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Abstract: Let ðFnÞn�0 be the Fibonacci sequence given by Fnþ2 ¼ Fnþ1 þ Fn, for n � 0,
where F0 ¼ 0 and F1 ¼ 1. In this note, we prove that if s is an integer number such that Fs

n þ Fs
nþ1

is a Fibonacci number for all sufficiently large integer n, then s ¼ 1 or 2.
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1. Introduction. Let ðFnÞn�0 be the

Fibonacci sequence given by Fnþ2 ¼ Fnþ1 þ Fn,

for n � 0, where F0 ¼ 0 and F1 ¼ 1. A few terms

of this sequence are

0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233;

377; 610; 987; 1597; 2584; 4181; 6765; . . .

The Fibonacci numbers are well-known for

possessing wonderful and amazing properties (con-

sult [5, pp. 53–56] and [2] together with their very

extensive annotated bibliography for additional

references and history). In 1963, the Fibonacci

Association was created to provide enthusiasts an

opportunity to share ideas about these intriguing

numbers and their applications. Also, in the issues

of The Fibonacci Quarterly we can find many

new facts, applications, and relationships about

Fibonacci numbers. Some well-known properties of

this sequence can be proved by using elementary

techniques, but several stronger results have been

proved by using refined tools in number theory, as

for instance, the problem of showing that the only

perfect powers in that sequence are 0, 1, 8 and 144,

see [1] and its generalization, see [4].

Among the several pretty algebraic identities

involving Fibonacci numbers, we are interested in

the following one

F 2
n þ F 2

nþ1 ¼ F2nþ1; for all n � 0:

In particular, this naive identity (which can be

proved easily by induction) tell us that the sum of

the square of two consecutive Fibonacci numbers is

still a Fibonacci number. So, natural questions

arise: Does the same property hold for F 3
n þ F 3

nþ1?

And for F 4
n þ F 4

nþ1? And so on?

The aim of this paper is to determine when the

sum Fs
n þ Fs

nþ1 is a Fibonacci number for all suffi-

ciently large integer n. Our main result is the following

Theorem 1. Let s be a positive integer. If

Fs
n þ Fs

nþ1 is a Fibonacci number for all sufficiently

large n, then s ¼ 1 or 2.

Let us describe in a few words our strategy to

prove Theorem 1. First, we write ð
ffiffiffi
5

p
ÞsðFs

n þ Fs
nþ1Þ

as P ð�Þ þQð�Þ, where P;Q 2 Z½x� are polynomials

with degree ns and ðnþ 1Þs, respectively and

� ¼ ð1þ
ffiffiffi
5

p
Þ=2 ¼ 1:61803 . . .. The main trick is to

divide the previous sum by �ns and to see that

the result will tend to ð
ffiffiffi
5

p
Þ�sð1þ �sÞ when n tends

to infinity. Therefore, if Fs
n þ Fs

nþ1 is a Fibonacci

number for n sufficiently large, say F‘n , then we can

find a Diophantine equation satisfied by s and an

integer number t (which will depend on ‘n and s).

Finally, we use linear forms in logarithms of two

algebraic numbers to prove that the only solutions

for a such equation are s ¼ 1 or 2.

2. The proof of the Theorem. According

to the Binet’s formula, for n � 1

Fn ¼
�n � ð�1Þn��nffiffiffi

5
p :

Thus the Binomial Theorem yields

ð
ffiffiffi
5

p
Þs �

Fs
n þ Fs

nþ1

�ns

� �

¼
Xs
k¼0

s

k

� �
ð�1Þkðnþ1Þ��2kn

þ
Xs
k¼0

s

k

� �
ð�1Þkðnþ2Þ�s�2kðnþ1Þ:

Since
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lim
n!1

Xs
k¼0

s

k

� �
ð�1Þkðnþ1Þ��2kn ¼ 1

and

lim
n!1

Xs
k¼0

s

k

� �
ð�1Þkðnþ2Þ�s�2kðnþ1Þ ¼ �s;

we have

lim
n!1

Fs
n þ Fs

nþ1

�ns
¼

1þ �s

ð
ffiffiffi
5

p
Þs

:

On the other hand, if we suppose the existence of

N0 > 0 and a subsequence ð‘nÞn�0 � N such that

Fs
n þ Fs

nþ1 ¼ F‘n , for all n � N0, then

1þ �s

ð
ffiffiffi
5

p
Þs

¼ lim
n!1

F‘n

�ns
ð2:1Þ

¼ lim
n!1

�‘n�ns � ð�1Þ‘n��‘n�nsffiffiffi
5

p

¼ lim
n!1

�‘n�nsffiffiffi
5

p :

Since ‘n � ns is an integer and j�j > 1, we have that
‘n � ns must be constant with respect to n, say t,

for n sufficiently large. Thus (2.1) yields

ð
ffiffiffi
5

p
Þs�1�t ¼ 1þ �s:ð2:2Þ

Of course, this equality is valid for ðt; sÞ 2 fð1; 2Þ;
ð2; 1Þg. Our goal is to prove that (2.2) is not true if

s > 2. In this case, 2�s > 1þ �s ¼ ð
ffiffiffi
5

p
Þs�1�t > 2�t

and so s > t. Note that (2.2) can be rewritten into

the form ð
ffiffiffi
5

p
Þs�1�t�s � 1 ¼ ��s. Put

� ¼ ðs� 1Þ log
ffiffiffi
5

p
� ðs� tÞ log�:ð2:3Þ

Then e� � 1 ¼ ��s > 0, which implies � > 0. There-
fore, � < e� � 1 ¼ ��s and thus

log� < �s log�:ð2:4Þ

Now, we will determine a lower bound for the linear

form in logarithms (2.3) à la Baker. So we choose

to use a result due to Laurent [3, Corollary 2] with

m ¼ 22 and C2 ¼ 19:2. First let us introduce some

notations. Let �1; �2 be real algebraic numbers,

with j�ij � 1, b1; b2 be positive integer numbers and

� ¼ b2 log�2 � b1 log�1:

As usual, the logarithmic height of an n-degree

algebraic number � is defined as

hð�Þ ¼ 1

n
log jaj þ

Xn
j¼1

logmaxf1; j�ðjÞjg
 !

;

where a is the leading coefficient of the minimal

polynomial of � (over Z) and ð�ðjÞÞ1�j�n are the

conjugates of �. Let Ai be real numbers such that

logAi � maxfhð�iÞ; j log�ij=D; 1=Dg; i 2 f1; 2g;

where D is the degree of the number field Qð�1; �2Þ
over Q. Define

b0 ¼
b1

D logA2
þ

b2

D logA1
:

Laurent’s result asserts that if � 6¼ 0, then

log j�j � �19:2 �D4 maxflog b0 þ 0:38;m=D; 1gð Þ2

� logA1 logA2:

We take

D ¼ 2; b1 ¼ s� t; b2 ¼ s� 1; �1 ¼ �; �2 ¼
ffiffiffi
5

p
:

We can choose logA1 ¼ 0:25 and logA2 ¼ 1. So we

get

b0 ¼
s� t

2
þ s� 1

0:5
� 5ðs� 1Þ

2
:

As � 6¼ 0, by Corollary 2 of [3] we get

log j�j � �76:8 � maxflogð5ðs� 1Þ=2Þ þ 0:38; 11gð Þ2:ð2:5Þ

Now, we combine the estimates (2.4) and (2.5) for

yielding

s log� < 76:8 �
�
maxflogð5ðs� 1Þ=2Þ þ 0:38; 11g

�2
:ð2:6Þ

	 If s � 16379, then logð5ðs� 1Þ=2Þ þ 0:38 �
11. Therefore, inequality (2.6) gives s � 19311.

	 If s > 16379, then inequality (2.6) becomes

s log� < 76:8 � logð5ðs� 1Þ=2Þ þ 0:38ð Þ2:

We deduce that s � 20022.

For the remaining possibilities, we define the

function T : N ! R by

T ðsÞ :¼
log 1þ�s

ð
ffiffi
5

p
Þs�1

� �
log�

:

Thus in view of the relation in (2.2), if s satisfies the

hypothesis of the theorem, then T ðsÞ must be an

integer. To finish, we use Mathematica to compute

all values of this function, for 3 � s � 20022. We see

that T ðsÞ is never an integer in this range. This

completes the proof of Theorem 1.
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