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Abstract:

In this note, we define a notion of finite-type for invariants of curves on surfaces

as an analogue of the notion of finite-type for invariants of knots and 3-manifolds (Section 3). We
also present a systematic construction for a large family of finite-type invariants SCI,, for curves on
surfaces (Section 5). Arnold’s invariants of plane isotopy classes of plane curves occur as invariants
of order 1. Our theory of finite-type invariants of curves on surfaces is developed using the topolog-

ical theory of words.
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1. Introduction. V. A. Vassiliev developed a
method for knot classification by applying singular-
ity theory to knots [10]. This method attempts to
classify knots by using finite-type invariants (Vassiliev
invariants). It remains unknown whether finite-type
invariants can classify knots (the Vassiliev conjec-
ture) [3, 10]. Every C-valued invariant v of oriented
knots is extended inductively to singular knots, knots
which may have double points, by resolving the dou-
ble points using the formula:

W (=2 - (X)-

We say that v is a finite-type invariant of order less
than or equal to n if v vanishes on every singular
knot with at least n + 1 double points, where v is
extended by (1). It is known that there are many
finite-type invariants of knots, though it is not easy
to construct them.

V. I. Arnold introduced invariants of generic
plane curves using a theory similar to that used by
Vassiliev [1, 2]. M. Polyak and O. Viro gave a con-
crete construction of second and third order Vassiliev
invariants by Gauss diagram formulae [5]; a Gauss
diagram formula is a formula given by a sum over
subdiagrams of a given diagram. Polyak also re-
constructed Arnold’s invariants by Gauss diagram
formulae in a similar manner and combinatorially
defined finite-type invariants of plane curves [4]. On
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the other hand, V. Turaev suggested that words be
considered as generalisations of curves and knots
and demonstrated that it is possible to classify words
in the same manner as knots [7-9].

In this note, we define a notion of finite-type for
invariants of curves on surfaces by replacing ‘‘double
points” in the definition of Vassiliev invariants of
knots with “‘self-tangency points and triple points’ of
curves on surfaces (Definition 1). Arnold’s invariants
of plane curves are finite-type invariants of first order
in this sense. We also give a systematic construction
of a large family of finite-type invariants SCI, for
curves on surfaces using the topological theory of
words (Main Theorem). An idea of our construction
of finite-type invariants is to consider a sum over sub-
words of a given word, like a Gauss diagram formula.

In this paper, we present the main results and
the ideas of the proofs. The details and generalisa-
tions will be presented elsewhere.

2. Curves. A curve is a smooth immersion
of an oriented circle into an oriented surface. A curve
is generic if it has only transversal double points of
self-intersection. A curve is singular if it has only
transversal double points, self-tangency points, and
triple points of self-intersection. A pointed curve is a
generic curve with a base point on the curve distinct
from the self-intersections. Two curves are stably
homeomorphic if there is a homeomorphism of their
regular neighbourhoods in the ambient surfaces that
maps the first curve onto the second one preserving
the orientations of the curve and the surface. Simi-
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Fig. 1. The newborn triangle and the sign of the triangle.

larly, two pointed curves are said to be stably homeo-
morphic if there is a homeomorphism as above pre-
serving the base point.

3. Definition of finite-type invariants. In
this note, every local self-crossing is either a transver-
sal double point or a point looking like the left hand
side of the formulae (2)—(4) and the mirror image of
the picture on the left hand side of (3). Note that
each of these self-crossings is uniquely determined up to
homeomorphism preserving orientation. Self-tangency
points or triple points are called singular points. In par-
ticular, a self-tangency point is a direct self-tangency
point if the two tangent branches are oriented in the
same direction; otherwise, it is called an inverse self-
tangency point. The direction of the resolution of a
self-tangency point is positive if the resolution gener-
ates a curve with a larger number of double points.

We define the orientation of a resolution of a
triple point following [1]. An arbitrary triple point
gives rise to the newborn triangle which exists just
after a resolution of a triple point as shown in Fig. 1.
For the newborn triangle, we define the sign of a tri-
angle. By the definition, each singular curve is a im-
mersion of an oriented circle into an oriented surface.
Every triple point of a curve has three preimages on
the circle and their cyclic order is well defined. Then
we obtain a well-defined orientation of the newborn
triangle given by the order in which the immersed
curve visits its sides. Each side of the immersed curve
also has its own orientation. The orientation may
coincide with the orientation defined by the cyclic
order of the sides of the triangle or may be opposite
to it. Let ¢ be the number of the sides of the newborn
triangle whose orientations coincide with that given
by the cyclic order. The sign of the triangle is defined
as (—1)? (Fig. 1).

The direction of the resolution of the triple point
is positive if the sign of the newborn triangle is 1
after the resolution. The direction of the resolution
of the singular point is negative if the direction is
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non-positive. It is possible to resolve singular points
away from the base point.

Let G be some Abelian group. Every G-valued
invariant ¢ of generic curves is extended inductively
to singular curves by resolving the singular points

using (2), (3), and (4):
(2) e (X)=¢()-+00Q,

) -
® ()= -<00
w 2O =e()-(X)

negative

Definition 1. We say that ¢ is a finite-type
invariant of order less than or equal to n if ¢ vanishes
on every singular curve with at least n + 1 singular
points (self-tangency points or triple points), where
¢ is extended by (2), (3) and (4).

Examples of finite-type invariants will be given
later in this paper (Sect. 5).

4. Signed words. In this section, we intro-
duce a signed word. To define signed words, we review
the definition of nanowords following [7-9].

An alphabet is a set and letters are its elements.
A word of length n > 1 in an alphabet A is a mapping
w : n— A where n = {i € Z|1 <i<n}. Such a
word is encoded by the sequence w(1)w(2)---w(n).
A word w : n — A is a Gauss word if the inverse
image of each element of A consists of precisely two
elements of 7.

For a set «, an a-alphabet is a set A endowed
with a mapping | |: A 3 A |A| € a. A nanoword
(A,w) over « is a pair (an a-alphabet A, a Gauss
word in the alphabet A). By definition, there is a
unique empty nanoword () of length 0.

An isomorphism of a-alphabets A, A, is a bi-
jection f: A; — A such that |A| = |f(A)| for all
A € A;. Two nanowords (A;,wr) and (Ay, ws) over
« are isomorphic if there is an isomorphism of a-
alphabets f: A; — Ay such that ws = fw;. For an
arbitrary nanoword (A, w) over «, a subnanoword of
(A, w) is obtained by deleting a certain set of letters
from both the a-alphabet A and Gauss word w.

Definition 2. Let oy = {-1,1}. A signed
word of length 2n is a nanoword (A, w) over o where
the length of w is 2n.

We consider a simple presentation for signed
words. For every letter A € A4 of a signed word

(A, w), replace A with A if |A| =

positive

—1 and leave A
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unchanged if |A] = 1. This allows us to encode a
signed word by a sequence of letters A or A for
A € A. The isomorphism of two signed words w and
w' is written as w ~ w’. For example, ABBA ~
BCCB. However, ABBA is not isomorphic to
ABBA.

For an arbitrary signed word w, we define a sub-
word of w as a sub-nanoword of (A, w) over ag. For
an arbitrary signed word w, u < w means that u is a
subword of w. For example, all the subwords of the
signed word ABACBC are (), AA, BB, CC, ABAB,
AACC, BCBC, and ABACBC.

5. Construction of the invariant.
arbitrary signed words u and w, define { ,) by

() (u,w) = D (u,0),

v<w

For two

where (u,v) is 1 if u ~ v and is 0 otherwise. Let k
be a field, W the k-linear space generated by all the
isomorphism classes of the signed words, and W,, the
k-linear space generated by the isomorphism classes
of signed words of length 2n. We denote by U* the
dual space of a given k-linear space U. We extend
(,) linearly to (,) : W x W — k.

We associate with an arbitrary pointed curve
I' a nanoword w(I") over ag following [8]. Let us
label the double points of I' by distinct letters Ay,
Ay, ..., A, where m is the number of double points.
Starting at the base point of I' and following along
I" in the positive direction, we write down the labels
of all double points until we return to the base point.
Since every double point is traversed twice, this
gives a Gauss word, w(I'), on the alphabet A =
{Ay, Ag, ..., Ap}. Let t! (rvesp., t?) be the tangent
vector to I at the double point labeled A; appear-
ing at the first (resp., second) time we pass through
this double point. Set |A4;| = —1 if the pair (¢},7)
is positively oriented and |A4;| =1 otherwise. This
makes A into an «ap-alphabet and makes w(T') into
a nanoword over «g. This nanoword is well defined
up to isomorphism. This nanoword yields a signed
word. For an arbitrary generic curve I' with m dou-

ble points, we denote by wr a signed word: 2m — A
that is determined by selecting an arbitrary base
point as above.

Definition 3. The linear mapping v on W, is
defined by v(AzAy) = rAyA and v(AzAy) = zAyA
where z and y are words and A is a letter. For two
arbitrary signed words w and w’, the cyclic equivalence
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Fig. 2. Signed words and pointed curves.

~ is defined as w ~ w’ if and only if there exists [ € N
such that v!(w) = w’. Let the subspace W” of W, be
the linear space generated by {w € W, |v(w) = w}.
For a signed word v, [v] denotes the sum of all the
signed words which are cyclic equivalent to v. The
formula v — [v] extends to an endomorphism of W,
also denoted by the square brackets.

For example, for v = AAB B, the cyclic equiva-
lence class containing vis { AABB, ABB A, BBAA,
BAAB}, and [v] is AABB + ABBA + BBAA +
BAAB. If v = AABB, [v] = AABB + ABBA be-
cause AABB ~ BBAA.

We denote the linear space generated by all sta-
ble homeomorphism classes of curves on oriented
closed surfaces by C.

Remark 1. We denote the linear space gener-
ated by all stable homeomorphism classes of curves
with n double points on oriented closed surfaces by
C,. There exists a bijective mapping from C,, to W ;
this has been proved by V. Turaev [8]. Specifically,
every signed word determines a regular neighbour-
hood of a curve I' on a surface S, where I' gives the
CW-decomposition of S (Fig. 2) [6]. In the rest of
this paper, we identify C,, with W} and C with W"
by I' — [wr], where W is the linear space generated
by {w € W|v(w) = w}.

For an arbitrary natural number n, we define a
signed curve invariant of order m, SCI, : W' —
W as follows: For a generic curve I' € W", we

n?’

define SCI,(T") : W,, — k by
(6) SCIL(T)(v) = ([v], wr)

where wr is a signed word determined by I'. We can
verify, from the definitions of [] and (,), that
SCI,(T) is defined independently of the choice of
base point of T'.

Main theorem. For any generic curve I' on
an oriented surface, SCIL,(T") is a finite-type invariant
of generic curves of order less than or equal to n.

The proof of the main theorem is given in
Sect. 7.

(veW,),
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Let m, be the number of representative ele-
ments of the cyclic equivalence class that contains
a signed word w. Let w = mi[w} € W". Then,
SCI,(T) = ([],wr). For two arbitrary signed words
v and u, v" denotes a linear mapping such that
v*(u) = (v,u). We extend * linearly to a map * :
W — k by (au+b)" = au* + b* for a, b € k.
SCI, restricted to W, gives an isomorphism be-
tween W” and (WV)", sending wr to [wr|". We
denote this isomorphism by ¢,. Let us consider
some examples of SCI,. Note that SCIL,(I')(v) =
>, lul"(v) where w <wr and w e W,. If T is a
given curve and wr is A BOACB, then SCI;(T') =

[AA]" + [BB) + [CC), SCL(T) = [(ABAB|" +
[ACAC]" + [BCCB]", SCI(T) = [ABCACBY,
SCI,(T) =0 (n>4). SCI,(I'(XX) = [AA]"(XX)
+ [BB]'(XX) + [CC]"(XX) = 3.

Theorem 5.1. For arbitrary k, | such that

1 <1<k < mn, the following holds:
n—1

7
I
Proof. The equality (n —k+1) - (kﬁl) = (7) .

(kfl) implies
(8) (n—k+1)SCIL;1 = SCIk,1|WZ o Lk’,l o SCI,,

)SCI[ = SCIZ'W;: o L;I o SCI,.

for every k such that 2 < k <n. By using (8), we
see that (n—)ISCIL; = (n— k)!SC’IZ|W;+1
SC’IZ+1|W;,+2 o SCIRT—1|W'; o lel o SCI;, =
(’I’L — k‘)'(k — l)'SCI”WZ o L;l o SCIy.

6. Arnold’s invariants and SCI,. In Sect.
6, I' is used to denote an arbitrary generic plane
curve. Let wr be a signed word determined by select-
ing an arbitrary base point, and by using the
definition in Sect. 5. Arnold’s basic invariants
(J*,J7,8t) and SCI, (n€N) are invariants for
plane isotopy classes of curves on a plane. The
definitions of J*, J~ and St are provided in [1, 2].

Let i(T") be the rotation number of a generic
plane curve I'. Then, i(T") is a finite-type invariant
of order 0 because the left-hand sides of (2), (3) and
(4) should be equal to 0. We obtain the following
equations:

(9) JH(T) -

-1
© by ©

—1
O lipg ©

J(T)
J(T) +6St(T) = — 2SCL(T)(AABB
— AABB+ AABB)
+4%(I) — 1.

— SCL(T)(AA),

(10)
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However, J*, J~ and St cannot be represented
by i(T"), SCI; and SCI; in a similar manner.

7. Proof of the main theorem. It is now
shown that for an extended invariant I for singu-
lar curves with SCI,, I(T') = 0 for an arbitrary
singular curve T' with m (> n+ 1) singular points
(P, Ps,...,P,). We define ¢ by the mapping P, —
o; and o = (01,02, ..., 0m), where 0; = £1. Let J =
{1,2,...,m} and signo = [[;c;0i. A generic curve
T', is obtained from I' by resolving at P;, where
i =1,2,,m, in the positive direction if o; = 1 and in
the negative direction if o; = —1. Let wr, be a signed
word derived from I'; by choosing an arbitrary base
point.

By using the definitions of ¢ and T, in (2), (3)
and (4), we obtain

(11) IT)= Y signoSCI,(T,).

JE{—Ll}m

Then, by using (5), (6), (11) and [v]

v ~ u, we obtain
() (v) sign o Z u, wr, )
oe{-1,1}" u(~v)

Z Z sign o(u, wr, ).

u(~v) oe{-1,1}"

=, u, where

(12)

In order to show that > signo (u,wr,) van-
ishes, we consider the following conditions. For an
arbitrary I", we can determine the set of generic
curves {I';},. Let w,, be a signed word correspond-
ing to 'y, with o9 = (1,1,...
determined as follows:

Let A, B, C, A, B and C be the letters of
signed words, and let z, y, z, and ¢ be words. In the
case of a negative resolution of a direct self-tangency
point, it is necessary to consider two cases: if wr, =
rAByABz, then wr, = xyz (Fig. 3), and if wr, vy =
rAByABz, then wr, = wyz. Even in the case of
a negative resolution of an inverse self-tangency
point, there are two cases: if wr, = zAByBAz,
then wr, = zyz (Fig. 4), and if wr, = vAByBAz,
then wr, = xyz. In the case of a negative resolution
of a triple point, there are eight cases: if wr, =
rAByCBzCAt, then wr, = xBAyBCzACt; if wr

,1). By using we,, w, is

= xZByZCZC’Bt, then wr, = :EBAyC’AzBCt
if wr, = rAByCAzBCt, wr, = xBAyAC2CBt
(Fig. 5); if wr, = xAByBC’zACt, then wr, =
xBAyC BzC At; 1f wr, = zAByC BzC At, then
wr, = tBAyBCzA C't if wr, = = 2AByAC:C Bt,
then wr, = xBAyC’AzB Ct if wp = xZBy@ZzB@,
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Fig. 3. An example of wr, obtained by a negative resolution at a
direct self-tangency point P;.
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Fig. 4. An example of wr, obtained by a negative resolution at an
inverse self-tangency point P;.

r Ly
wr,, = rAByC AzBCt wr, = tBAyAC2CBt

Fig. 5. An example of wr, obtained by a negative resolution at a
triple point P;.

then wr, = xBZ_yZ @5@5; if wr, = zA FyEC’ZZCt,
then wr, = B AyCBzCAt.

Let u' be a subword of wr, and let o(u’) be the
subword of wr, corresponding to u'. Note that o(u)
may be () for a negative resolution of a self-tangency
point. The subword v’ of wr, is represented as o(u').
By using (5) and the notion above,

Z sign o(u, wr,)

oe{-1,1}"

= Z sign o Z (u, ")

oce{-11}" v'<wr,

= Z sign o Z (u, o(u'))

oce{-11}" o(u')<wr,

Z sign o Z (u,o(u'))

oce{-11}" < wrg
Z sign o(u, o(u')).
' < wr oe{-1,1}"

Let Jy be { i € J | aletter of () is generated by a
resolution at P, }. The sum over o can be divided into
one part with o; (i € J) and another part with o;
(1 € T\ Ju)- Hence, we have

(13)
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sign o(u, o(u'))

oce{-1,1}"
14
Wy TIe Y I atwoew).
oi==%1 i€Jy oi=%1 ie J\Tuw
i€ Ju ASVAWE

For an arbitrary u, where o(u’) € W,,, there ex-
ists at least one singular point P; that is not related
to (u,o(u')) because v and v’ € W,, and m > n + 1.
In other words, J \ Jy is not empty. Then,

Z H oi(u,o(u’))

oi=+1 €J\Tuw
1€ I\Tw
(15) — o) Y [
o=l i€ N\Jy
1€ I\Jw
=0.
Here, (15) implies that I(T')(v) in (12) vanishes, and
I(T') =0.

8. Summary. In this note, the author defines
a notion of finite-type for invariants of curves on sur-
faces by using Arnold’s idea related to the singularity
theory among various definitions. The author is un-
able to determine the structure of the linear space
V,, generated by finite-type invariants of order less
than or equal to n.

Because of (6) and (8) we have the following re-
lations between the subspaces (W) of V,,.

(]

Cn (W3)*
| SCI,_y 031
(W5 _1)"

|8 ety

| SCI o 45},
(W5)*
l SCIk_l o L;l

(n — k)ISCI

lSCIl OL2_1

L = SCIk'WZ (Wlll)*

This diagram shows how SCI; (1 <k <mn) reduce
information from C,, ~ (W")" to (WY)".
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