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Abstract: We give the first complete classification of free and non-free multiplicities on an

arrangement, called the deleted A3 arrangement, which admits both of them.
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0. Introduction. Let V be an ‘-dimensional

vector space over a field K, fx1; . . . ; x‘g be a

basis for the dual vector space V � and S :¼
SymðV �Þ ’ K½x1; . . . ; x‘�. DerKðSÞ denotes the S-

module of K-linear derivations of S, i.e., DerKðSÞ ¼L‘
i¼1 S � @xi . We say a non-zero element � ¼P‘
i¼1 fi@xi 2 DerKðSÞ is homogeneous of degree p

if fi is zero or homogeneous of degree p for each i.

A hyperplane arrangement A (or simply an

arrangement) is a finite collection of affine hyper-

planes in V . If each hyperplane in A contains

the origin, we say that A is central. In this article

we assume that all arrangements are central. An

‘-arrangement is the arrangement in the ‘-dimen-

sional vector space. A multiplicity m on an arrange-

ment A is a map m : A ! Z>0 and a pair ðA;mÞ
is called a multiarrangement. jmj denotes the

sum of the multiplicity
P

H2A mðHÞ. When m �
1; ðA;mÞ is the same as a hyperplane arrangement

A and sometimes called a simple arrangement.

For each hyperplane H 2 A fix a linear form

�H 2 V � such that kerð�HÞ ¼ H. Put QðA;mÞ :¼Q
H2A �

mðHÞ
H . The main object in this article is a

logarithmic derivation module DðA;mÞ of ðA;mÞ
defined by

DðA;mÞ :¼ f� 2 DerKðSÞj�ð�HÞ 2 S � �mðHÞ
H

for all H 2 Ag:
A multiarrangement ðA;mÞ is called free if DðA;mÞ
is a free S-module of rank ‘. If ðA;mÞ is free, then

there exists a homogeneous free basis f�1; . . . ; �‘g
for DðA;mÞ. Then we define the exponents of

a free multiarrangement ðA;mÞ by expðA;mÞ :¼
ðdegð�1Þ; . . . ; degð�‘ÞÞ. The exponents are independ-

ent of a choice of a basis.

Originally, a multiarrangement was defined by

Ziegler in [8] and used effectively in the studies

of hyperplane arrangements, e.g., in [5] and [6].

However, very few have been known about the

freeness and non-freeness of multiarrangements.

Recently, some theorems to consider the freeness

of multiarrangements are developed in [1] and [2].

In these papers, a concept of free multiplicities is

introduced. For a simple arrangement A, we say a

multiplicity m on A is free if the multiarrangement

ðA;mÞ is free. For example, every multiplicity is

free on Boolean arrangements, and no multiplicity

is free on a generic arrangement (see [2] and [7]).

However, on an arrangement which admits both

free and non-free multiplicity, only a partial clas-

sification of multiplicities is known. For example,

Coxeter arrangements of type A3 admits both free

and non-free multiplicity, but such a classification

is not known. Hence to consider the behavior,

geometry and combinatorics of free and non-free

multiplicities in Z
jAj
>0 is a new problem in the study

of arrangements. In this article, we give the first

complete classification of the freeness of all multi-

plicities on an arrangement which admits both free

and non-free multiplicity. Let us fix ‘ ¼ 3 and a

basis fx; y; zg for V �.
Definition 0.1. An arrangement A is called

the deleted A3 arrangement if it is defined by

QðAÞ ¼ xyðx� yÞðx� zÞðy� zÞ:

This is a free arrangement with expðAÞ ¼
ð1; 2; 2Þ, but Ziegler proved in [8] that the constant

multiplicity m � 2 is not a free multiplicity. So the

deleted A3 arrangement admits both free and non-

free multiplicity. Since this arrangement is close to

the Coxeter arrangement of type A3 and consists

of only five planes, it is natural to consider the

classification of multiplicities from the viewpoint

of freeness. Our classification is as follows:
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Theorem 0.2. Let A be the deleted A3

arrangement and m ¼ ½a; b; c; d; e� be a multiplicity

on A defined by

QðA;mÞ ¼ ðy� zÞaybðx� yÞcxdðx� zÞe:

Then m is a free multiplicity if and only if c �
aþ e� 1 or c � bþ d� 1.

Remark 0.3. Theorem 0.2 implies, if we

identify all the multiplicities on the deleted A3

arrangement with Z5
>0 ¼ fða; b; c; d; eÞg (i.e., the

moduli space of multiplicities on A), then the set

of free multiplicities consists of three chambers of

the complement of the arrangement in Z5
>0 defined

by

c� a� eþ
3

2

� �
c� b� dþ

3

2

� �
¼ 0:

Also note that a choice of such an arrangement is

not unique.

Theorem 0.2 and other classifications of free

multiplicities on Boolean arrangements or generic

arrangements in [1], [2] and [7] pose the following

question.

Question. For any arrangement A, does

the set of free multiplicities on A consist of

chambers of some hyperplane arrangement in Z
jAj
>0?

The organization of this article is as follows.

In Section 1 we introduce some results and notation

which will be used in this article. In Section 2 we

prove Theorem 0.2.

1. Preliminaries. In this section we fix

the notation and introduce some results. To prove

Theorem 0.2, we often use the following three

results:

Theorem 1.1 [4]. Let A ¼ fH1; H2; H3g be a

2-arrangement of three lines and k be a multiplicity

on A with kðHiÞ ¼ ki ði ¼ 1; 2; 3Þ. Assume that

k3 � maxfk1; k2g.
(a) If k3 � k1 þ k2 þ 1, then it holds that

jd1 � d2j ¼
0 if jkj is even,

1 if jkj is odd,

�

where ðd1; d2Þ ¼ expðA; kÞ.
(b) If k3 > k1 þ k2 þ 1, then expðA; kÞ ¼ ðk1 þ k2;

k3Þ.
Theorem 1.2 [1; Corollary 4.6]. If a multi-

arrangement ðA;mÞ is free, then GMP ðkÞ ¼
LMP ðkÞ ð1 � k � ‘Þ, where GMP ðkÞ is the k-th

global mixed product of ðA;mÞ and LMP ðkÞ is the

k-th local mixed product of ðA;mÞ.

Theorem 1.3 [2; Theorem 5.10]. Let ðA;mÞ
be a multiarrangement such that A is supersolvable

with a filtration A ¼ Ar � Ar�1 � � � � � A2 � A1

and r � 2. Let mi denote the multiplicity mjAi
and

expðA2;m2Þ ¼ ðd1; d2; 0; . . . ; 0Þ. Assume that for

each H 0 2 Ad nAd�1, H
00 2 Ad�1 ðd ¼ 3; . . . ; rÞ and

X :¼ H 0 \H 00, it holds that

AX ¼ fH 0; H 00g

or that

mðH 00Þ �
X

X	H2ðAdnAd�1Þ
mðHÞ � 1:

Then ðA;mÞ is free with expðA;mÞ ¼ ðd1; d2; jm3j �
jm2j; . . . ; jmrj � jmr�1j; 0; . . . ; 0Þ:

For the details and notation of these theorems,

see [1,2,4]. Note that the deleted A3 arrangement

is supersolvable. Theorem 1.2 is used to show

the non-freeness of a multiarrangement. To apply

it, we need some elementary results on number

theory. From now on, let us assume ‘ ¼ 3 and fix a

coordinate system fx; y; zg for V �. For the rest of

this article we only consider the 2nd mixed prod-

ucts. Hence LMP ðA;mÞ denotes the 2nd local

mixed product of ðA;mÞ, and GMP ðA;mÞ the 2nd

global mixed product of ðA;mÞ if it is free. In other

words,

LMP ðA;mÞ ¼
X

X2LðAÞ2

dX1 d
X
2 ;

where LðAÞ2 consists of elements in the intersection

lattice LðAÞ of A (e.g., see [3]) such that

codimV ðXÞ ¼ 2 and expðAX;mjAX
Þ ¼ ðdX1 ; dX2 ; 0Þ for

X 2 LðAÞ2. Moreover, if ðA;mÞ is free with

expðA;mÞ ¼ ðd1; d2; d3Þ, then

GMP ðA;mÞ ¼ d1d2 þ d2d3 þ d3d1:

Sometimes for the triple of integers ðd1; d2; d3Þ,
GMP ðd1; d2; d3Þ denotes d1d2 þ d2d3 þ d3d1. Let us

agree that ðd1; d2; d3Þ� denotes the integers d1; d2; d3
with d1 � d2 � d3.

Lemma 1.4. Let us put m0 :¼ maxfmðHÞj
H 2 Ag for a free multiarrangement ðA;mÞ with

expðA;mÞ ¼ ðd1; d2; d3Þ�. Then d3 � m0.

Proof. We may assume that m0 ¼ mðfx ¼ 0gÞ.
If d3 < m0, then all elements in DðA;mÞ can be

expressed as fy@y þ fz@z for fy; fz 2 S, which contra-

dicts to the freeness of ðA;mÞ. �

For a rational number � 2 Q, let �d e denote

the smallest integer which is larger than or equal to
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�, and �b c the largest integer which is smaller than

or equal to �. Then the proofs of the following two

results are easy, so left to the reader.

Lemma 1.5. Let ðA;mÞ be a free multiar-

rangement with expðA;mÞ ¼ ðd1; d2; d3Þ�, B 	 A be

a subarrangement of A and m0 be a multiplicity on B
such that m0ðHÞ � mðHÞ for all H 2 B. Assume that

ðB;m0Þ is a free submultiarrangement of ðA;mÞ with
expðB;m0Þ ¼ ðe1; e2; e3Þ�. Put n :¼ jmj � jm0j and

assume that

e3 �
jmj
3

� �
; e2 �

jmj � e3

2

� �
:

Then GMP ðd1; d2; d3Þ � GMP ðe1 þ n; e2; e3Þ.
Lemma 1.6. Let ðA;mÞ be a free multi-

arrangement with expðA;mÞ ¼ ðd1; d2; d3Þ�. If

maxfmðHÞjH 2 Ag ¼ a � jmj
3

� �
, then

GMP ðd1; d2; d3Þ � GMP a;
jmj � a

2

� �
;
jmj � a

2

� �� �
:

2. Proof of Theorem 0.2. In this section

we prove Theorem 0.2. From now on, let A be the

deleted A3 arrangement and m ¼ ½a; b; c; d; e� a

multiplicity on A as in the statement of Theorem

0.2. For the proof, we introduce the following

definition.

Definition 2.1.

(1) Let exp½a; c; e� ðresp : exp½b; c; d�Þ denote the

exponents of a 2-multiarrangement defined

by ðy� zÞaðx� yÞcðx� zÞe ¼ 0 ðresp : ybðx�
yÞcxd ¼ 0Þ. Note that these two are the sub-

multiarrangements of ðA;mÞ. Also note that

these are the same multiarrangement as in

Theorem 1.1.

(2) If we put exp½a; c; e� ¼ ðd1; d2Þ and exp½b; c; d� ¼
ðe1; e2Þ, then define ½a; c; e� :¼ d1 
 d2 and

½b; c; d� :¼ e1 
 e2. We say ½a; c; e� (resp :

½b; c; d�) is balanced if the condition (a) in

Theorem 1.1 is satisfied by the multiar-

rangement ðy� zÞaðx� yÞcðx� zÞe ¼ 0 (resp :

ybðx� yÞcxd ¼ 0).
Now let us prove Theorem 0.2. First we show

the condition in Theorem 0.2 is a sufficient con-

dition.

Proposition 2.2. If c � aþ e� 1 or c � bþ
d� 1, then ðA;mÞ is free.

Proof. Assume c � aþ e� 1. Consider a

supersolvable filtration A3 � A2 � A1 of A defined

by

A1 :¼ fx ¼ 0g;
A2 :¼ fxyðx� yÞ ¼ 0g;
A3 :¼ fxyðx� yÞðx� zÞðy� zÞ ¼ 0g:

To complete the proof, apply Theorem 1.3. The

same argument is valid when c � bþ d� 1. In

particular, expðA;mÞ can be seen by Theorem 1.1

and Theorem 1.3. �

Hence, for the rest of this section, we assume

the following condition:

c � aþ e� 2 and c � bþ d� 2:ð2:1Þ

Note that, in particular, c <
jmj
3

� �
. We show that

ðA;mÞ is not free under the condition (2.1) by using

Theorem 1.2 and the related non-freeness criterion

in [1]. After an appropriate change of coordinates,

we may assume that

a � e; b � d; and a � b:

Let us define a submultiarrangement ðB;m0Þ of

ðA;mÞ by

QðB;m0Þ :¼ ðy� zÞaybðx� yÞcðx� zÞe:

Then B has a following supersolvable filtration:

B1 :¼ fy� z ¼ 0g;
B2 :¼ fðy� zÞðx� zÞðx� yÞ ¼ 0g;
B3 :¼ B ¼ fðy� zÞðx� zÞðx� yÞy ¼ 0g:

Hence Theorem 1.3 implies that ðB;m0Þ is free

with expðB;m0Þ ¼ ðexp½a; c; e�; dÞ.
Lemma 2.3. Assume that a � jmj

3

� �
and

b � jmj
3

� �
. Then ðA;mÞ is not free.

Proof. Let us assume that ðA;mÞ is free with

expðA;mÞ ¼ ðd1; d2; d3Þ. Since cþ dþ e � jmj
3

� �
,

LMP ðA;mÞ ¼ ðaþ bÞðcþ dþ eÞ þ abþ de: Also,

Theorem 1.1 and the assumption imply that

expðB;m0Þ ¼ ða; cþ e; bÞ. By the assumption,

ðB;m0Þ satisfies the condition of Lemma 1.5. There-

fore GMP ðd1; d2; d3Þ � GMP ðcþ dþ e; b; aÞ. Hence

LMP ðA;mÞ �GMP ðd1; d2; d3Þ � de > 0, which

contradicts to Theorem 1.2. �

Lemma 2.4. Assume that a � jmj
3

� �
and

b <
jmj
3

� �
. Then ðA;mÞ is not free.

Proof. Assume that ðA;mÞ is free with

expðA;mÞ ¼ ðd1; d2; d3Þ. Put LMP :¼ LMP ðA;mÞ,
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GMP :¼ GMP ðA;mÞ and LG :¼ LMP �GMP .

Note that maxfa; b; c; d; eg ¼ a by the assumption

and (2.1).

Case 1. When bþ d � jmj
3

� �
and ½a; c; e� is

balanced. In this case, expðB;m0Þ ¼ ðexp½a; c; e�; bÞ.
Hence the assumption and Lemma 1.5 imply

GMP ðd1; d2; d3Þ � GMP ðbþ d; exp½a; c; e�Þ. So

LG � ðaþ eÞðbþ dÞ þ ½a; c; e� þ ½b; c; d�ð2:2Þ
� fðaþ cþ eÞðbþ dÞ þ ½a; c; e�g

¼ ½b; c; d� � cðbþ dÞ:

We show that (2.2) is positive, which contradicts to

Theorem 1.2. If ½b; c; d� is balanced, then (2.2) is

positive because of (2.1). If ½b; c; d� is not balanced,

then the assumption and Theorem 1.1 imply that

½b; c; d� ¼ bðcþ dÞ. Since c < cþ d � b < bþ d, we

can see that (2.2) is positive.

Case 2. When bþ d � jmj
3

� �
, ½a; c; e� ¼

aðcþ eÞ and cþ e � bþ d. In this case expðB;m0Þ ¼
a; cþ e; bÞ. So Lemma 1.5 implies that GMP ðd1;
d2; d3Þ � GMP ðbþ d; cþ e; aÞ. Hence

LG � aðbþ cþ dþ eÞ þ ½b; c; d� þ eðbþ dÞð2:3Þ
� faðbþ cþ dþ eÞ þ ðcþ eÞðbþ dÞg

¼ ½b; c; d� � cðbþ dÞ:
By the same argument as above, we can see that

(2.3) is positive, which is a contradiction.

Hence it suffices to show the non-freeness

under the following two conditions:

(1) bþ d � jmj
3

� �
, ½a; c; e� ¼ aðcþ eÞ and bþ d >

cþ e.

(2) bþ d >
jmj
3

� �
.

Note that the condition bþ d >
jmj
3

� �
implies

½a; c; e� ¼ aðcþ eÞ and bþ d > cþ e.

Case 3. When ½a; c; e� ¼ aðcþ eÞ, bþ d >

cþ e and ½b; c; d� is balanced. Lemma 1.6 and

maxfa; b; c; d; eg ¼ a imply GMP ðd1; d2; d3Þ �

GMP a;
jmj � a

2

� �
;

jmj � a

2

� �� �
. Hence

LG � aðbþ cþ dþ eÞ þ ½b; c; d� þ eðbþ dÞ

� aðbþ cþ dþ eÞ þ
jmj � a

2

� � jmj � a

2

� �� �

� eðbþ dÞ þ
ðbþ cþ dÞ2

4
�

ðbþ cþ dþ eÞ2

4
�

1

4

¼ eðbþ dÞ �
eðbþ cþ dÞ

2
�

e2

4
�

1

4

¼
2eðbþ d� c� eÞ þ e2 � 1

4
> 0;

which is a contradiction.

Case 4. When ½a; c; e� ¼ aðcþ eÞ, bþ d >

cþ e; b � cþ dþ 2 and b <
jmj � a

2
. Note that

bþ d � jmj � a

2

� �
because bþ d > cþ e. Hence

b � cþ dþ 2 implies

LMP ¼ aðbþ cþ dþ eÞ þ eðbþ dÞ þ bðcþ dÞ
� aðbþ cþ dþ eÞ þ eðbþ dÞ

þ jmj � a

2

� �
bþ cþ d� jmj � a

2

� �� �
:

Since GMP � GMP a;
jmj � a

2

� �
;

jmj � a

2

� �� �
, we

have

LG �
jmj � a

2

� �
bþ cþ d�

jmj � a

2

� �
�

jmj � a

2

� �� �

þ eðbþ dÞ

¼
jmj � a

2

� �
ðbþ cþ dþ e� ðjmj � aÞÞ

þ e bþ d� jmj � a

2

� �� �

¼ e bþ d� jmj � a

2

� �� �
:

Since bþ d �
jmj � a

2

� �
, the last equation above is

positive unless bþ d ¼
jmj � a

2

� �
and cþ e ¼

jmj � a

2

� �
. In this case, the same argument as

Case 2 implies LMP > GMP .

Case 5. When ½a; c; e� ¼ aðcþ eÞ, bþ d >

cþ e; b � cþ dþ 2 and b � jmj � a

2
. Lemma 1.5

implies GMP � GMP ðcþ dþ e; b; aÞ. Hence

LG � de > 0;

and the proof is completed. �
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By Lemma 2.3 and 2.4, we may assume the

following condition:

a; b; c; d; e <
jmj
3

� �
:ð2:4Þ

Lemma 2.5. Assume that bþ d � jmj
3

� �
�
resp: aþ e � jmj

3

� ��
. Then ðA;mÞ is not free.

Proof. Let us put LG ¼ LMP ðA;mÞ �
GMP ðA;mÞ again. Assume that ðA;mÞ is free with

expðA;mÞ ¼ ðd1; d2; d3Þ. If bþ d � jmj
3

� �
, then

aþ cþ e � 2

3
jmj

� �
. Also, the condition (2.4) im-

plies ½a;c;e� is balanced. So GMP ¼GMP ðd1;d2;d3Þ �
GMP ðbþ d; exp½a; c; e�Þ by Lemma 1.5. Thus

LG � ðaþ eÞðbþ dÞ þ ½a; c; e� þ ½b; c; d�ð2:5Þ
� f½a; c; e� þ ðaþ cþ eÞðbþ dÞg

¼ ½b; c; d� � cðbþ dÞ:
By the same arguments as in the proof of Lemma

2.4, we can see that (2.5) is positive, which contra-

dicts to Theorem 1.2. �

Therefore we may assume that

jmj
3

� �
< aþ e <

2

3
jmj

� �
� 1;ð2:6Þ

jmj
3

� �
< bþ d <

2

3
jmj

� �
� 1:ð2:7Þ

Hence the next lemma completes the proof of

Theorem 0.2.

Lemma 2.6. Under the conditions (2.1),

(2.4), (2.6) and (2.7), ðA;mÞ is not free.
Proof. Assume that ðA;mÞ is free with

expðA;mÞ ¼ ðd1; d2; d3Þ. Note that LMP :¼
LMP ðA;mÞ ¼ ðaþ eÞðbþ dÞ þ ½a; c; e� þ ½b; c; d�. Put
GMP :¼ GMP ðA;mÞ.

Case 1. When jmj ¼ 3k ðk 2 ZÞ. By the

assumptions, a < k, b < k, aþ e > k, bþ d > k.

Hence, if we define a new multiplicity m by

QðA;mÞ ¼ ðx� yÞcðy� zÞkykxbþd�kðx� zÞaþe�k, then

LMP � LMP ðA;mÞ ¼ 3k2 þ ðaþ e� kÞðbþ d� kÞ.
So GMP � GMP ðk; k; kÞ ¼ 3k2 < LMP , which is a

contradiction.

Case 2. When jmj ¼ 3kþ 1 ðk 2 ZÞ. By the

assumptions, a < kþ 1, b < kþ 1, aþ e > kþ 1,
bþ d > kþ 1. Hence, if we define a new multiplicity

m by QðA;mÞ ¼ ðx� yÞcðy� zÞkþ1ykxbþd�kðx�
zÞaþe�k�1, then LMP � LMP ðA;mÞ ¼ 3k2 þ 2kþ
ðaþ e� k� 1Þðbþ d� kÞ. So GMP � GMP ðkþ
1; k; kÞ ¼ 3k2 þ 2k < LMP , which is a contradiction.

Case 3. When jmj ¼ 3kþ 2 ðk 2 ZÞ. By the

assumptions, a < kþ 1; b < kþ 1; aþ e > kþ 1;

bþ d > kþ 1. Hence, if we define a new multiplicity

m by QðA;mÞ ¼ ðx� yÞcðy� zÞkþ1ykþ1xbþd�k�1ðx�
zÞaþe�k�1, then LMP � LMP ðA;mÞ ¼ 3k2 þ 4kþ
1þ ðaþ e� k� 1Þðbþ d� k� 1Þ. So GMP �
GMP ðkþ 1; k; kÞ ¼ 3k2 þ 4kþ 1 < LMP , which is

a contradiction. �
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