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Abstract: We consider the application of the abc-theorem and Davenport’s inequality to

elliptic surfaces over the projective line P1, with special attention to the case of equality in the

abc-theorem. Some existence theorem and the finiteness results will be given for certain type of

elliptic surfaces.
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Introduction. The main theorem of this

paper is the following result for a complex elliptic

surface of a given arithmetic genus over the

projective line P1 which is semistable and which

has the minimal number of singular fibres.

Theorem 0.1. For any positive integer �,

(i) there exists a semistable elliptic surface of

arithmetic genus � with a section over P1 which

has the minimal number of singular fibres N ¼
2�þ 2. (ii) The number of isomorphism classes of

such elliptic surfaces is finite. (iii) In each iso-

morphism class, there exists a surface defined over

some algebraic number field. (iv) Any elliptic

surface in (i) is ‘‘extremal’’ in the sense that the

Mordell-Weil rank r ¼ 0 and the Picard number is

maximal: � ¼ h1;1.

Thus we generalize the well-known results in

the case � ¼ 1; 2 of Beauville [1] (� ¼ 1; N ¼ 4) and

Miranda-Persson [13] (� ¼ 2; N ¼ 6) to arbitrary

arithmetic genus �. The proof is based on the abc-

theorem and Davenport’s inequality, and the idea

to apply them to such questions as above has been

tried ealier in the special case of ‘‘maximal singular

fibres’’ [22,23].

The above theorem (=Theorem 3.1) will be

proved in §3 after we recall the abc-theorem in §1

and the connection to elliptic surfaces in §2. In §4,

we consider a related question to classify elliptic

surfaces with a given number of singular fibres.

1. Review of the abc-theorem and Dav-

enport’s inequality.

1.1. Statements. Let k ¼ C be the field of

complex numbers. For a polynomial f ¼ fðtÞ 2 k½t�,
let N0ðfÞ denote the number of distinct zeroes of

fðtÞ; thus we always have N0ðfÞ � degðfÞ.
Theorem 1.1 (abc). Let a; b; c be three poly-

nomials with complex coefficients such that

aþ bþ c ¼ 0; ða; cÞ ¼ 1; degðabcÞ > 0:ð1:1Þ

Then

maxðdegðaÞ; degðbÞ; degðcÞÞ � N0ðabcÞ � 1:ð1:2Þ

Theorem 1.2 (Davenport). Let f; g be rela-

tively prime polynomials and let

h :¼ f3 � g2:ð1:3Þ

Then

degðfÞ � 2ðN0ðhÞ � 1Þ; degðgÞ � 3ðN0ðhÞ � 1Þ:ð1:4Þ

Remark. (i) Theorem 1.1 is known as the

abc-theorem for k½t� since it is formally analogous to

the arithmetic ABC-conjecture (for the integer ring

Z, instead of the polynomial ring k½t�) which has

been formulated in middle 1980’s (see e.g. [7,11]).

But the geometric version is in fact proven earlier

by Stothers [25] (in a more general situation of

Riemann surfaces); cf. Mason [12], Silverman [24].

For the sake of completeness, we recall in §1.2

the proof based on the Riemann-Hurwitz relation,

which gives crucial information for the case of

equality and which is best suited for our application

to elliptic surfaces.

(ii) The original Davenport’s inequality says

that, for any non-constant complex polynomials

fðtÞ and gðtÞ such that h ¼ f3 � g2 6¼ 0, we have

degðfÞ � 2ðdegðhÞ� 1Þ; degðgÞ � 3ðdegðhÞ� 1Þ;ð1:5Þ
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without assuming ðf; gÞ ¼ 1. Davenport’s elegant

proof in [5] uses only linear algebra (cf. [23]).

1.2. Proofs.

Proof of Theorem 1.1. Given three polyno-

mials a; b; c satisfying (1.1), we may assume (with-

out loss of generality) that

n ¼ degðaÞ ¼ degðbÞ � degðcÞ:ð1:6Þ

The idea of the proof is to view the rational function

� ¼ �a=c as the covering map of Riemann spheres

and use the Riemann-Hurwitz relation.

First decompose the complex polynomials

a; b; c into distinct linear factors:

ð1:7Þ
aðtÞ ¼ a0

Qr1
i¼1ðt� �iÞei ;

Pr1
i¼1 ei ¼ degðaÞ ¼ n

bðtÞ ¼ b0
Qr2

j¼1ðt� �jÞe
0
j ;

Pr2
j¼1 e

0
j ¼ degðbÞ ¼ n

cðtÞ ¼ c0
Qr3

k¼1ðt� �kÞe
00
k ;

Pr3
k¼1 e

00
k ¼ degðcÞ � n:

8>><
>>:

By assumption, we have

N0ðabcÞ ¼ r1 þ r2 þ r3:ð1:8Þ

Then the degree n map w ¼ �ðtÞ ¼ �aðtÞ=cðtÞ
from P1

t to P1
w is ramified as follows: (i) over w ¼ 0,

at the r1 points t ¼ �i with (ramification) index ei;

(ii) over w ¼ 1, at the r2 points t ¼ �j with index e0j;
(iii) over w ¼ 1, at the r3 points t ¼ �k with index

e00k and at t ¼ 1 with index n� degðcÞ in case

degðcÞ < n; and (iv) possibly over some other points

w 6¼ 0; 1;1.

Applying the Riemann-Hurwitz formula to

this situation, we have, in case degðcÞ < n,

2n� 2 ¼
X
i

ðei � 1Þ þ
X
j

ðe0j � 1Þð1:9Þ

þ
X
k

ðe00k � 1Þ þ ðn� degðcÞ � 1Þ þ V 0

where V 0 � 0 is the contribution from ramification

points of (iv) above. Rewriting this relation, we

have

n ¼ ðr1 þ r2 þ r3Þ � 1� V 0ð1:10Þ
¼ N0ðabcÞ � 1� V 0:

In case degðcÞ ¼ n, we have similarly

n ¼ N0ðabcÞ � 2� V 0 < N0ðabcÞ � 1:ð1:11Þ

Thus n � N0ðabcÞ � 1 in either case. This proves

Theorem 1.1. �

Proof of Theorem 1.2. Applying Theorem

1.1 to f3 � g2 � h ¼ 0, we have

degðf3Þ � N0ðfghÞ � 1

� degðfÞ þ degðgÞ þN0ðhÞ � 1:

This implies

3 degðfÞ � degðfÞ þ degðgÞ þN0ðhÞ � 1;

and similarly we have

2 degðgÞ � degðfÞ þ degðgÞ þN0ðhÞ � 1:

These two inequalities imply the claim (1.4). �

1.3. Case of equality. Let us consider the

case of equality in the abc-theorem. Assume that

equality n ¼ N0ðabcÞ � 1 holds in the above proof.

By (1.10) and (1.11), this is the case if and only if

we have degðcÞ < n and V 0 ¼ 0; the latter condition

says that the map � : P1
t ! P1

w is unramified out-

side f0; 1;1g.
As is well known, such a map, called a Belyi

map, has an amazing property that � is a rational

function of t with coefficients in �QQ (up to a change

of the coordinate t) (see [2], [10, Ch.2]). Here �QQ

denotes the field of algebraic numbers. Thus the

above argument implies:

Theorem 1.3. Assume that equality holds in

Theorem 1.1:

maxðdegðaÞ; degðbÞ; degðcÞÞ ¼ N0ðabcÞ � 1:ð1:12Þ

Then, by replacing if necessary a; b; c 2 k½t� by some

common constant multiples la; lb; lc ðl 6¼ 0;2 kÞ
and by making a coordinate change t ! �tþ �

ð� 6¼ 0; � 2 kÞ, the coeffcients of a; b; c are algebraic

numbers, i.e. we have a; b; c 2 �QQ½t�.
The corresponding result for Theorem 1.2 is:

Theorem 1.4. Suppose that we have, for

some integer m,

degðfÞ ¼ 2m; degðgÞ ¼ 3m;N0ðhÞ ¼ mþ 1:ð1:13Þ

Then, by replacing f; g by �2f; �3gð� 6¼ 0;2 kÞ if

neccesary, f; g belong to �QQ½t� up to a coordinate

change of t.

A triple ff; g; hg such that f3 � g2 ¼ h is called

a Davenport-Stothers triple (DS-triple in short) of

order m if it satisfies the condition:

degðfÞ ¼ 2m; degðgÞ ¼ 3m; degðhÞ ¼ mþ 1:ð1:14Þ

In this case, we have ðf; gÞ ¼ 1 and N0ðhÞ ¼ h by

[23, Lemma 3.1]. Hence we have:

Corollary 1.5. Any DS-triple ff; g; hg have

algebraic integers as coefficients, provided that t is

suitably chosen.
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Example 1.6 (cf. [23, §5]). Here is an exam-

ple of DS-triple of order m ¼ 1 with Q-coefficients:

f ¼ t2 � 1; g ¼ t3 � 3=2 � t; h ¼ 3=4 � t2 � 1. For any

m � 4, there is essentially a unique DS-triple of

order m, and f; g; h 2 Q½t� in such cases. For m ¼ 5,
there are four (essentially distinct) DS-triples of

order m, of which two are realized by f; g; h 2 Q½t�
but the other two are realized only in Qð

ffiffiffiffiffiffiffi
�3

p
Þ½t�.

Example 1.7. Some examples of (1.13),

with N0ðhÞ 6¼ h, are classically known since Klein.

Start from the Legendre cubic xðx� 1Þðx� tÞ
and transform it into the Weierstrass cubic x3 �
3fðtÞx� 2gðtÞ. For this ff; gg, h ¼ f3 � g2 is a

constant multiple of the discriminant ðtðt� 1ÞÞ2.
This gives an example of (1.13) for m ¼ 1. This

‘‘level 2’’ example can be extended to the case

of elliptic modular curves (or surfaces [18]) of

level n ¼ 3; 4; 5, which satisfy (1.13) with h ¼ hn
0

for some h0 2 k½t�.
2. Elliptic surfaces over P1.

2.1. Elliptic surfaces Sf;g and Sh. Given a

triple ff; g; hg such that f3 � g2 ¼ h 6¼ 0, let Ef;g

and Eh be the elliptic curves over kðtÞ, defined by

Ef;g : y
2 ¼ x3 � 3fðtÞx� 2gðtÞð2:1Þ

Eh : Y 2 ¼ X3 � hðtÞ:ð2:2Þ
Then P ¼ ðf; gÞ is an integral point of Eh (in

the sense that both coordinates belong to k½t�),
while the discriminant of Ef;g is equal to h up to a

constant. We find it useful to consider the pair Ef;g

and Eh together (see [23]), which may be called the

Shafarevich partner of each other, since this inter-

play of Ef;g and Eh reflects the famous Shafarevich

theorem [17] for the finiteness of elliptic curves

over Q with good reduction outside a given finite

set of primes.

We denote by Sf;g the elliptic surface over P1

defined by (2.1), i.e. the Kodaira-Néron model of

Ef;g=kðtÞ. Similarly, we denote by Sh the elliptic

surface defined by (2.2).

Now let S be any elliptic surface over P1 with a

section. Then S is isomorphic to Sf;g for some f; g 2
k½t� which can be so chosen that if f is divisible by l4

and g is divisible by l6 for some l 2 k½t�, then l must

be a constant in k. In the following, we exclude the

case where both f; g are in k.

The smallest integer n such that

degðfÞ � 4n; degðgÞ � 6nð2:3Þ

is called the arithmetic genus of S, and it is denoted

by � ¼ �ðSÞ. This is the main numerical invariant

of an elliptic surface over P1 with a section. For

instance, we know from surface theory [9] the

following facts:

�ðSÞ ¼ 1 , S is a rational elliptic surfaceð2:4Þ

�ðSÞ ¼ 2 , S is a K3 elliptic surface.ð2:5Þ

The topological Euler number eðSÞ of S is equal to:

eðSÞ ¼ 12�ðSÞ:ð2:6Þ

2.2. The number of singular fibres. Let S ¼
Sf;g and let � : S ! P1 be the given elliptic fibra-

tion. We freely use the known facts on singular

fibres which can be found in [9], [14] or [26]. Denote

by � � P1 the set of points supporting the singular

fibres of �, and let N ¼ #� be the number of

singular fibres of S. In the sequel, we always assume

that S has non-constant J-invariant and there is

a singular fibre at t ¼ 1. Thus we have

1 2 � and N � 1 ¼ N0ðhÞ:ð2:7Þ

To simplify the statements below, the condition

(ss-1) (‘‘semistable minus one’’)

will mean that the elliptic fibration � : S ! P1

is semistable outside t ¼ 1, i.e. all singular

fibres at t 6¼ 1 are of Kodaira type In for some

n ¼ 1; 2; . . ..
Theorem 2.1. Let S ¼ Sf;g, and assume

(2.7) and the condition (ss-1). Then we have

degðfÞ � 2ðN � 2Þ; degðgÞ � 3ðN � 2Þ:ð2:8Þ

Proof. Suppose that ðf; gÞ ¼ 1. Then the as-

sertion follows from Theorem 1.2 and (2.7). Hence

it is enough to prove the following lemma:

Lemma 2.2. The condition (ss-1) is equiv-

alent to ðf; gÞ ¼ 1.
Proof. If we let d ¼ GCDðf; gÞ, then d divides

h, i.e. the discriminant of Ef;g. Assume that d 6¼ 1,

and suppose that t� � is a factor of d. Then we have

fð�Þ ¼ gð�Þ ¼ 0, and the equation (2.1) becomes

y2 ¼ x3 at t ¼ �. Hence the singular fibre at t ¼ �

cannot be semistable. The converse is shown by

reversing the argument. �

This proves Theorem 2.1. �

Corollary 2.3. Under the same assumption

as in Theorem 2.1, we have

N �
2�þ 2 if N is even

2�þ 1 if N is odd.

�
ð2:9Þ
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Proof. This follows immediately from (2.8)

and the definition of � in (2.3). �

Theorem 2.4. Let N be the number of

singular fibres of an elliptic surface � : S ! P1 with

a section. Assume the condition (ss-1). Then (i)

we have N � 2�þ 1, and if N ¼ 2�þ 1, then the

singular fibre at 1 is not semistable. (ii) If � is

a semistable elliptic fibration, then we have N �
2�þ 2.

Proof. (i) It follows from the above Corollary

that N � 2�þ 1. Moreover, if N ¼ 2�þ 1, then

degðfÞ � 4�� 2; degðgÞ � 6�� 3:

In terms of the coodinates at t ¼ 1, the Weierstrass

equation (2.1) becomes a cuspidal curve: y2 ¼ x3 at

t ¼ 1. Hence the fibre at 1 is additive, i.e. it is not

semistable. (ii) This is clear from (i). �

Thus we recover Beauville’s results [1]:

Corollary 2.5. For any semistable elliptic

surface S over P1 with a section, the number N of

singular fibres is at least 4. Further, if N ¼ 4, then S

is a rational elliptic surface with 4 fibres of type

Ia; Ib; Ic; Id where ½a; b; c; d� is one of the following

six cases: ½1; 1; 1; 9�, ½1; 1; 2; 8�, ½1; 1; 5; 5�, ½1; 2; 3; 6�,
½2; 2; 4; 4�, ½3; 3; 3; 3�.

Proof. The first part is an immediate conse-

quence of Theorem 2.4, since � � 1. If N ¼ 4, then

we have � ¼ 1, hence by (2.4), S is a rational elliptic

surface. Suppose the 4 fibres are of type Ia; Ib; Ic; Id.

Then its topological Euler number (2.6) is:

aþ bþ cþ d ¼ 12:ð2:10Þ

On the other hand, the trivial lattice T (cf. [15,19])

is isomorphic to the direct sum of root lattices

([4, Ch.4]) Aa�1; . . . ; Ad�1. Its rank and determinant

are

rkT ¼ ða� 1Þ þ � � � þ ðd� 1Þ ¼ 8; detT ¼ abcd:

Hence T is a sublattice of E8 of finite index, say �.

Since E8 is unimodular, we have detT ¼ �2. Thus

abcd ¼ �2:ð2:11Þ

The integer solutions of (2.10) and (2.11) are easily

determined to be the six given above. �

The above case of N ¼ 4 is the first example of

more general results related to the case of equality

in Theorem 1.1 or 1.2 (see §1.3). Let us consider

this question in the next section.

Remark. It should be remarked, though

we do not need this fact in this paper, that the

inequality (2.9) in Corollary 2.3 is a special case

of the following more general and stronger result

(see [18, Cor. 2.7], [20, §1] and [6, §2.2]).

Theorem 2.6. Let � : S ! C be an elliptic

surface over a curve of any genus g with a section

and with nonconstant J-invariant. Let � (resp. �) be

the number of multiplicative (resp. additive) singu-

lar fibres of �, and set ~NN ¼ �þ 2�. Then we have

~NN ¼ 2�þ 2� 2gþ rþ 	ð2:12Þ

where � is the arithmetic genus of S, r is the

Mordell-Weil rank and 	 ¼ h1;1 � � is the difference

of the Hodge number h1;1 and the Picard number � of

the surface. In particular, since both r and 	 are

non-negative integers, it implies:

�þ 2� � rþ 2�þ 2� 2g � 2�þ 2� 2g:ð2:13Þ

The last inequality reduces to (2.9) if we let

g ¼ 0 and rewrite the condition (ss-1) as N ¼ �þ �

with � � 1.

3. Existence and finiteness theorems.

Theorem 3.1. For any positive integer �,

(i) there exist semistable elliptic surfaces S with

a section over P1 with �ðSÞ ¼ � which have the

minimal number of singular fibres N ¼ 2�þ 2. (ii)

The number of isomorphism classes of such elliptic

surfaces S is finite. (iii) In each isomorphism class,

there exists some S defined over �QQ. (iv) Any elliptic

surface in (i) is ‘‘extremal’’ in the sense that the

Mordell-Weil rank r ¼ 0 and the Picard number is

maximal: � ¼ h1;1.

A variant is:

Theorem 3.2. For any positive integer �,

(i) there exist elliptic surfaces S with �ðSÞ ¼ �

satisfying the condition (ss-1) which have the

minimal number of singular fibres N ¼ 2�þ 1.
(ii), (iii), (iv): the same assertion as in Theorem 3.1.

Proof. We prove both theorems together. Let

S ¼ Sf;g. Then any S attaining the minimal number

N ¼ 2�þ 2 (or N ¼ 2�þ 1) corresponds to the

triple ff; g; hg satisfying (1.13) in Theorem 1.4.

As for the existence (i), we have a more precise

statement that there exists such an S among Sf;g

corresponding to the Davenport-Stother triples of

order m ff; g; hg with m ¼ 2� (or m ¼ 2�� 1) (see
§1.3 and [10,23,25]). (ii) This is a consequence of the

finiteness of Belyi maps of bounded degree. Namely,

for S ¼ Sf;g, the absolute invariant J is equal to

� ¼ �a=c in the proof of abc-theorem (§1.2), i.e.

J ¼ f3=h up to constants, and it is a Belyi map of

54 T. SHIODA [Vol. 84(A),



degree 6m ¼ 12� (or 12�� 6). The number of such

maps is obviouly finite, since the mode of ramifica-

tion at the three points f0; 1;1g has only a finite

number of possibility once the degree is fixed.

(iii) This is immediate from Theorem 1.4.

(iv) By the standard Picard number formula

and Lefschetz-Hodge theorem, we have

� ¼ rþ 2þ rk T � h1;1:ð3:1Þ

The trivial lattice T (in case Theorem 3.1) is

the direct sum of the root lattices Ani�1 if the

singular fibres of S are of type Ini
ð1 � i � NÞ. Hence

we have

� ¼ rþ 2þ
X
i

ni �N

¼ rþ 2þ 12�� ð2�þ 2Þ ¼ rþ 10�;

since
P

i ni is equal to the Euler number ([9]) which

is 12� by (2.6). On the other hand, the Hodge

number h1;1 is equal to 10�, as is easily seen.

Therefore we conclude that r ¼ 0 and � ¼ h1;1. (A

slight modification should be made in the case of

Theorem 3.2, but it is easy.) [N.B. The assertion

(iv) is evident if we apply Theorem 2.6, because the

assumption implies r ¼ 0; 	 ¼ 0 in (2.14).] �

Example 3.3. The case � ¼ 1 in Theorem

3.1 is already mentioned in Corollary 2.5. In case

� ¼ 2, S is a K3 surface by (2.5). The semistable

elliptic K3 surfaces with N ¼ 6 singular fibres are

classified by Miranda-Persson [13]. The first mem-

ber in their list is the K3 surface with ‘‘maximal’’

singular fibre I19 (Dynkin type A18), whose defining

equation is given in [22]. The defining equations (or

the J-invariant as the Belyi map) for all surfaces

in the list of [13] are recently given by [3].

For � � 3, Theorem 3.1 and 3.2 are new, as far

as we know.

Remark. The number of the isomorphism

classes in (iii) of Theorem 3.1 or 3.2 can be

enumerated, in principle, by some combinatorial

means. In the case of DS-triples of order m, this

number is first enumerated by [25] as a function of

m by using group theory. In [10], this number is

nicely represented as the number of certain graphs

on a sphere, drawn in Grothendieck’s style of

dessins d’enfants. For instance, for m ¼ 5ð� ¼ 3Þ,
the four DS-triples of order m ¼ 5 (cf. Example 1.6

in §1.3) are represented by the four graphs

in Fig. 2.28 of [10, p.128]. This approach can be

generalized to more general situation, and the

question is reduced to certain combinatorial

problem.

4. Toward classification of elliptic sur-

faces with N singular fibres over P1.

Problem 4.1. Given a positive integer N,

classify all elliptic surfaces with a section over P1

with N singular fibres.

The answer is known only for N � 4.
For N ¼ 1, there is none. For N ¼ 2, there are

four types of elliptic surfaces with two singular

fibres: fII; II�g, fIII; III�g, fIV ; IV �g or fI�0 ; I�0g
in Kodaira’s notation [9]. The J-invariant is con-

stant for all cases.

For the first nontrivial case N ¼ 3, the

classification has been carried out by Schmickler-

Hirzebruch [16], and for the case N ¼ 4, by

Herfurtner [8].

Around the beginning of the millenium, we

reconsidered this problem from the viewpoint

of ‘‘integral points and Mordell-Weil lattices’’ (cf.

[19,21]). Our approach was reported at the confer-

ence at Tokyo Univ. (Jan. 2001), with a new

purely algebraic proof for N ¼ 3 (unpublished).

Let us indicate below our method which should

work for any N in principle.

(I) For a given N, the most essential case is

when J is nonconstant and all singular fibres are

reduced except possibly one. This means that,

except at one place t ¼ 1, all singular fibres are

either semistable (type In for some n) or of type

II; III; IV . Let us say that the condition

(red-1) (‘‘reduced minus one’’)

holds if this is the case. In particular, the previous

condition (ss-1) implies (red-1). The following

result generalizes Theorem 2.1:

Theorem 4.2. Assume S ¼ Sf;g has N sin-

gular fibres. Assume the condition (red-1). Then we

have

degðfÞ � 2ðN � 2Þ; degðgÞ � 3ðN � 2Þ:ð4:1Þ

Proof. (Outline) Let d ¼ GCDðf3; g2Þ and set

F ¼ f3=d;G ¼ g2=d;H ¼ h=d:ð4:2Þ

Then apply the abc-theorem to F �G ¼ H;

ðF;GÞ ¼ 1, and a little computation gives the

result. �

It follows that we obtain the same conclusion as

Corollary 2.3 under the weaker assumption (red-1).

This bounds the arithmetic genus �ðSÞ of S

in terms of N , when S has N singular fibres and
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satisfies the condition (red-1).

(II) Take any polynomial h 2 k½t� such that

N0ðhÞ ¼ N � 1. Then the question is to determine

f; g satifying f3 � g2 ¼ h and (4.1). This is (almost)

equivalent to the question: to find all integral points

P ¼ ðX;Y Þ of the elliptic curve Eh defined by (2.2)

(integral in the sense X; Y 2 k½t�) such that the

section ðP Þ is disjoint from the zero-section ðOÞ in

Eh. This is the hardest and at the same time most

interesting part of the problem. Very precise result

can be expected (cf. [19,21,23, §8]).

(III) If any S0 with N 0 singular fibres (J 6¼
Const) is given and if it does not satisfy the

condition (red-1), then one can pass from S0 to

another surface S, by an elementary ‘‘twisting’’

operation (cf. [8]), such that S has N � N 0 singular
fibres and satisfies (red-1). This is to replace a

pair of non-deduced fibres to a pair of reduced

fibres by the rule: I�n $ Inðn ¼ 0; 1; . . .Þ; II� $ IV ;

III� $ III; IV � $ II, and to continue this until

at most one non-reduced fibre is left. The choice

of S is not unique from S0, but it does not

matter.

Exercise. For N ¼ 3 or N ¼ 4, try the above

method and compare the results with [16] or [8].

Then try the open case N ¼ 5 or 6.
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185–193, Cambridge Univ. Press, Cambridge,
2002.

[ 22 ] T. Shioda, The elliptic K3 surfaces with with a
maximal singular fibre, C. R. Math. Acad. Sci.
Paris 337 (2003), no. 7, 461–466.

[ 23 ] T. Shioda, Elliptic surfaces and Davenport-
Stothers triples, Comment. Math. Univ. St.
Pauli 54 (2005), no. 1, 49–68.

[ 24 ] J. H. Silverman, The S-unit equation over func-
tion fields, Math. Proc. Cambridge Philos. Soc.
95 (1984), no. 1, 3–4.

[ 25 ] W. W. Stothers, Polynomial identities and
Hauptmoduln, Quart. J. Math. Oxford Ser.
(2) 32 (1981), no. 127, 349–370.

[ 26 ] J. Tate, Algorithm for determining the type of a
singular fiber in an elliptic pencil, in Modular
functions of one variable, IV (Proc. Internat.
Summer School, Univ. Antwerp, Antwerp,
1972), 33–52. Lecture Notes in Math., 476,
Springer, Berlin, 1975.

56 T. SHIODA [Vol. 84(A),


	c_Beauville
	c_Belyi
	c_BM
	c_CS
	c_Dav
	c_Elkies
	c_Goldfeld
	c_Herfurtner
	c_Kodaira
	c_LZ
	c_Lang
	c_Mason
	c_MP
	c_Neron
	c_OS
	c_Sch_Hirz
	c_Shaf
	c_EMS
	c_MWL
	c_JA
	c_IPMWL
	c_K3MaxSF
	c_ESDST
	c_Silverman
	c_Stothers
	c_Tate

