for any
P, spoo(P) is defined as the unique intersection point
of the section (P) and the singular fibre of type IT
f1(c0).

By the fundamental theorems for the algebraic
equations of type Eg [12, Theorems 8.3, 8.4, 8.5], we
have the following results:

(i) K =Q(uy,...,us) is the splitting field of
E\/Q(MN)(t), i.e. we have E)\(K(t)) = E\(k(t))
and I is the smallest extension of Q(A) with
this property.

(if) K£/Q(N) is a Galois extension with Galois group

W (Es) (the Weyl group of type Eg).

W(Es) acts on the polynomial ring Quy,...,
ug], and the ring of invariants is equal to
Q[ :=Qlpo, .-, q)- In other words, {po,...,
g3} forms a set of fundamental invariants of
W (Es) (of weight 20,14,8,2,30,24,18,12 re-
spectively).
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(iv) The minimal polynomial ®(X) of u; over Q(A)
splits completely in I and it has coefficients in

Q[\J:

(2.8)

240
®(X,A) = [ (X —w) € QN[X],
i=1
where each root w; is Z-linear combination of
Uy, ..., us. The 240 u; form a root system of type Eg.
(v) For each ¢ < 240, there is a section P, €
E)\(k(t)) of the form:

(2.9) P = (ith + at + b, igt?’ + et 4 dt + e),
spoo(P;) = ui

where the coefficients a, b, ¢, d, e belong to Q(\)(w;) N
Q[Ul, N 7’[1,8].

Let u := (uy,...,us) € A®. Then it follows from
(iii) above that the map ¢ : u+> A = ¢(u) defines a
finite ramified Galois covering A% — A® with Galois
group W(Ejg), which is unramified on the open set
U C A® where the “discriminant” 8(\) (cf. [1]) does
not vanish:

240
(2.10) 5(N) = ®(0,A) = [ Jw-

i=1
Furthermore S, := Sy, defines a smooth family of
rational elliptic surfaces parametrized by the affine
space A% upstairs (see [13, Prop. 4.3] and references
given there).

Now we consider specializing the generic point
of the affine space upstairs u = (uy,...,us) to some
uw’ = (uf,...,ud). It induces a unique specializa-
tion A= ¢(u) = A\’ =¢(u’) in the affine space
downstairs. By (v) above, we can write each P, as
P,(u) with its coefficients of t lying in Q(A)(u;) N
Q[1/uj,u, ..., us]. Hence, as far as u) # 0, P; has
a unique specialization P with sp..(P) = u).

Thus, if §(\°) #0, P, — P gives a bijection
of the set of 240 roots in the Mordell-Weil lattice
M, to that in My. (N.B. The map u; — u! is not
necessarily injective even if we assume §(A\°) # 0.
See [12, p. 685] for such an example.)

On the other hand, if §(A\”) = 0, then there ex-
ist some i such that u) = 0. In this case, P, must
specialize to O in M. The number v of such ’s
is equal to v(T'), the number of roots in the trivial
lattice T C NS(Sy). In other words, the multiplicity
of the factor X in the polynomial ®(X, \") is equal to
v(T). If we set Py = {Q1,...,Qx}, then we have
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(2.11)
240 n

B(X,\0) = JT(xX —u?) = X" T](X = spe (@)™ Y.

i=1 j=1

Thus, for a fixed v’ = !, the multiplicity of (X —
u’) in (X, \") is equal to the sum of m(Q;)’s such
that sp(Q;) = u’.

3. Examples. By [10], the Mordell-Weil lattice
(abbreviated as MWL) of a rational elliptic surface is
classified into 74 types by the triple {T', L, M}, where
(i) T is the trivial lattice, with the opposite sign,
embedded in Eg, (i) L is the narrow MWL E(K)"
which is isomorphic to the orthogonal complement
of T in Eg, and (iii) M is the MWL E(K) which is
the direct sum of the dual lattice of L and the torsion
group T'/T, where T’ is the primitive closure of T
in Eg.

For each type {T,L,M?}, we have determined
the set P C M, n = #P, and the combinatorial mul-
tiplicities m(P) for each P € P. The summary will be
reported at some other occasion, where some Q-split
examples (cf. [12, 14]) of every type will be given to
simplify the direct verification via Grobner basis
computation (cf. [3, 9]).

Here we illustrate our results with a few classical
examples. Examples in §3.1 are the prototype of the
present work treated in the earlier paper [13]. Next
83.2 shows more complicated new features, dealing
with the familiar Legendre curve.

3.1. Cases of higher Mordell-Weil rank (cf.
[13, 85]). For a rational elliptic surface, the rank
r =M is bounded by 8 and the higher MW-rank
cases correspond to the cases of smaller rk7. The
first four cases in [10] (cf. [12, 13, 15]) are the follow-
ing (where rkT < 2):

(i) T=0,L =M= Es,

(i) T = Ay, L = E;,M = E,
(ili) T = Ay, L = Eg, M = E,
(iv) T = A L = Dg, M = D;.

The set P of everywhere integral sections in M
consists of the roots in the root lattice L and the
minimal vectors of M = L* (the dual lattice of L)
for the first three cases. Thus n = #P is equal to
the number v(L) of the roots in L, plus the number
of minimal vectors in case (ii) or (iii): that is (i)
n = 240, (ii) n = 126 + 56 = 182, (iii) n = 72 + 54 =
126.

If PeP is a root of L, then the multiplicity
m(P) is 1, because the root graph consists of the
single vertex D(P). On the other hand, if P is a
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Fig. 1. Root graph A(P).

minimal vector of M = L*, then the multiplicity
m(P) is equal to m(P) =2 in case (ii) and m(P) =
3 in case (iil), because then the root graph A(P) is
given, respectively, by Figure 1. Here the root D(P)
is denoted by the encircled vertex and other roots
©,,; in [18, (2.11)] by the black vertices. (We write 0
for © in the following figures.)

In case (iv), the set P consists of 60 roots of
L = Dg, 12 minimal vectors of height (P,P) =1 in
M = D, plus 64 Q € M with height (Q,Q) =3/2.
We have m(P) =4 and m(Q) =2, as shown by
Figure 1 (iv) or (ii) respectively. Compare [13, §5].

In each case, check the identity:

(3.1)  126-1456-2=238=240—2, 2 = 1(A,)
(3.2) 7214543 =234 =240 — 6, 6 = v(A,)
(3.3) 60-1+64-2412-4 =236 =240 — 4,

4 =v(AP?).

3.2. The Legendre surface. Let E be de-

fined by the Legendre form:
(3.4) E:yf=z(x—1)(z—1).
Let K = k(t) where k is any field of characteristic
# 2. The elliptic surface defined by this equation is
obviously a rational surface, since the function field
K(E) = k(t,z,y) is equal to k(z,y).

There are two singular fibres of type I, at t =
0,1 and one of type I at t = oco. The trivial sub-
lattice T = Al82 @ Dg is of index 4 in FEg, and the
Mordell-Weil group is M = Eg/T = (Z/?Z)Q, a tor-
sion group of order 4. More explicitly, we have

(3.5)
E(K) ={0,P, = (0,0), P, = (1,0), Py = (t,0)}

Thus P consists of three 2-torsions {Py, P, P3} and
n=+#P =3. Figure 2 shows how each section
(P;) intersects the irreducible components 6, ;(v =
0,1,00) of three singular fibres. (N.B. Two different
sections do not intersect. The picture is not correct
in that (P;) and (Ps) look as if they intersect.)

We can determine their (combinatorial) multi-
plicities as follows:
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Fig. 2. Legendre elliptic surface.
000,3

o (& o ° ® °
6oy  D(P) 0oy Ooo,1

Fig. 3. Root graph A(P) for P = P;.

0,1
:>@ .
5., D(P) b

Fig. 4. Root graph A(P) for P = P;.

(3.6)  m(P) =64, m(P) =64, m(Py) =48

Indeed the root graph A(P) for P = P is shown
by Figure 3 (and similarly for P = P,), while A(P)
for P = Ps is as in Figure 4.

Then, by counting the number of distinguished
roots in the root graph A(P), (3.6) can be verified.
For instance, to show that m(P;) = 64, consider first
the distinguished roots £ = D(P) + - -+ not contain-
ing the vertex 6y in Figure 3. Thus we seek for the
number of “positive roots” in the Dynkin diagram
of type E7 whose coefficient of D(P) is 1. As is well-
known (see [1, 2]), there exist 33 positive roots in the
Dynkin diagram of type E7 containing the left vertex
D(P), but one of them is of the form 2D(P) + - --
Hence we have exactly 32 £ of the required form.
Then, considering £ + 6y for each such £, we obtain
another set of 32 distinguished roots. In this way, we
check that the number of distinguished roots in the
root graph A(Py) is equal to 2 - 32, i.e. m(P;) = 64.
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Incidentally, it should be remarked that the root
graph of an everywhere integral section P is a visual
counterpart of the height formula for P. For in-
stance, the height formula for P = P; above reads as

(37  (PLP)=24+0-6/4—1/2—0
(38) (P, P)=2+0-6/4—0—1/2
39) (PP =240-1-1/2—-1/2

where the local contribution terms contr,(P) (see
[11, p. 229]) on the right hand side are written in
the order of v = 00,0, 1.

Now Theorem 1.1 implies that, if I denotes the
defining ideal of P in this case, then the primary de-
composition of I is of the form I = q; N g, N q3, with
q, corresponding to P;(i = 1,2,3), and we have

(3.10) dimy R/q; = 64(i = 1,2), dimy R/qs = 48,

implying dimy R/I =176. As mentioned before,
Grébner basis computations allow one to make a
direct verification of such a result.

4. Open questions. When the arithmetic
genus Y is greater than 1, Question 1.3 posed in the
Introduction of part I [18] remains open. Let us pose
a few more specific questions here.

We use the same notation as in [18, §1]. In par-
ticular, P denotes the set of everywhere integral sec-
tions on a given elliptic surface S over P! of arith-
metic genus , and I denotes its defining ideal.

Question 4.1. Assume that P € P has height
(P, P) = 2. Is the multiplicity u(P) equal to 17

The assumption is equivalent to saying that
P € P belongs to the narrow Mordell-Weil lattice,
or that the sections (P) and (O) intersect the same
irreducible component for every reducible fibre. Ques-
tion 4.1 is true if x =1 by Theorem 1.1, since the
assumption implies that the combinatorial multi-
plicity m(P) = 1.

In particular, we ask:

Question 4.2. Assume that the trivial lattice
T =0, or equivalently, there are no reducible fibres.
Then is it true that [ = /1?7

Next consider the case y = 2, i.e. S is an elliptic
K3 surface.

Question 4.3. What is the mazimum cardi-
nality n = #P when S wvaries among elliptic K3
surfaces?

In characteristic 0, the largest value of n we
know at the moment is n = 5820, attained by the
elliptic K3 surface:
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(4.1) =2+ (-t —11)
which has MWL of rank 18 (cf. [17]).

Its reduction modulo p =11 is a supersingular
K3 surface, and the induced elliptic fibration has
MWL of rank 20 which attains n = 12540. This is
the largest value of n known to us.

Question 4.4. Assume x =2. Can one give
some combinatorial description of the multiplicity
w(P) for P € P?
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