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Hartogs-Osgood theorem for separately harmonic functions

By Sachiko Hamano

Department of Mathematics, Nara Women’s University,

Kitauoya-Nishimachi, Nara 630-8506, JAPAN

(Communicated by Heisuke Hironaka, m.j.a., Feb. 13, 2007)

Abstract: Let h be a separately harmonic function on an open neighborhood of a (m − 1)-
dimensional compact submanifold Σ in Rm with m ≥ 2. We show that h can be extended to a
separately harmonic function on the bounded component of Rm − Σ.
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1. Introduction and main theorem. A
famous and fundamental theorem of Hartogs states
that a separately holomorphic function, i.e. a holo-
morphic function with respect to each variable, is
holomorphic. In particular, a separately holomor-
phic function is analytic.

Even in the case of real variables, there are var-
ious analogues of Hartogs theorem. For instance,
Lelong showed in [6] a kind of Hartogs theorem for
harminic functions.

Fact 1 (Lelong). Let u(x, y) be defined on
B1 × B2, where B1 is the unit ball in Rm and B2

is the unit ball in Rn. If u(x, y) is separately har-
monic, that is, u(x, ·) is harmonic on B2 for each x

and u(·, y) is harmonic on B1 for each y, then u is
harmonic on B1 × B2.

See also Avanissian [2], Siciak [8], Zaharjuta
[12], Stein [9], Hervé [4] for related results.

Another famous and fundamental theorem,
which shows a serious difference between C and Cn

(n ≥ 2), is Hartogs-Osgood theorem.
Fact 2 (Osgood). Let D ⊂ Cn (n ≥ 2) be a

domain, and K a compact subset of D such that D−
K is connected. Then every holomorphic function on
D − K can be extended to a holomorphic function
on D.

We prove the following analogue of Hartogs-
Osgood theorem for separately harmonic functions.
First, we recall the definition of separately harmonic
functions.

Definition. We say that a function u : D →
R, where D is a domain on Rm = Rm1 × · · ·×Rmk ,
where m1, . . . , mk are fixed natural numbers, m1 +
· · ·+mk = m, and m ≥ k ≥ 2, is separately harmonic
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on D if u is harmonic on each Rν (ν = m1, . . . , mk)
separately, i.e. the following identities hold on D:

m1∑
ν=1

∂2u

∂x2
ν

= 0,

m1+m2∑
ν=m1+1

∂2u

∂x2
ν

= 0, . . . ,

m∑
ν=m1+···+mk−1+1

∂2u

∂x2
ν

= 0.

In Section 2, we show:
Theorem 1. Let D be a bounded domain in

Rm with m ≥ 2 whose boundary consists of a (m−1)-
dimensional submanifold Σ. Let h be a separately
harmonic function on an open neighborhood V of Σ
in Rm. Then h can be extended to a separately har-
monic function on D.

Compare Theorem 1 with the following fact in
[3].

Fact 3 (Hecart). Let D ⊂ Rm and G ⊂ Rn

be domains. Let E ⊂ D and F ⊂ G be compact
sets which satisfy the Leja condition with respect to
harmonic polynomials. Then there exists an open
set Ω ⊂ Rm+n such that each separately harmonic
function u : (D × F ) ∪ (E × G) → R extends to a
harmonic function on Ω.

Remark. Fact 1 is false if “harmonic” is re-
placed by “subharmonic”. Wiegerinck [10] gave an
example u(x, y) which is not subharmonic but sep-
arately subharmonic. On the other hand, some ad-
ditional conditions for separately subharmonic func-
tions to be subharmonic were given by many authors,
for example, Riihentaus [7], Armitage and Gardiner
[1].

We may ask whether u is subharmonic on B1 ×
B2 if u(x, ·) is harmonic on B2 for each x and u(·, y)
is subharmonic on B1 for each y (where B1 and B2

are as in Fact 1). Ko�lodziej and Thorbiörnson [5]
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showed that the answer is yes if u(·, y) is of class C2

for each y.
2. Proof of Theorem 1. Let D, ∂D, V and

h be as in Theorem 1. It is enough to show that, for
a given integer k (1 ≤ k < m), a separately harmonic
function h on V ⊂ Rm = Rk × Rm−k with m ≥ 2
can be extended to a separately harmonic function on
D, because separately harmonic functions are always
harmonic. We need to consider only the case that
m ≥ 3: when m = 2, from the assumption,

h(x1, x2) = ax1x2 + bx1 + cx2 + d

on V with suitable constants a, b, c, and d. On the
other hand, the right-hand side of the above equation
is a separately harmonic function on R2, and hence
h is extended to a separately harmonic function on
R2.

Assume that m ≥ 3. We take an open tubular
neighborhood W � V of Σ, i.e. an open neighbor-
hood of Σ diffeomorphic to Σ×(−1, 1) whose bound-
ary consists of two smooth (m− 1)-dimensional sub-
manifold Σi (i = 1, 2) homotopic to ±∂D. We put

D1 = D ∪ W and D2 = Rm − (D − W ).

Then

D1∪D2 = Rm, D1∩D2 = W and ∂Di = Σi (i = 1, 2).

Lemma 2. There exist harmonic functions hi

on Di (i = 1, 2) such that

h2 − h1 = h on W.(2.1)

Proof . Take open tubular neighborhoods Ti of
Σi (i = 1, 2) in V such that T1 ∩ T2 = ∅. Let χi ∈
C∞(Rm) (i = 1, 2) such that 0 ≤ χi ≤ 1,

χ1(x) =

{
1 on T1 ∪ (Rm − D1)
0 on T2 ∪ (Rm − D2),

χ2(x) =

{
0 on T1 ∪ (Rm − D1)
1 on T2 ∪ (Rm − D2),

and
χ1 + χ2 = 1 on Rm.

If we extend χih (by setting) to be 0 on Di−W , then
χih ∈ C∞(Di) (i = 1, 2). Further, since χih = h on
Ti(⊂ V ), if we extend ∆(χih) (by setting) to be 0 on
Rm − Di, then ∆(χih) ∈ C∞

0 (Rm) (i = 1, 2), where
Supp ∆(χih) ⊂ W − (T1 ∪ T2) � W . Moreover, we
have

χ1h + χ2h = h on V, ∆(χ1h) + ∆(χ2h) = 0 on Rm.

(2.2)

Define

Ni(x) := cm

∫
Rm

∆(χih)(y)
‖y − x‖m−2

dVy, x ∈ Rm

for each i = 1, 2, where cm = 1
(m−2)ωm

, ωm is the
euclidean surface area of the unit sphere in Rm, and
dVy is the euclidean volume element of Rm at y. Set

h1 := − (χ1h + N1) on D1,

h2 := χ2h + N2 on D2.

Then hi (i = 1, 2) are harmonic functions on Di sat-
isfying (2.1). In fact, since Ni satisfy Poisson’s equa-
tion, we have ∆Ni = −∆(χih) on Rm, and hence hi

are harmonic on Di.
By (2.2), we have N1 + N2 = 0 on Rm, which

implies the assertion.
Remark. The argument as in the proof of the

above lemma is used in various situations. See, for
instance, [11].

Lemma 3. The functions hi defined above are
separately harmonic functions on Di (i = 1, 2).

Proof . We prove the assertion for i = 1, since
the proof for i = 2 is exactly same.

Set

∆̃1 :=
k∑

ν=1

∂2

∂x2
ν

, ∆̃2 :=
m∑

ν=k+1

∂2

∂x2
ν

.

Fix a non-empty open set U � T1∩D1 (⊂ W ). Then
we first show that

∆̃1h1 = ∆̃2h1 = 0 on U.(2.3)

Take another open tubular neighborhood W0 of
Σ in W such that U ∩W0 = ∅. The boundary of W0

consists of two smooth (m−1)-dimensional subman-
ifold Σ0,i (i = 1, 2) with Σ0,i ⊂ Ti (i = 1, 2). Since
∆(χ1h) ∈ C∞

0 (Rm), we have

− ∆̃jh1(x0) = ∆̃j(χ1h)(x0)

+ cm

∫
Rm

∆̃j{∆(χ1h)(y)}
‖y − x0‖m−2 dVy

for every x0 ∈ U and every j = 1, 2, where ∆̃j in the
integral is taken with respect to (y1, . . . , yk) when
j = 1 and (yk+1, . . . , ym) when j = 2. Since χ1 = 1
on T1 and Supp ∆(χ1h) ⊂ W − (T1 ∪ T2) � W0, it
follows that
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−∆̃jh1(x0) = cm

∫
W0

∆{∆̃j(χ1h)(y)}
‖y − x0‖m−2 dVy

for j = 1, 2. Since x0 
∈ W0, Green’s formula gives
that the right hand side of the above equality is

cm

∫
Σ0,1−Σ0,2

(
1

‖y − x0‖m−2

∂

∂ny
(∆̃j(χ1h))

− (∆̃j(χ1h))
∂

∂ny
(

1
‖y − x0‖m−2 )

)
dSy.

Here, χ1 = 0 on T2 ⊃ Σ0,2 and χ1 = 1 on T1 ⊃ Σ0,1,
and hence this integral equals

cm

∫
Σ0,1

(
1

‖y − x0‖m−2

∂

∂ny
(∆̃jh)

− (∆̃jh)
∂

∂ny
(

1
‖y − x0‖m−2 )

)
dSy.

Since h is separately harmonic on V ⊃ Σ0,1, we have
∆̃jh = 0 (j = 1, 2) on Σ0,1. Therefore, the above
integral is 0, which implies (2.3).

Next, we prove

∆̃1h1 = ∆̃2h1 = 0 on D1.(2.4)

Since h1 is harmonic on D1 by Lemma 2, h1 is
real-analytic on D1. Hence ∆̃1h1 and ∆̃2h1 are also
real-analytic on D1. Then, by uniqueness of real
analytic continuation, we have (2.4).

Lemma 4. The function h2 is identically equal
to 0 on D2.

Proof . Let D′ be the projection of D1 on the
Rk of variables x′ = (x1, . . . , xk), which is bounded
in Rk. Take a non-empty open set U ′ � Rk − D′.
For fixed x′

0 ∈ U ′, let L(x′
0) be the real (m − k)-

dimensional plane {x′
0} × Rm−k in Rm. Since

L(x′
0) ⊂ D2, we have ∆̃2h2(x′

0, xk+1, . . . , xm) = 0 on
L(x′

0). Since N2(x) = O(1/‖x‖) at x = ∞, by the
maximum principle for harmonic functions, h2 = 0
on L(x′

0). Thus h2 = 0 on U ′ × Rm−k. Again by
uniqueness of real analytic continuation, we conclude
the assertion.

Thus by Lemma 4, we conclude that h = −h1

on V , and hence −h1 is the desired extension of h.
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fonctions séparément harmoniques, Potential
Anal. 13 (2000), no. 2, 115–126.
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