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Abstract: For any subset, which is not always finite, of C"™' — {0} in subgeneral position,
we introduce a weight function and a constant like as Nochka weight function and Nochka
constant which was introduced for a finite subset of C™™ — {0} in subgeneral position.

Key words:

1. Introduction. About twenty four years
ago, E. I. Nochka [4] proved the conjecture of H.
Cartan given in [1] by introducing a weight function
and a constant for a finite subset of C"™ — {0}.

Let N, n be integers satisfying N > n > 1 and
X be any subset of C""' — {0} in N-subgeneral
position. For a finite subset P of X, we denote by
V(P) the subspace of C"™ generated by elements
of P and by d(P) the dimension of V(P). We put
O={PCX|0<#P<N+1}.

When 2N —n + 1 < #X < oo, it is known (see
[2,3,5,6]) that there exist a constant ¢ and a function
w: X — (0,1] with the following properties:

Theorem 1.A.

l.a) Forany a € X, 0 < fw(a) <1,

Lb)#X — 2N —n+1) =003 4exw(a) —n —1);
le) (N+1)/(n+1) <0< (2N—-n+1)/(n+1);
1.d) For any P € O, ) ,.pw(a) < d(P).

We call w the Nochka weight function and 6 the
Nochka constant. E. I. Nochka [4] succeeded in
solving the Cartan conjecture with these notions.
We used them to obtain some results on holomor-
phic curves extremal for the defect relation [7,8].
But, it is incovenient to apply them to holomorphic
curves with an infinite number of defects since
the weight function is defined only for a finite set.
We would like to delete the condition “#X < 00” in
Theorem 1.A. To that end, we shall generalize w
and 6 to any subset of C"™ — {0} in N-subgeneral
position to obtain a new weight function and a
constant satisfying properties like those of
Theorem 1.A.

We can apply them to the value distribution
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theory of holomorphic curves with an infinite
number of defects directly. Applications will appear
elsewhere.

2. Preliminaries. Let N, n, X etc. be as in
Section 1. From now on throughout the paper #X
is not always finite.

Lemma 2.1 ([3;p.68]). ForS;,S; € O,

d(S1 @] SQ) + d(Sl n SQ) < d(Sl) + d(SQ)

Lemma 2.2 ([3;p.68]). ForRCS(R,S € 0),

#R—d(R) <#S—d(S) <N —n.

For RG S (R,S € O), we put

A(R; S) = (d(S) — d(R))/(#S5 — #R).

Then, by Lemma 2.2 we have the following

Proposition 2.1 ([3;p.67]). 0< A(R;S) <1.

Lemma 2.3. #{d(S)/#S | S € O} is finite.

Proof. We have only to prove this lemma when
#X is not finite. For any S € O,

(1) 1<d(S)<n+1 and 1<#S<N+1.

Further, from Lemma 2.2, #S —d(S)< N —n,
which reduces to the inequality

, 1 d(S) d(S)
@) N—-n+1-"N-n+d(S)~ #5 ~

From (1) and (2), the number d(S)/#S can
attain at most (n+1)(N +1) rational numbers
between 1 and 1/(N —n+1). O

From this lemma we can give the following
definition.

Definition 2.1. )\ = Isnei(rgld(S)/#S.

Proposition 2.2. [t holds that
1/(N—n+1) <A< (n+1)/(N+1).
Proof. From (2), we have 1/(N —n+1) <\
On the other hand, for S € O such that #S5 =
N +1,d(S)=n+1 by the definition of N-subgen-
eral position and we have A < (n+1)/(N+1). O
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Lemma 2.4. For a fited R € O,
#AR;S) |RG S € O} < c0.

Proof. We have only to prove this lemma
when #X is not finite. As 0<d(S)—d(R) <n
and 1 <#S—#R=#(S—R)< N, A(R;S) can
attain at most N(n + 1) rational numbers between
0 and 1. ]

Proposition 2.3. (I) When A>(n+1)/
(2N —n+1), for any S € O it holds that

d(S)/#S > (n+1)/(2N —n+1).

(IT) When A < (n+1)/(2N —n+ 1), there ez-
ist an integer p (1 < p < (n+1)/2) and a subfamily
{T;|1<i<p} of(’) satisfymg the conditions:

Ho=TST1 & GT) dT)) < (n+1)/2

(11) (TQ,Tl) < A(T],Tg) <0< A(er_l;Tp)

<(n+1-d(T,))/(2N —n+1—#T,);
(iii) When 1 <i<p, for any U € O such that
T;i1 G U, if d(Tiy) < d(U), then

() (Zl’ )<A(217 )and
(b) A(Ti—1;T3) = A(Ti-1;U) only if U € Ti;
(iv) For any U € O such that T, G U,
if d(T,) < d(U), then
A(TyU) = (41— d(Ty) /2N —n+1— #7T,).
Proof. (I) This is trivial by the definition of .
(IT) Note that N > n > 2 by Definition 2.1 and
Proposition 2.2. We put Ty = ¢ and
O\ ={Se€0|d(S)/#S = A}
Step 1. (a;) O()) is not empty.
(b1) Let S € O(A). Then,

(3) d(S) < (n+1)/2 and #S < (2N —n+1)/2.

In fact, as d(S)/#S =A< (n+1)/2N —n+1),
we obtain (3) by Lemma 2.2.

(Cl) If Sq, 55 € O()\), then S U Sy € O(/\)

In fact, from Lemma 2.1 and (b;) we obtain the
inequality

d(S1 U S2) +d(S1NSz) <d(S1) + d(S2)

<n+1)/2+m+1)/2=n+1,
so that d(S;USy) <mn. This implies that #(S; U
S2) < N and so S1 U Sy € O. Next, by the definition
of A and by Lemma 2.1,
)\ < d(S1 U Ss) d(S1) + d(S2) — d(S1 N Sy) — (+)
T #H(S1US2) T #S + #S — #(51 N )

and by using the inequality A#(S1NSy) <

d(S1NSy) we have
() < AF#S + #5 —#(51N5)) A\
#S1 + #55 — #(51 N Sy)
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We obtain that d(S;USy)/#(S1USy) =
which means that S; US; € O(A).

(dy) #O(N) is finite.

We have only to prove (d;) when #X is not
finite. Suppose to the contrary that #O(\) = co.
Then, O(/\) D {51,52,"',57;,"'}, S; # Sj ifi#£j
and #{U%, 5} = oo

There exists an integer v satisfying
(4) N+1<#{Ur, S}

On the other hand, U7_,S; € O(X) by (c1) and
so by (by)

(5) #{U_,S;} < (2N —n+1)/2.

From (4) and (5) we obtain that n+1 <0,
which is absurd. This imples that #O(\) must be
finite.

(e1) We put 71 = Ugcpn)S- Then 71 € O(A)
from (c1), (d1), and if S € O(X), then S C T3.

Moreover, T satisfies the following conditions
((1), (ii), (iii) of Proposition 2.3(II) for p = 1):

() ¢=T0 G T, d(Th) < (n+1)/2;

(ii1)

ATy;Th) <(n+1—d(Th))/(2N —n+1—#T7);

(1111) For any Ue O, (a) A(T[),Tl) § A(T(),U)
and (b) A(T();Tl) = A(T(); U) only ifU g Tl.

In fact, (iy) is trivial by (a;), (e1) and (by).

(iil) As d(Tl)/#Tl =A< (TL + 1)/(2N -—n+ 1),
we obtain (iiy) easily.

(iiiy) A(To;Th) = A < d(U)/#U for any U € O
by the definition of A and T1. If U € O(\) then U €
T1 by (61).

Next, we put

O,={Se€0|T. C8S, dT1) <d(S)}.

(ag) Oy is not empty.

In fact, as d(T1) < (n+1)/2, any S such that
Ty C S €O and #5 = N + 1 belongs to O;.

(bQ) #{A(ThS) | S e 01} is finite.

This follows from Lemma 2.4.

Here, we put Ay = mingep, A(71;5). Then,

(CQ) A< A

We prove this inequality. For any S € Oy, we
have

(6) d(Th)/#T1 < d(S)/#S.
In fact, by (iii;)
(7) d(Th)/#T < d(S)/#S

and if the equality holds in (7), S € Tj, which is
absurd. We obtain (6) and from which we have the
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inequality

dTy) _d(S) _d(S) —d(Th)

#11 #S  #S-#1

for any S € Oy, so that we obtain (cz) due to (bs).

A\ =

When A > (n 41— d(T}))/(2N —n+1 — #T).
(ivy) For any U € Oy,
A(T;U) > (n+1—d(Th))/(2N — n+1— #T7).

This means that our proposition holds for p = 1
and T7.

Step 2. When )\ < %

Suppose that there exist the sets 17, - -
satisfying the following conditions:

() p=T0 G G- G T, dT;) < (n+1)/2;

(112) A(To,Tl) < A(Tl;Tz) <0 < A(Tvlfl,in)

< (n+1—d(T)/@N —n+1— 4T);

(iiig) When 1 < k <4, for any U € O such that
Tk,1 ¢ lf d(Tk 1) < d( ) then

(a) A(Tk 1;T3) < A(Tj—1;U) and

(b) A(Tk_l,Tk) (Tk 13 ) only if U € C Tk

Note that from (iis) we obtain the 1nequahty

TieO

< n+l n+1-d(T;)
2N—n+1 2N—n+1—#T;

when ¢ > 2.

We put Og =0 and for 1 < k<1

O, = {S e0O | T C S, d(Tk) < d(S)}

We note that O D Oy D --- D O;. Then, as in
the case of O, for 2 < i we have the following

(ag) O; is not empty;

(bg) #{A(T3;S) | S € O;} is finite.

We put A; = mingep, A(T;; S). Then, as in (c3)
we have the following inequality.

(¢s) (d(T:) — d(Ty1))/ (AT, — #T;-1) < A

In fact, for any S € O; we have the inequality
AT—1; T;) < A(Ti—1; S) from (iiiz), so that we have
the inequality

d(Ty) —d(Tiy) _ d(S) — d(Tia) _ d(S) — d(T})
#1; — #Ti #S — #Ti #S —#T,
from which we obtain the inequality (c3).
Now, suppose that
(9) A< (n+1-d(T)/@N —n+1-#T).

Put O;(N) ={S € O; | A(T}; S) = \i}. Then,

(as) O;(N\;) is not empty;

(by) For any S € O;(\;), d(S) <
#5 < (2N —n +1)/2.

In fact, from (9) we have d(S) < nand #S < N

(n+1)/2 and
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so that from (iiy), (c3) and (9) we obtain the

inequality
dL) - dS) - d8)-d(T;)
o <G8 < Gear
n+1-d(T;) n+1—d(S)
< 2N —n+1—-#T; < 2N —n+1—-#S"

and so from the inequality
d(S)/#S < (n+1—4d(S))/2N —n+1—#S)
we obtain that d(S)/#S< (n+1)/(2N —n+1).
By using Lemma 2.2, we obtain (by) as in (by).
(04) If 51, S € 07(>\7), then S;US, € 07(/\7)

(see [3;p.70]).
To prove (c4), we first prove that
(10) S1USs € O;.
In fact, as
L d(S) —d(T) _d(S,) — d(T)
CO#S - #T, #Sy — #T;

by using Lemma 2.2 we obtain the inequality
d(S1) +d(S2) — 2d(T;)
= Ni(#51 + #52 — 2#T;)
Ai(d(S1) + N —n+d(S)
+ N —n —2#T))
= Ai(d(S1) + d(S2) — 2d(T5))

+2M(N —n+d(T;) — #T5),
so that as \; < 1
d(S1) + d(S2) — 2d(T;)
< BN —n+d(T) — #T0) = (+).
Here, we have the inequality

1—d(T;

o1 i dT)
ON —n+1— #T,
_ 2N =2n+d(Ti) — #T;

2N —n+1—#T;
By using this inequality and (9) we have
(¥) < NN —n+1—#T)) <n+1-d(T;)
since d(T;) — #7T; < 0. We obtain the inequality

d(S1) + d(S2) — d(T;) < n+ 1, so that by Lemma 2.1
we have the inequality

d(S1 USy) < d(S1)+d(S2) —
< d(Sy) +d(Sy) —
since S; N S D T;, which implies that #(S5; U Sy) <

N and we have S U Sy € O. Further, as
d(T;) < d(S1) <d(S1USs), we have (10).

d(S1 N Sy)
d(T;) <n+1
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Next, we prove the following inequality.
Ni(#(S1 N Sa) — #Ti) < d(S1 N S2) — d(Th).

As this inequality is trivial when #(S; N .Ss) —
#T, = 0, we prove it when #(S; N Sy) — #T; > 0.
First we prove that
(12) d(T;) < d(S1 N Sy).

Suppose to the contrary that d(T;) = d(S; N
S9). Then, as T; S S NS, € 0;-1 we have the
inequality

Sm(%n A(/Ti,I; S) = /1(’112,171—;) > A(T‘ifl; Sl n 52)
el

(11)

This is a contradiction (see (iiiz)). We obtain (12)
and S1 NSy € O;. By the definition of A\; we have the
inequality A\; < A(T};.51 N Sy). This means that the
inequality (11) holds.

Finally, we prove that S;UJSs € O;(N;). By
Lemma 2.1 and by (11)

Ai < A(T3;8, U Ss)
_d(S)) +d(S5) — (S N 5) — d(T))
T OH#HSIHH#Sy —#(S1NSy) - #H#T; T

since we obtain the following inequality from (11):

d(Sy) + d(S2) — d(S1 N Sy) — d(T)
=d(S)) — d(T;) + d(S2) — d(T;)
— (d(81 N Sy) —d(T3))
SN(#S1 — #T + #S, — #T,
— (#(51 N S2) — #T5))
= Ni(#51 + #S5> — #(S1 N S2) — #T).

Namely, we have that A(T;; Sy USy) = A;. This
means that S; U Sy € OL()\L)

As in Step 1 (d1), we obtain the following

(d4) #01(A1) is finite.

(e4) We put T;4q = USE(’),,(/\,) S. Then Ty €
O;(\) from (dy), (cq) and if S € O;(N;), S € Ti41.

The family {71, Ty, -+, T;+1}(C O) satisfies the
following conditions:

(3) =TGN G- - GT; G Tin,

A(Ti1) < (1 +1))2:

(ii3) A(To; Th) < A(T1; 1) < -+ < A(Ty-1;T3)

<A(T;Tim) < %;

(ili3) When 1<k <i+1, for any U € Oy
such that T} g U, if d(Ty-1) < d(U), then

(a) A(Ty-1;Ty) < A(Tj—1;U) and

(b) A(T}-1;Ty) = A(Ty—1; U) only if U C Tj.

Step 3. As d(Ti;+1) < (n+1)/2, we can reit-

)
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erate the process given above at most (n+1)/2
times and then come to an end. That is to say, there
exist a positive integer p(< (n+ 1)/2) and a family
{T1,---,T,} of subsets of X satisfying the conditions
(i), (ii) and (iii) of Proposition 2.3(II). Further,
when we put O, ={S€ O |1, C S,d(T,) <d(9)},
we have the followings

(as5) O, is not empty.

(bs) #{A(T);S) | S € O,} is finite.

(c5) the number A\, = mingep, A(T); S) satisfies
the inequality

A > (n+1—-d(T,)/(2N —n+1—#T,).

This inequality implies that (iv) of Proposition
2.3(II) holds:

(iv) For any U € O,,

ATy U) > (n+1—d(T))/2N —n+1—#T,). 0

3. Generalization of Nochka weight func-
tion. Let X, O, \ etc. be as in Section 1 or 2. We
give the following definition as an extension of w
and 6 given in Section 1. We define a function w :
X — (0,1] and a constant h as follows:

Definition 3.1.

(I) When A > (n+1)/(2N — n+1).

For any a € X

n+t1 IN —n+1
we) =Ny ™ ntl
(II) When A < (n+1)/(2N —n +1).
AT;—1; Ty) ifaeT —T;, 4
_ 1—d(T
w(a) ntl-d@)  y.ex-T,

2N —n+1—#T,
(i=1,---,p) and
h=02N-n+1—-#T,)/(n+1-d(T},)),

where Ty = ¢, T; and A(T;—;T;) (i=1,---,p) are
those given in Proposition 2.3(II).
Like w and 6 in Theorem 1.A, the function

w and the constant h have the following
properties.
Theorem 3.1.

(a) For any a € X, 0 < hw(a) < 1;
(b) Y aex(1—hw(a)) =2N —n+1—h(n+1);
(¢) N\n<h<(2N-n-+1)/(n+1);
(d) For any S € 0, ¥ .5 w(a) < d(S).
Note 3.1. We note that
{a€e X |hw(a) <1} =
¢ itA>(n+1)/2N-n+1)
{Tp if A< (n+1)/(2N —n+1).
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Proof of Theorem 3.1.

(I) When A > (n+1)/(2N —n+1).

a) For any a € X, hw(a) = 1.

b) > pex(I—hw(@)=0=2N-n+1—-h(n+1).
c)h=(02N—-n+1)/(n+1).

d) For any S € O,

Y acs w(@) S AH#S < (d(S)/#5)#5 = d(S5)

since w(a)=(n+1)/(2N —n+1) <X <d(S)/#S
by the definition of A (Definition 2.1).

(I) When A < (n+1)/(2N —n+1).

Let ¢ =1Ty,T1,---,T, be the sets obtained in
Proposition 2.3(II) and let @ be a set satisfying T, C
Q@ and 2N —n+ 1 < #Q < oo. We choose a subset
T)+1 of @ such that

T,C T,y and #Tp. =2N—n+1.

Note that d(Tp41) =n+ 1.

(a) From (ii) of Proposition 2.3(II)

0< hw(a){

(
(
(
(

<1 when acT,
=1 whenac X—-T,.

(b) We use the following disjoint union:

Q=(Q-Tpr)VU (T —T,)U-- U(Th — Tp).
Yacqu(a)
pt1
= Z w(a) + Z Z w(a)
acQ—T) i=1 a€T,—T;
= (#Q - (N -+ 1)

p+1

+ Z(d(n) —d(Ti-1))

(#Q — 2N —n+1)) +d(Tp+1)

[ ==

h(#Q—(ZN—n—l—l))—i—n—l—l,

which implies that
(13) ZaeQ(l—hw(a)):2N—n+1—h(n+1).
Let @ be as above. Then, as hw(a) =1 for

a € X — @, we obtain the following equality from
(13).

Y aex(1 = hw(a)) =3 cq(1 — hw(a))
=2N—-n+1—-h(n+1).
(c) As in (8) we have the inequality

d(T) . n+l n+1—d(T,)
#T, 2N—n+1 2N —n+1—#T,

=p!
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so that h < (2N —n+1)/(n+1).
On the other hand, as #7, — d(T),) < N —n by

Lemma 2.2 and 1 < d(7},), we have the inequality
2N —n+1—#T, >N+1—d(Tp) >N
o+ 1-d(T,) T n+l-d(T,) " n’

(d) (see [3;pp.73-74]) A) When d(SUT,) =
n+ 1. By Lemma 2.1 we have the inequality
n+1-d(T,) =d(SUT,) —d(T,) <d(S).
By Lemma 2.2 and (a) of this theorem we have
the inequality

;w(@ < # < %(d(SHN—n)
d(S) N—n
h (” d(S))

d(S) N +1—d(T,)
 h on+1-4d(T,)
N+1—d(T,
—a(s) g Ao
2N —n+1—#T,
since #1, < d(T,) + N —n (Lemma 2.2).
B) When d(SUT,) < n. Note that
#(SUT,) <N.We put
s {SﬂTi (0<i<p)
s (t=p+1).
Then, p =5, C S C---CS5, C Sy =85.
B.].) For 1 <i<p+1, if #5;,1 <#.5S,, then
d(Ti1) <d(S; UTi).
In fact, when =1, 0=4d(Ty) <d(S1) =
d(S1 UTy) as Ty = ¢. When i > 1, suppose that

(14) d(Tim) = d(S; UTi—).

d(S)

Then, we have that

d(S;UTioq) —d(Ti—2) = d(T-1) — d(Tj—2) > 0
and that
d(T;—1) — d(T;_
AT, ;T y) = W) = dTi2)

#Ti1 — #Ti—2
d(S;UTi 1) —d(Tia) (%)

THSUT ) - #Ts
by (iii) of Proposition 2.3(II) since
Tio G Tioy CS;UTiy, d(Ti—2) <d(S;UT; 1)

and so S; UT;_1 € O;_1. From (14) we have
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(%) < d(Ti—1) — d(Ti)

#1i1 — #Ti 2
since #T;_1 < #(S; UT;_1). From (15) we obtain
that #(S;UT;—1) = #T;,_1. Namely, S; C T;_; and
so S;=5nNScSNT,_; = S/L‘,l, so that S;_1 = Si,
which is a contradiction. This implies that B.1)
holds.

B.2) Fori=1,2,---,p+]1,

(#Si — #S8i1) A(T;-1; T;) < d(S;) — d(Si-1).

(15) = A(Ti-2;Ti-1)

In fact, we have only to prove this inequality
when

(16) #S; — #S5;,_1 > 0.
Then, from B.1) d(T;-1) < d(S; UT;—1). When (16)
holds for (< p), by Proposition 2.3(II)(iii)
AT Th) < A(Tioa; S; U Tia)

and when (16) holds for i =p+ 1, by Proposition
2.3(I1) (iv)
. on+1- d(T,)
C 2N —n+1—#T,

d(SUT,) —d(T,

#(SUT,) — #T,

Further, for ¢ =1,2,---,p+ 1, we have the

relations #(S; UT; 1) = #T;1 + #S; — #(S; N T;-1)
and by Lemma 2.1

d(S; UTiq) < d(Ti—q) +d(S;) — d(S;NTiq).

ATy Tpia)

From these relations, we obtain that
AT, T;) < A(Ti-1; S; U T )
d(S;UT;1) — d(Ti-1)

#(SiUTi) — #Tiy
d(S;) — d(SiNTi-)
T #S —#(SiNTi)
d(S) — d(Si)
T O#S — #Si
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since S;NT;_1 = (S N Tib) NTi_1=SNT,_1 =S;_1.
We have B.2). Now, we prove (d) when d(SUT),) <
n. From B.2) we have the inequality

p+1
dow@<y Y wa)
acs i=1 a€S;—S;1

p+l

- Z A(Ti1;Ty) (#Si — #Si-1)
p}

<d(S) —d(S,) + Z(d(sz) —d(Si-1))
im1

13

=d(9).
We complete the proof of Theorem 3.1. O
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