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Abstract: The aim of this paper is to study, in the framework of the r’ interface model,

the macroscopic behavior of microscopic interfaces under the finite volume Gibbs measures with

self potentials, especially by establishing the large deviation principle. We consider the case

where the self potential depends on the position and on both macroscopic and microscopic heights

of the interfaces as well. The assumption on the upper bound for the self potential required by

[10] is relaxed.
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1. Introduction and result. In this paper,

we are interested in a macroscopic behavior of

microscopic interfaces distributed under the finite

volume Gibbs measures. In general, the interfaces

are hypersurfaces which separate different phases

like vapor and water. It is known that, at the

macroscopic level, the most probable shape of a

crystal surrounded by an interface having a definite

total volume is characterized as a minimizer of the

total surface tension and such shape is called Wulff

shape. Mathematically, this can be shown as a

consequence of large deviation principle. We prove

the large deviations for the r’ interface model

under the scaling limit for microscopic interfaces

with self potentials. A survey on the r’ interface

model is in [8], while a review of the results on the

Ising model together with some explanations on the

physical background can be found in [2].

The large deviation principle for the r’ inter-

face model was first studied by Ben Arous and

Deuschel [1]. They considered the Gibbs measure

with quadratic potential having 0-boundary con-

ditions. Deuschel, Giacomin and Ioffe [5] general-

ized the results to the non-Gaussian setting under

the 0-boundary conditions. Then, taking an effect of

self potentials into account, Funaki and Sakagawa

[10] extended them for the Gibbs measure added a

weak self potential under general Dirichlet boun-

dary conditions, but they required that the self

potentials take values between two limits as the

height variables tends to �1, i.e. the condition

(W2) below with � ¼ � _ �.
In our case, the self potentials may depend on

microscopic and macroscopic height variables, and

also on the macroscopic position of the interfaces.

The values of our self potentials may be larger than

two limits of them as the height variable tends to

�1. In other words, our self potentials are rather

free from the upper bound and therefore admit a

wide class of functions.

We now formulate our problem more precisely.

Let D be a bounded domain in Rd with a piecewise

Lipschitz boundary and set DN ¼ ND \ Zd. The

location of the interface is described by a height

variable � ¼ f�ðxÞ 2 R;x 2 DNg, which measures

the vertical distance between the interface and the

reference hyperplane DN . We denote @þDN ¼ fx =2
DN ; jx� yj ¼ 1 for some y 2 DNg and DN ¼ DN [
@þDN .

The Hamiltonian of � on DN with a boundary

condition  ¼ f ðxÞ;x 2 @þDNg and a self potential

S is given by

H ;S
N ð�Þ ¼ H 

Nð�Þ þ
X
x2DN

S
x

N
;
1

N
�ðxÞ; �ðxÞ

� �
;

where

H 
Nð�Þ ¼

X
x;y2DN;jx�yj¼1

V ðð� _  ÞðxÞ � ð� _  ÞðyÞÞ

and � _  is the height variable on DN determined

by ð� _  ÞðxÞ ¼ �ðxÞ for x 2 DN and ¼  ðxÞ for x 2
@þDN . The interaction potential V satisfies the

following three conditions:
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(V1) (smoothness) V 2 C2ðRÞ,
(V2) (symmetry) V ð�Þ ¼ V ð��Þ for every � 2 R,

(V3) (strict convexity) there exist c�; cþ > 0 such

that c� � V 00ð�Þ � cþ for every � 2 R.

The self potential S : D�R�R ! R is of the form

Sð�; s; rÞ � Qð�; sÞW ðrÞ, where Q : D�R ! ½0;1Þ
and W : R ! R. We assume the following condi-

tions on Q and W , respectively:

(Q1) Q is non-negative, bounded and piecewise

continuous,

(Q2) jQð�; sÞ �Qð�; s0Þj � cð�Þjs� s0j, with c : D!
½0;1Þ satisfying kckL2ðDÞ <1,

(W1) W is measurable,

(W2) the limits � ¼ limr!þ1W ðrÞ, � ¼
limr!�1WðrÞ exist, � ¼ supr2RW ðrÞ <1,

and W ðrÞ � � ^ � for every r 2 R.

Remark 1.1. Note that Funaki and Sakagawa

[10] considered the case where S is decomposed into

Sð�; s; rÞ ¼ Qð�ÞW ðrÞ and � ¼ � _ � in the condition

(W2).
The macroscopic boundary condition will given

by gj@D for g 2 C1ðRdÞ. We assume the following

conditions for the corresponding microscopic boun-

dary condition  2 R@þDN .

(PS1) maxx2@þDN
j ðxÞj � CN ,

(PS2)
P

x2@þDN
 ðxÞ �Ng x

N

� ��� ��p0 � CNd for some

C > 0 and p0 > 2.

The corresponding finite volume Gibbs meas-

ure on RDN is now defined by

� ;SN ðd�Þ ¼
1

Z ;S
N

expf�H ;S
N ð�Þg

Y
x2DN

d�ðxÞ;

where Z ;S
N is the normalization factor. The finite

volume Gibbs measure without self potential is

denoted by � N .

Our scaled random interface fhNð�Þ; � 2 Dg is

defined by a polilinear interpolation of the macro-

scopically scaled height variables, i.e., hNð�Þ ¼
1
N �ðxÞ for � ¼ x

N ; x 2 DN and

hNð�Þ ¼
X

�2f0;1gd
hN

½N�� þ �

N

� �

�
Yd
i¼1

�ifN�ig þ ð1� �iÞð1� fN�igÞð Þ
" #

;

for general � 2 D, where ½�� and f�g denote the

integral and the fractional parts, respectively (cf.

[5]). We define another scaled profile fhNð�Þ; � 2
Dg by a step function, i.e., h

Nð�Þ ¼ 1
N
�ð½N��Þ for

� 2 D.

For h 2 H1ðDÞ, define a surface free energy by

�ðhÞ ¼
Z
D

	ðrhð�ÞÞd�;

where 	ðuÞ is the surface tension with the tilt u 2
Rd (cf. [5,8]).

Now we state our main theorem which estab-

lishes the large deviation principle for � ;SN with

weak self potentials in a wider class than those

treated by Funaki and Sakagawa [10].

Theorem 1.1. The family of random sur-

faces fhNð�Þ; � 2 Dg distributed under � ;SN satisfies

the large deviation principle on L2ðDÞ with speed Nd

and the rate functional ISðhÞ, that is, for every

closed set C and open set O of L2ðDÞ we have

that

lim sup
N!1

1

Nd
log� ;SN ðhN 2 CÞ � � inf

h2C
ISðhÞ;

lim inf
N!1

1

Nd
log� ;SN ðhN 2 OÞ � � inf

h2O
ISðhÞ:

The functional ISðhÞ is given by

ISðhÞ ¼ �SðhÞ � infH1
g ðDÞ �

S; if h 2 H1
g ðDÞ,

þ1; otherwise,

�

where H1
g ðDÞ ¼ fh 2 H1ðDÞ;h� gjD 2 H1

0ðDÞg and

�SðhÞ ¼ �ðhÞ þ
Z
D

Qð�; hð�ÞÞð�1fhð�Þ>0gð1Þ

þ �1fhð�Þ<0g þ ð� ^ �Þ1fhð�Þ¼0gÞd�:

It is well known that, once the large deviation

principle is established, we immediately obtain the

law of large numbers for hN under � ;SN , that is, if

the rate functional �S has a unique minimizer h	 in
H1
g ðDÞ, we have

lim
N!1

� ;SN ðkhN � h	kL2ðDÞ > 
Þ ¼ 0

for every 
 > 0.

The law of large numbers under the situation

that the rate functional has two distinct minimizers

for the model motivated by the r’ interface model

with self potentials in one dimension was discussed

by [9] and [11]. The law of large number under the

Gaussian Gibbs measures with 
-pinning, especially

under the rate functional of the corresponding large

deviation principle has two minimizers in one

dimension was studied by [3]. In particular, they

proved that two minimizers coexist in Free boun-

dary case. The 
-pinning potential is defined from a

certain limit of the square well pinning potential.
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The large deviation principle for the square well

pinning potential has not been proven yet. Dunlop

et al. [7] first proved the localization under the

Gaussian Gibbs measures with the square well

pinning potential and 0-boundary conditions in

two dimension. The result of [7] was extended for

general convex potential by Deuschel and Velenik

[6].

In the next section, we will give the Proof of

Theorem 1.1.

2. Proof of Theorem 1.1. In this section,

we only consider the case where � � �. The case

� < � can be treated in a similar way. We decom-

pose the self potential S into S ¼ �QþQðW � �Þ.
Then, ~WW ¼W � � satisfies the condition (W20),
which is the condition (W2) with � ¼ 0.

Remark 2.1. If Q does not depend on �ðxÞ,
since the contribution of the first term �Q in

expf�H ;S
N ð�Þg of � ;SN cancels with the normaliza-

tion factor, we can prove Theorem 1.1 in a similar

way to the proof of [10, Theorem 2.1]. However,

since Q of our self potential depends on �ðxÞ, we

cannot prove Theorem 1.1 by tracing the method

used for the proof of [10, Theorem 2.1]. The follow-

ing proposition recovers the thread.

The following proposition is for the finite Gibbs

measure � ;�QN with S ¼ �Q.

Proposition 2.1. The family of random sur-

faces fhNð�Þ; � 2 Dg distributed under � ;�QN satisfies

the large deviation principle on L2ðDÞ with speed Nd

and the rate functional given by

I�QðhÞ ¼ ��QðhÞ � infH1
g ðDÞ �

�Q; if h 2 H1
g ðDÞ,

þ1; otherwise,

�

where

��QðhÞ ¼ �ðhÞ þ �

Z
D

Qð�; hð�ÞÞd�:

To prove Proposition 2.1, we prepare the

following Lemma.

Lemma 2.2. Assume the conditions (Q1) and

(Q2) on Qð�; sÞ. Let g 2 L2ðDÞ and 0 < 
 < 1 be

fixed. If hN 2 B2ðg; 
Þ ¼ fh 2 L2ðDÞ; kh� gkL2ðDÞ <

g for N large enough, then there exists some

constant C > 0 such that

�
1

Nd

X
x2DN

Q
x

N
;
1

N
�ðxÞ

� �
� �

Z
D

Qð�; gð�ÞÞd�
�����

�����
< C
;

for every N sufficiently large.

Proof. If hN 2 B2ðg; 
Þ, then khN � gkL2ðDÞ <
C1
 þ aN;k, where C1 is a positive constant and aN;k
tends to 0 as N ! 1 and k! 1, see (3.2) in [10].

Therefore, by, (Q1) and (Q2), if hN 2 B2ðg; 
Þ, then
the left hand side of the desired inequality can be

bounded by

� j�jðC1
 þ aN;kÞkckL2ðDÞjDj þ j�jC2
 � C
;

for every N and k large enough, where C2 and C are

positive constants. �

Proof of Proposition 2.1.

Step1 (lower bound). Let g 2 L2ðDÞ and


 > 0. Then, by Lemma 2.2 and the large

deviation principle lower bound for � N (cf.

[10, Proposition 3.1]), we have

lim inf
N!1

1

Nd
log

Z ;�Q
N

Z 
N

� ;�QN ðhN 2 B2ðg; 
ÞÞ

� � inf
h2B2ðg;
Þ

IðhÞ � �

Z
D

Qð�; gð�ÞÞd�� C


� � IðgÞ þ �

Z
D

Qð�; gð�ÞÞd�
� �

� C
;

where

IðhÞ ¼ �ðhÞ � infH1
g ðDÞ �; if h 2 H1

g ðDÞ,
þ1; otherwise.

�

is the rate functional of the large deviation principle

for � N .

Now let us take an arbitrary open set O of

L2ðDÞ. Then, for every h 2 O and 
 > 0 such that

B2ðh; 
Þ 
 O,

lim inf
N!1

1

Nd
log

Z ;�Q
N

Z 
N

� ;�QN ðhN 2 OÞ

� � IðhÞ þ �

Z
D

Qð�; hð�ÞÞd�
� �

� C
:

Letting 
 # 0, since h 2 O is arbitrary, we have the

lower bound

lim inf
N!1

1

Nd
log

Z ;�Q
N

Z 
N

� ;�QN ðhN 2 OÞ

� � inf
h2O

IðhÞ þ �

Z
D

Qð�; hð�ÞÞd�
� �

:ð2Þ

Step2 (upper bound). Let g 2 L2ðDÞ and 
 >
0 be fixed. Then, by Lemma 2.2 and the large

deviation principle upper bound for � N (cf.

[10, Proposition 3.1]), we have
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lim sup
N!1

1

Nd
log

Z ;�Q
N

Z 
N

� ;�QN ðhN 2 B2ðg; 
ÞÞ

� � inf
h2 �BB2ðg;
Þ

IðhÞ � �

Z
D

Qð�; gð�ÞÞd�þ C
:

Then, by using the lower semi-continuity of IðhÞ,
we see that for every g 2 L2ðDÞ, there exists 
 > 0
small enough such that

lim sup
N!1

1

Nd
log

Z ;�Q
N

Z 
N

�
 ;�Q
N ðhN 2 B2ðg; 
ÞÞ

� � IðgÞ þ �

Z
D

Qð�; gð�ÞÞd�
� �

:

The standard argument in the theory of large

deviation principle (cf. [4]) yields the upper bound

lim sup
N!1

1

Nd
log

Z ;�Q
N

Z 
N

� ;�QN ðhN 2 CÞ

� � inf
h2C

IðhÞ þ �

Z
D

Qð�; hð�ÞÞd�
� �

ð3Þ

for every compact set C of L2ðDÞ. However, the

exponential tightness for � ;�QN was proved in [10].

Thus, (3) holds for every closed set C of L2ðDÞ.
Taking O ¼ C ¼ L2ðDÞ in (2) and (3), we have

the conclusion. �

To prove Theorem 1.1, we also prepare the

following lemmas. For a; b; c; d; e 2 R and g 2
L2ðDÞ, we set

Qða; b; c; d; eÞ :¼Z
D

Qð�; gð�ÞÞ aþ b1fgð�Þ�
ffiffi
d

p
g þ c1fgð�Þ��

ffiffi
e

p
g

	 

d�:

In particular, we write Qða; b; c; dÞ :¼ Qða; b; c; d; dÞ.
Lemma 2.3. Assume the conditions (Q1),

(Q2), (W1) and (W20) on Sð�; s; rÞ ¼ Qð�; sÞW ðrÞ.
Let g 2 L2ðDÞ and 0 < 
 < 1 be fixed. If

hN 2 B2ðg; 
Þ ¼ fh 2 L2ðDÞ; kh� gkL2ðDÞ < 
g with

N large enough, then there exists some constant

C > 0 such thatX
x2DN

S
x

N
;
1

N
�ðxÞ; �ðxÞ

� �
�Nd

Q 0; �; �; 
ð Þ

< CNd
;

for every N sufficiently large.

Lemma 2.4. Assume the conditions (Q1),

(Q2), (W1) and (W20) on Sð�; s; rÞ ¼ Qð�; sÞWðrÞ.
(1) The functional �SðhÞ is lower semi-continuous

on L2ðDÞ.

(2) Let �S
�ðhÞ be the functional defined by (1) with

1fhð�Þ�0g replaced by 1fhð�Þ<0g. Then, for every open

set O of L2ðDÞ, we have that

inf
h2O

�SðhÞ ¼ inf
h2O

�S
�ðhÞ:

Lemmas 2.3 and 2.4 are very similar to

Lemmas 3.1 and 3.2 of [10], respectively. Therefore,

we only give some remarks instead of completely

proving the lemmas.

Remark 2.2. In the proof of Lemma 2.4 (2),

by replacing hnð�Þ which was defined in the proof of

[10, Lemma 3.2] with

hnð�Þ ¼
hð�Þ � fnð�Þ; if hð�Þ � 0,

hð�Þ; if hð�Þ > 0,

�
ð4Þ

where fn 2 C1
0 ðDÞ are functions such that fnð�Þ � 1

n

on Dn ¼ f� 2 D; distð�; @DÞ � 1
n
g and jrfnð�Þj � C

with C > 0, we can get the conclusion in a similar

way to the proof of [10, Lemma 3.2 (2)]. Moreover,

the case � < � can be proved in a similar way

replacing (4) by

hnð�Þ ¼
hð�Þ; if hð�Þ < 0,

hð�Þ þ fnð�Þ; if hð�Þ � 0.

�

Proof of Theorem 1.1.

Step1 (lower bound). Let g 2 L2ðDÞ and


 > 0. Then, by Lemma 2.3 and the large deviation

principle lower bound for � ;�QN (Proposition 2.1),

we have

lim inf
N!1

1

Nd
log

Z ;S
N

Z
 ;�Q
N

� ;SN ðhN 2 B2ðg; 
ÞÞ

� � inf
h2B2ðg;
Þ

I�QðhÞ �Q 0; �� �; � � �; 
ð Þ � C


� � I�QðgÞ þQ 0; �� �; � � �; 
ð Þ
� �

� C
:

Now let us take an arbitrary open set O of L2ðDÞ.
Then, we have

lim inf
N!1

1

Nd
log

Z ;S
N

Z
 ;�Q
N

� ;SN ðhN 2 OÞ

� � inf
h2O

�
I�QðhÞ þ

Z
D

Qð�; hð�ÞÞ

� ð�� �Þ1fhð�Þ>0g þ ð� � �Þ1fhð�Þ<0g
� �

d�

�
ð5Þ

in a similar way to the proof of the lower bound of

Proposition 2.1.

However, by Lemma 2.4 (2), one can replace

1fhð�Þ<0g with 1fhð�Þ�0g on the right hand side of (5).

Therefore, we get
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lim inf
N!1

1

Nd
log

Z ;S
N

Z ;�Q
N

� ;SN ðhN 2 OÞ

� � inf
h2O

�SðhÞ þ inf
h2H1

g ðDÞ
��QðhÞ:ð6Þ

Step2 (upper bound). Let g 2 L2ðDÞ and


 > 0 be fixed. We define LN ¼ Nf� 2 D; gð�Þ >ffiffiffi



p
g \ Zd. By the assumption (W2) on W , for every

" > 0 there exists K ¼ K" > 0 such thatW ðrÞ � � �
�ð�� � � "Þ1fr�Kg þ �� � � " for any r 2 R.

Therefore, we have

exp �
X
x2DN

Q
x

N
;
1

N
�ðxÞ

� �
ðW ð�ðxÞÞ � �Þ

( )

� exp ð��þ � þ "Þ
X
x2DN

Q
x

N
;
1

N
�ðxÞ

� �( )

�
X
�
DN

Y
x2�

eð����"ÞQ
x
N;

1
N�ðxÞð Þ � 1

	 

1f�ðxÞ�Kg:

Now, if �ðxÞ � K for x 2 LN , then
1
N
�ðxÞ � gð x

N
Þ <

� 1
2

ffiffiffi



p
for N large enough. Thus, since khN �

gNkL2ðDÞ <
1
C0

ð
 þ kg� gNkL2ðDÞÞ, if �ðxÞ � K for

every x 2 � 
 LN on fhN 2 B2ðg; 
Þg, then we have

for N large enough

2
2

C2
0

>
1

Nd

X
x2DN

1

N
�ðxÞ � g

x

N

� �� �2

>
j�j

4Nd

;

namely, j�j < 8Nd

C2
0

, where C0 ¼ C0ðd; pÞ > 0 is the

constant, see in [10, p.188]. Combining these all

facts and Lemma 2.2

Z ;S
N

Z ;�Q
N

� ;SN ðhN 2 B2ðg; 
ÞÞ

� e2CN
d
þNdQ ��þ�þ";0;����";0;
ð Þ

� eð����"ÞkQk1 � 1
	 
8Nd


C2
0 � ;�QN ðhN 2 B2ðg; 
ÞÞ

� jf� 
 LN : j�j < 8Nd
C�2
0 gj:

On the other hand, by using Stirling’s formula, we

see that

jf� 
 LN : j�j < 8Nd
C�2
0 gj

�
C




� �CNd


Ndð1þ oð1ÞÞ

as N ! 1, for some constant C > 0 independent

of N and 
 (cf. [10, p.189]). Hence, by the large

deviation principle upper bound for � ;�QN

(Proposition 2.1), we obtain

lim sup
N!1

1

Nd
log

Z ;S
N

Z ;�Q
N

� ;SN ðhN 2 B2ðg; 
ÞÞ

� � inf
h2 �B2B2ðg;
Þ

I�QðhÞ þ Cð
Þ

þQ ��þ � þ "; 0; �� � � "; 0; 
ð Þ;
where Cð
Þ is a constant independent of N and

converges to 0 as 
 ! 0. Then, by using the lower

semi-continuity of I�QðhÞ, we see that for every g 2
L2ðDÞ and " > 0, there exists 
 > 0 small enough

such that

lim sup
N!1

1

Nd
log

Z ;S
N

Z ;�Q
N

� ;SN ðhN 2 B2ðg; 
ÞÞ

� � I�QðgÞ þQ �� �; 0; � � �; 0ð Þ
� �

þ "jDjkQk1:

Therefore, the standard argument in the theory of

large deviation principle yields

lim sup
N!1

1

Nd
log

Z ;S
N

Z ;�Q
N

� ;SN ðhN 2 CÞ

� � inf
h2C

�
I�QðhÞ þ

Z
D

Qð�; hð�ÞÞ

� ð�� �Þ1fhð�Þ>0g þ ð� � �Þ1fhð�Þ�0g
� �

d�

�
;

for every compact set C of L2ðDÞ. The exponential

tightness for � ;SN can be proved in a similar way to

those for � N (cf. Remark 4.1 of [10]). Thus, for every

closed set C of L2ðDÞ, we get

lim sup
N!1

1

Nd
log

Z ;S
N

Z ;�Q
N

� ;SN ðhN 2 CÞ

� � inf
h2C

�SðhÞ þ inf
H1
g ðDÞ

��Q:ð7Þ

Taking O ¼ C ¼ L2ðDÞ in (6) and (7), we have the

conclusion. �
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