15

Note on mod p decompositions of gauge groups

By Daisuke KISHIMOTO and Akira KONO

Department of Mathematics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

(Communicated by Shigefumi MORI, M.J.A., Dec. 14, 2009)

Abstract: We give fibrewise mod p decompositions of the adjoint bundle of a principal G-bundle P when the topological group G has mod p decompositions by automorphisms as in [5], which imply mod p decompositions of the gauge group of P.

Key words: Gauge group; mod p decomposition.

1. Introduction and statement of the result. We will always assume that spaces have the homotopy types of CW-complexes.

Let G be a connected topological group, and let P be a principal G-bundle over a space B. The gauge group of P, denoted $\mathcal{G}(P)$, is the topological group of G-equivariant self-maps of P covering the identity of B with the compact open topology, where the group structure is given by the composite of maps. For an action ρ of G on a space F, we denote by $P \times_{\alpha} F$ the fibre bundle associated to P with the action ρ . In the special case that ρ is the adjoint action of G onto G itself, we put ad $P = P \times_{\rho} G$ and call it the adjoint bundle of P. Note that ad P is a fibrewise topological group in the sense of [3]. Then if we denote the space of sections of a fibrewise space $E \to B$ by $\Gamma(E)$, we have that $\Gamma(\operatorname{ad} P)$ is a topological group. It is shown in [1] that there is a natural isomorphism of topological groups:

$$\mathcal{G}(P) \cong \Gamma(\mathrm{ad}\, P)$$

Thus a fibrewise decomposition of the adjoint bundle ad P yields a decomposition of the gauge group $\mathcal{G}(P)$.

The gauge group $\mathcal{G}(P)$, of course, inherits the structures of the topological group G. Then if we have a decomposition of G, $\mathcal{G}(P)$ may have a decomposition. In fact, Theriault [11] showed that mod pdecompositions of G induce those of $\mathcal{G}(P)$ when the base space B is S^4 . Other decompositions of gauge groups are discussed in [7] and [8]. The aim of this note is to produce a fibrewise mod p decomposition of the adjoint bundle ad P for yielding a mod p decomposition of the gauge group $\mathcal{G}(P)$ when G has a mod p decomposition by an automorphism as in [5]. In order to state the result, we need some notation. Let \mathbf{P} be a set of primes. We denote by $-\mathbf{P}$ the localization away from \mathbf{P} in the sense of Hilton, Mislin and Roitberg [6]. We also denote by $-\frac{f}{\mathbf{P}}$ the fibrewise localization away from \mathbf{P} in the sense of May [9].

Suppose G has an automorphism α with the subgroup of fixed points H. We define a map $\sigma: G/H \to G$ by

$$\sigma(gH) = g\alpha(g)^{-1}$$

for $g \in G$. We also define a map $\theta : H \times G/H \to G$ by

$$\theta(h, gH) = h \cdot \sigma(gH)$$

for $h \in H$ and $g \in G$. Let ρ be the action of H upon G/H defined by

$$\rho(h, gH) = hgH$$

for $h \in H$ and $g \in G$. Now we give the main theorem whose proof will be given in the next section where we also give some examples.

Theorem 1.1. Let G, H, θ and ρ be as above. Suppose that the localized map $\theta_{\mathbf{P}}$ is a homotopy equivalence for some set of primes \mathbf{P} . Then there is a fibrewise homotopy equivalence:

$$(\operatorname{ad} EG|_{BH})_{\mathbf{P}}^{f} \simeq_{BH} (\operatorname{ad} EH)_{\mathbf{P}}^{f} \times_{BH} (EH \times_{\rho} G/H)_{\mathbf{P}}^{f}$$

Let $E \to B$ be a fibration whose fibre is connected and nilpotent. It follows from the result of Møller [10] that the induced map $\Gamma(E) \to \Gamma(E_{\mathbf{P}}^{f})$ from the fibrewise localization $E \to E_{\mathbf{P}}^{f}$ is the localization $\Gamma(E) \to \Gamma(E)_{\mathbf{P}}$. Obviously, we have $\Gamma(E_1 \times_B E_2) \cong$ $\Gamma(E_1) \times \Gamma(E_2)$ for fibrewise spaces E_1 and E_2 over B. Then we obtain:

Corollary 1.1. Let G, H, θ and ρ be as in Theorem 1.1. Suppose that the localized map $\theta_{\mathbf{P}}$ is a

²⁰⁰⁰ Mathematics Subject Classification. Primary 57S05, 55R70.

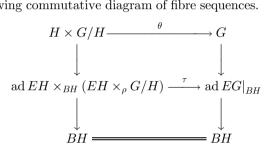
homotopy equivalence for some set of primes **P**. Then there is a homotopy equivalence:

$$\mathcal{G}(EG|_{BH})_{\mathbf{P}} \simeq \mathcal{G}(EH)_{\mathbf{P}} \times \Gamma(EH \times_{\rho} G/H)_{\mathbf{I}}$$

2. Proof of Theorem 1.1 and examples. We first give a proof of Theorem 1.1. Let ad_H denote the adjoint action of H onto G. Then we have a commutative diagram

$$\begin{array}{ccc} H \times G/H & \stackrel{\rho}{\longrightarrow} & G/H \\ & & \downarrow^{\sigma} \\ H \times G & \stackrel{\mathrm{ad}_{H}}{\longrightarrow} & G \end{array}$$

which induces a fibrewise map τ fitting into the following commutative diagram of fibre sequences.



Thus Theorem 1.1 follows from Dold's theorem together with the assumption that the localized map $\theta_{\mathbf{P}}$ is a homotopy equivalence.

Next, we give some examples to which we can apply Theorem 1.1 and Corollary 1.1. The following special gauge groups are of our main interesting. Let G be a connected simple Lie group. Then the principal G-bundle over S^4 is classified by $\pi_3(G) \cong \mathbb{Z}$.

Definition 2.1. We denote by $\mathcal{G}_k(G)$ the gauge group of principal *G*-bundle classified by $k \in \mathbb{Z} \cong \pi_3(G)$.

Example 2.1. Let G, H, p, d and α be as in Table I. Here the matrix J is $\begin{pmatrix} O & E_n \\ -E_n & O \end{pmatrix}$. Then each α is an automorphism of G with the subgroup of fixed points H. Note that the order of α equals p. In [5], Harris showed that the localized map $\theta_{\frac{1}{p}}$ is a homotopy equivalence, where $-\frac{1}{p}$ stands for the

Table I.

G	H	p	d	α
$\mathrm{SU}(2n+1)$	SO(2n+1)	2	2	complex conjugation
$\mathrm{SU}(2n)$	$\operatorname{Sp}(n)$	2	1	conjugation by J
E_6	F_4	2	1	canonical involution
$\operatorname{Spin}(8)$	G_2	3	1	automorphism in [4]

localization away from the set of all primes but p, that is, inverting p. Then we can apply Theorem 1.1 and Corollary 1.1. Moreover, since the inclusion $H \to G$ induces d-multiplication in π_3 , we have obtained:

Proposition 2.1. Let G, H, p, d and ρ be as above. Then we have a homotopy equivalence

$$\mathcal{G}_{dk}(G)_{\underline{1}} \simeq \mathcal{G}_k(H)_{\underline{1}} \times \Gamma(E)_{\underline{1}}$$

where E is the pullback of $EH \times_{\rho} G/H$ by the map $S^4 \to BH$ representing $k \in \mathbb{Z} \cong \pi_4(BH)$.

Example 2.2. In [2], an involution of Spin(2n)whose fixed points subgroup is Spin(2n-1) is constructed. Harris [5] also showed that the localized map $\theta_{\frac{1}{2}}$ is a homotopy equivalence for this involution. Then we can apply Theorem 1.1 and Corollary 1.1. For this example, we can refine Proposition 2.1 a little. Put $n \geq 3$. Let E be the pullback of the bundle $E \operatorname{Spin}(2n-1) \times \rho S^{2n-1}$ by the map $S^4 \to B \operatorname{Spin}(2n-1)$ 1) representing $k \in \mathbb{Z} \cong \pi_4(B \operatorname{Spin}(2n-1))$, where ρ is the restriction of the canonical action of $\operatorname{Spin}(2n)$ on S^{2n-1} to $\operatorname{Spin}(2n-1)$. Note that the composite

$$\pi_3(\text{Spin}(2n-1)) \to \pi_3(\text{Spin}(2n)) \to \pi_{2n+2}(S^{2n-1})$$

is the quotient map $\mathbf{Z} \to \mathbf{Z}/24$, where the first arrow is induced from the inclusion $\operatorname{Spin}(2n-1) \to$ $\operatorname{Spin}(2n)$ and the second arrow is the *J*-homomorphism. Now we know that *E* is fibrewise homotopy equivalent to a fibre space E_k over S^4 with fibre S^{2n-1} classified by $[k] \in \mathbf{Z}/24 \cong \pi_{2n+2}(S^{2n-1})$. In particular, if *k* is a multiple of 3, E_1^f is fibrewise homotopy equivalent to the trivial bundle $S^4 \times S_{\frac{1}{2}}^{2n-1}$. In this case, we have

$$\Gamma(E_k)_{\frac{1}{2}} \simeq \mathrm{map}(S^4, S_{\frac{1}{2}}^{2k-1}) \simeq S_{\frac{1}{2}}^{2n-1} \times \Omega^4 S_{\frac{1}{2}}^{2n-1},$$

since $S_{\frac{1}{2}}^{2n-1}$ is an H-space. Thus we have established: **Proposition 2.2** (cf. [11]). Let E_k be as above.

Then we have a homotopy equivalence

$$\mathcal{G}_k(\operatorname{Spin}(2n))_{\frac{1}{2}} \simeq \mathcal{G}_k(\operatorname{Spin}(2n-1))_{\frac{1}{2}} \times \Gamma(E_k)_{\frac{1}{2}}.$$

Moreover, if k is a multiple of 3, we have

$$\Gamma(E_k)_{\frac{1}{2}} \simeq S_{\frac{1}{2}}^{2n-1} \times \Omega^4 S_{\frac{1}{2}}^{2n-1}.$$

References

 M. F. Atiyah and R. Bott, The Yangmhy Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. No. 1]

- [2] A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409–448.
- [3] M. Crabb and I. James, *Fibrewise homotopy* theory, Springer, London, 1998.
- [4] J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms. I, J. Differential Geometry 2 (1968), 77–114.
- B. Harris, On the homotopy groups of the classical groups, Ann. of Math. (2) 74 (1961), 407–413.
- [6] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North-Holland, Amsterdam, 1975.
- [7] D. Kishimoto and A. Kono, Splitting of gauge groups, Trans. Amer. Math. Soc. (to appear).
- [8] A. Kono and S. Tsukuda, Note on the triviality of adjoint bundles, Contemp. Math. (to appear).
- J. P. May, Fibrewise localization and completion, Trans. Amer. Math. Soc. 258 (1980), no. 1, 127–146.
- [10] J. M. Møller, Nilpotent spaces of sections, Trans. Amer. Math. Soc. 303 (1987), no. 2, 733–741.
- [11] S.D. Theriault, Odd primary homotopy decompositions of gauge groups. (Preprint).