Hartogs-Osgood theorem for separately harmonic functions

By Sachiko Hamano
Department of Mathematics, Nara Women's University, Kitauoya-Nishimachi, Nara 630-8506, JAPAN
(Communicated by Heisuke Hironaka, m.J.a., Feb. 13, 2007)

Abstract

Let h be a separately harmonic function on an open neighborhood of a ($m-1$)dimensional compact submanifold Σ in \mathbf{R}^{m} with $m \geq 2$. We show that h can be extended to a separately harmonic function on the bounded component of $\mathbf{R}^{m}-\Sigma$.

Key words: Separately harmonic; potential theory.

1. Introduction and main theorem. A famous and fundamental theorem of Hartogs states that a separately holomorphic function, i.e. a holomorphic function with respect to each variable, is holomorphic. In particular, a separately holomorphic function is analytic.

Even in the case of real variables, there are various analogues of Hartogs theorem. For instance, Lelong showed in [6] a kind of Hartogs theorem for harminic functions.

Fact 1 (Lelong). Let $u(x, y)$ be defined on $B_{1} \times B_{2}$, where B_{1} is the unit ball in \mathbf{R}^{m} and B_{2} is the unit ball in \mathbf{R}^{n}. If $u(x, y)$ is separately harmonic, that is, $u(x, \cdot)$ is harmonic on B_{2} for each x and $u(\cdot, y)$ is harmonic on B_{1} for each y, then u is harmonic on $B_{1} \times B_{2}$.

See also Avanissian [2], Siciak [8], Zaharjuta [12], Stein [9], Hervé [4] for related results.

Another famous and fundamental theorem, which shows a serious difference between \mathbf{C} and \mathbf{C}^{n} ($n \geq 2$), is Hartogs-Osgood theorem.

Fact 2 (Osgood). Let $D \subset \mathbf{C}^{n}(n \geq 2)$ be a domain, and K a compact subset of D such that $D-$ K is connected. Then every holomorphic function on $D-K$ can be extended to a holomorphic function on D.

We prove the following analogue of HartogsOsgood theorem for separately harmonic functions. First, we recall the definition of separately harmonic functions.

Definition. We say that a function $u: D \rightarrow$ \mathbf{R}, where D is a domain on $\mathbf{R}^{m}=\mathbf{R}^{m_{1}} \times \cdots \times \mathbf{R}^{m_{k}}$, where m_{1}, \ldots, m_{k} are fixed natural numbers, $m_{1}+$ $\cdots+m_{k}=m$, and $m \geq k \geq 2$, is separately harmonic

[^0]on D if u is harmonic on each $\mathbf{R}^{\nu}\left(\nu=m_{1}, \ldots, m_{k}\right)$ separately, i.e. the following identities hold on D :
\[

$$
\begin{aligned}
\sum_{\nu=1}^{m_{1}} \frac{\partial^{2} u}{\partial x_{\nu}^{2}}=0, \sum_{\nu=m_{1}+1}^{m_{1}+m_{2}} \frac{\partial^{2} u}{\partial x_{\nu}^{2}} & =0, \ldots, \\
& \sum_{\nu=m_{1}+\cdots+m_{k-1}+1}^{m} \frac{\partial^{2} u}{\partial x_{\nu}^{2}}=0 .
\end{aligned}
$$
\]

In Section 2, we show:
Theorem 1. Let D be a bounded domain in \mathbf{R}^{m} with $m \geq 2$ whose boundary consists of a ($m-1$)dimensional submanifold Σ. Let h be a separately harmonic function on an open neighborhood V of Σ in \mathbf{R}^{m}. Then h can be extended to a separately harmonic function on D.

Compare Theorem 1 with the following fact in [3].

Fact 3 (Hecart). Let $D \subset \mathbf{R}^{m}$ and $G \subset \mathbf{R}^{n}$ be domains. Let $E \subset D$ and $F \subset G$ be compact sets which satisfy the Leja condition with respect to harmonic polynomials. Then there exists an open set $\Omega \subset \mathbf{R}^{m+n}$ such that each separately harmonic function $u:(D \times F) \cup(E \times G) \rightarrow \mathbf{R}$ extends to a harmonic function on Ω.

Remark. Fact 1 is false if "harmonic" is replaced by "subharmonic". Wiegerinck [10] gave an example $u(x, y)$ which is not subharmonic but separately subharmonic. On the other hand, some additional conditions for separately subharmonic functions to be subharmonic were given by many authors, for example, Riihentaus [7], Armitage and Gardiner [1].

We may ask whether u is subharmonic on $B_{1} \times$ B_{2} if $u(x, \cdot)$ is harmonic on B_{2} for each x and $u(\cdot, y)$ is subharmonic on B_{1} for each y (where B_{1} and B_{2} are as in Fact 1). Kołodziej and Thorbiörnson [5]
showed that the answer is yes if $u(\cdot, y)$ is of class C^{2} for each y.
2. Proof of Theorem 1. Let $D, \partial D, V$ and h be as in Theorem 1. It is enough to show that, for a given integer $k(1 \leq k<m)$, a separately harmonic function h on $V \subset \mathbf{R}^{m}=\mathbf{R}^{k} \times \mathbf{R}^{m-k}$ with $m \geq 2$ can be extended to a separately harmonic function on D, because separately harmonic functions are always harmonic. We need to consider only the case that $m \geq 3$: when $m=2$, from the assumption,

$$
h\left(x_{1}, x_{2}\right)=a x_{1} x_{2}+b x_{1}+c x_{2}+d
$$

on V with suitable constants a, b, c, and d. On the other hand, the right-hand side of the above equation is a separately harmonic function on \mathbf{R}^{2}, and hence h is extended to a separately harmonic function on \mathbf{R}^{2}.

Assume that $m \geq 3$. We take an open tubular neighborhood $W \Subset V$ of Σ, i.e. an open neighborhood of Σ diffeomorphic to $\Sigma \times(-1,1)$ whose boundary consists of two smooth $(m-1)$-dimensional submanifold $\Sigma_{i}(i=1,2)$ homotopic to $\pm \partial D$. We put

$$
D_{1}=D \cup W \text { and } D_{2}=\mathbf{R}^{m}-(D-W)
$$

Then
$D_{1} \cup D_{2}=\mathbf{R}^{m}, D_{1} \cap D_{2}=W$ and $\partial D_{i}=\Sigma_{i}(i=1,2)$.
Lemma 2. There exist harmonic functions h_{i} on $D_{i}(i=1,2)$ such that

$$
\begin{equation*}
h_{2}-h_{1}=h \text { on } W \tag{2.1}
\end{equation*}
$$

Proof. Take open tubular neighborhoods T_{i} of $\Sigma_{i}(i=1,2)$ in V such that $\overline{T_{1}} \cap \overline{T_{2}}=\emptyset$. Let $\chi_{i} \in$ $C^{\infty}\left(\mathbf{R}^{m}\right)(i=1,2)$ such that $0 \leq \chi_{i} \leq 1$,

$$
\begin{aligned}
& \chi_{1}(x)= \begin{cases}1 & \text { on } T_{1} \cup\left(\mathbf{R}^{m}-D_{1}\right) \\
0 & \text { on } T_{2} \cup\left(\mathbf{R}^{m}-D_{2}\right),\end{cases} \\
& \chi_{2}(x)= \begin{cases}0 & \text { on } T_{1} \cup\left(\mathbf{R}^{m}-D_{1}\right) \\
1 & \text { on } T_{2} \cup\left(\mathbf{R}^{m}-D_{2}\right),\end{cases}
\end{aligned}
$$

and

$$
\chi_{1}+\chi_{2}=1 \text { on } \mathbf{R}^{m}
$$

If we extend $\chi_{i} h$ (by setting) to be 0 on $D_{i}-W$, then $\chi_{i} h \in C^{\infty}\left(D_{i}\right)(i=1,2)$. Further, since $\chi_{i} h=h$ on $T_{i}(\subset V)$, if we extend $\Delta\left(\chi_{i} h\right)$ (by setting) to be 0 on $\mathbf{R}^{m}-D_{i}$, then $\Delta\left(\chi_{i} h\right) \in C_{0}^{\infty}\left(\mathbf{R}^{m}\right)(i=1,2)$, where Supp $\Delta\left(\chi_{i} h\right) \subset W-\left(T_{1} \cup T_{2}\right) \Subset W$. Moreover, we have
$\chi_{1} h+\chi_{2} h=h$ on $V, \Delta\left(\chi_{1} h\right)+\Delta\left(\chi_{2} h\right)=0$ on \mathbf{R}^{m}.
Define

$$
N_{i}(x):=c_{m} \int_{\mathbf{R}^{m}} \frac{\Delta\left(\chi_{i} h\right)(y)}{\|y-x\|^{m-2}} d V_{y}, x \in \mathbf{R}^{m}
$$

for each $i=1,2$, where $c_{m}=\frac{1}{(m-2) \omega_{m}}, \omega_{m}$ is the euclidean surface area of the unit sphere in \mathbf{R}^{m}, and $d V_{y}$ is the euclidean volume element of \mathbf{R}^{m} at y. Set

$$
\begin{array}{ll}
h_{1}:=-\left(\chi_{1} h+N_{1}\right) & \text { on } D_{1}, \\
h_{2}:=\chi_{2} h+N_{2} & \text { on } D_{2} .
\end{array}
$$

Then $h_{i}(i=1,2)$ are harmonic functions on D_{i} satisfying (2.1). In fact, since N_{i} satisfy Poisson's equation, we have $\Delta N_{i}=-\Delta\left(\chi_{i} h\right)$ on \mathbf{R}^{m}, and hence h_{i} are harmonic on D_{i}.

By (2.2), we have $N_{1}+N_{2}=0$ on \mathbf{R}^{m}, which implies the assertion.

Remark. The argument as in the proof of the above lemma is used in various situations. See, for instance, [11].

Lemma 3. The functions h_{i} defined above are separately harmonic functions on $D_{i}(i=1,2)$.

Proof. We prove the assertion for $i=1$, since the proof for $i=2$ is exactly same.

Set

$$
\tilde{\Delta}_{1}:=\sum_{\nu=1}^{k} \frac{\partial^{2}}{\partial x_{\nu}^{2}}, \quad \tilde{\Delta}_{2}:=\sum_{\nu=k+1}^{m} \frac{\partial^{2}}{\partial x_{\nu}^{2}} .
$$

Fix a non-empty open set $U \Subset T_{1} \cap D_{1}(\subset W)$. Then we first show that

$$
\begin{equation*}
\tilde{\Delta}_{1} h_{1}=\tilde{\Delta}_{2} h_{1}=0 \text { on } U . \tag{2.3}
\end{equation*}
$$

Take another open tubular neighborhood W_{0} of Σ in W such that $\bar{U} \cap \overline{W_{0}}=\emptyset$. The boundary of W_{0} consists of two smooth $(m-1)$-dimensional submanifold $\Sigma_{0, i}(i=1,2)$ with $\Sigma_{0, i} \subset T_{i}(i=1,2)$. Since $\Delta\left(\chi_{1} h\right) \in C_{0}^{\infty}\left(\mathbf{R}^{m}\right)$, we have

$$
\begin{aligned}
-\tilde{\Delta}_{j} h_{1}\left(x_{0}\right)= & \tilde{\Delta}_{j}\left(\chi_{1} h\right)\left(x_{0}\right) \\
& \quad+c_{m} \int_{\mathbf{R}^{m}} \frac{\tilde{\Delta}_{j}\left\{\Delta\left(\chi_{1} h\right)(y)\right\}}{\left\|y-x_{0}\right\|^{m-2}} d V_{y}
\end{aligned}
$$

for every $x_{0} \in U$ and every $j=1,2$, where $\tilde{\Delta}_{j}$ in the integral is taken with respect to $\left(y_{1}, \ldots, y_{k}\right)$ when $j=1$ and $\left(y_{k+1}, \ldots, y_{m}\right)$ when $j=2$. Since $\chi_{1}=1$ on T_{1} and $\operatorname{Supp} \Delta\left(\chi_{1} h\right) \subset W-\left(T_{1} \cup T_{2}\right) \Subset W_{0}$, it follows that

$$
-\tilde{\Delta}_{j} h_{1}\left(x_{0}\right)=c_{m} \int_{W_{0}} \frac{\Delta\left\{\tilde{\Delta}_{j}\left(\chi_{1} h\right)(y)\right\}}{\left\|y-x_{0}\right\|^{m-2}} d V_{y}
$$

for $j=1,2$. Since $x_{0} \notin W_{0}$, Green's formula gives that the right hand side of the above equality is

$$
\begin{aligned}
& c_{m} \int_{\Sigma_{0,1}-\Sigma_{0,2}}\left(\frac{1}{\left\|y-x_{0}\right\|^{m-2}} \frac{\partial}{\partial n_{y}}\left(\tilde{\Delta}_{j}\left(\chi_{1} h\right)\right)\right. \\
&\left.-\left(\tilde{\Delta}_{j}\left(\chi_{1} h\right)\right) \frac{\partial}{\partial n_{y}}\left(\frac{1}{\left\|y-x_{0}\right\|^{m-2}}\right)\right) d S_{y}
\end{aligned}
$$

Here, $\chi_{1}=0$ on $T_{2} \supset \Sigma_{0,2}$ and $\chi_{1}=1$ on $T_{1} \supset \Sigma_{0,1}$, and hence this integral equals

$$
\begin{aligned}
& c_{m} \int_{\Sigma_{0,1}}\left(\frac{1}{\left\|y-x_{0}\right\|^{m-2}} \frac{\partial}{\partial n_{y}}\left(\tilde{\Delta}_{j} h\right)\right. \\
&\left.\quad-\left(\tilde{\Delta}_{j} h\right) \frac{\partial}{\partial n_{y}}\left(\frac{1}{\left\|y-x_{0}\right\|^{m-2}}\right)\right) d S_{y}
\end{aligned}
$$

Since h is separately harmonic on $V \supset \Sigma_{0,1}$, we have $\tilde{\Delta}_{j} h=0(j=1,2)$ on $\Sigma_{0,1}$. Therefore, the above integral is 0 , which implies (2.3).

Next, we prove

$$
\begin{equation*}
\tilde{\Delta}_{1} h_{1}=\tilde{\Delta}_{2} h_{1}=0 \text { on } D_{1} \tag{2.4}
\end{equation*}
$$

Since h_{1} is harmonic on D_{1} by Lemma $2, h_{1}$ is real-analytic on D_{1}. Hence $\tilde{\Delta}_{1} h_{1}$ and $\tilde{\Delta}_{2} h_{1}$ are also real-analytic on D_{1}. Then, by uniqueness of real analytic continuation, we have (2.4).

Lemma 4. The function h_{2} is identically equal to 0 on D_{2}.

Proof. Let D^{\prime} be the projection of D_{1} on the \mathbf{R}^{k} of variables $x^{\prime}=\left(x_{1}, \ldots, x_{k}\right)$, which is bounded in \mathbf{R}^{k}. Take a non-empty open set $U^{\prime} \Subset \mathbf{R}^{k}-\overline{D^{\prime}}$. For fixed $x_{0}^{\prime} \in U^{\prime}$, let $L\left(x_{0}^{\prime}\right)$ be the real $(m-k)$ dimensional plane $\left\{x_{0}^{\prime}\right\} \times \mathbf{R}^{m-k}$ in \mathbf{R}^{m}. Since $L\left(x_{0}^{\prime}\right) \subset D_{2}$, we have $\tilde{\Delta}_{2} h_{2}\left(x_{0}^{\prime}, x_{k+1}, \ldots, x_{m}\right)=0$ on $L\left(x_{0}^{\prime}\right)$. Since $N_{2}(x)=O(1 /\|x\|)$ at $x=\infty$, by the maximum principle for harmonic functions, $h_{2}=0$ on $L\left(x_{0}^{\prime}\right)$. Thus $h_{2}=0$ on $U^{\prime} \times \mathbf{R}^{m-k}$. Again by uniqueness of real analytic continuation, we conclude the assertion.

Thus by Lemma 4, we conclude that $h=-h_{1}$
on V, and hence $-h_{1}$ is the desired extension of h.
Acknowledgements. The author would like to express hearty thanks to Profs. Hiroshi Yamaguchi and Masahiko Taniguchi for their helpful comments. This research was partially supported by Yoshida Scholarship Foundation.

References

[1] D. H. Armitage and S. J. Gardiner, Conditions for separately subharmonic functions to be subharmonic, Potential Anal. 2 (1993), no. 3, 255-261.
[2] V. Avanissian, Sur l'harmonicité des fonctions séparément harmoniques, in Séminaire de Probabilités (Univ. Strasbourg, Strasbourg, 1966/67), Vol. I, 3-17, Springer, Berlin, 1967.
[3] J.-M. Hécart, Ouverts d'harmonicité pour les fonctions séparément harmoniques, Potential Anal. 13 (2000), no. 2, 115-126.
[4] M. Hervé, Analytic and plurisubharmonic functions in finite and infinite dimensional spaces, Lecture Notes in Math., 198, Springer, Berlin, 1971.
[5] S. Kołodziej and J. Thorbiörnson, Separately harmonic and subharmonic functions, Potential Anal. 5 (1996), no. 5, 463-466.
[6] P. Lelong, Fonctions plurisousharmoniques et fonctions analytiques de variables réelles, Ann. Inst. Fourier (Grenoble) 11 (1961), 515-562.
[7] J. Siciak, Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of C^{n}, Ann. Polon. Math. 22 (1969/1970), 145-171.
[8] J. Siciak, Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of \mathbf{C}^{n}, Ann. Polon. Math. 22 (1969), 145-171.
[9] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971.
[10] J. Wiegerinck, Separately subharmonic functions need not be subharmonic, Proc. Amer. Math. Soc. 104 (1988), no. 3, 770-771.
[11] U. Cegrell and H. Yamaguchi, Representation of magnetic fields by jump theorem for harmonic functions. (to appear).
[12] V. P. Zaharjuta, Separately analytic functions, generalizations of the Hartogs theorem, and envelopes of holomorphy, Mat. Sb. (N.S.) 101(143) (1976), no. 1, 57-76, 159.

[^0]: 2000 Mathematics Subject Classiffcation. Primary 31C05, 33 E99.

