Abelian varieties over Q associated with an imaginary quadratic field

By Tetsuo Nakamura
Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
(Communicated by Heisuke Hironaka, M.J.a., Oct. 12, 2007)

Abstract

For an imaginary quadratic field K with class number h, we shall characterize h-dimensional CM abelian varieties over K which descend to abelian varieties over \mathbf{Q}. These CM abelian varieties have minimal dimension h both over K and over Q.

Key words: abelian variety; ellptic curve; complex multiplication; Hecke character.

Let K be an imaginary quadratic field with class number h. We shall characterize h-dimensional CM abelian varieties over K which descend to abelian varieties over the rational number field \mathbf{Q} by their algebraic Hecke characters. If an abelian variety A over K has complex multiplication, then the dimension of A is $h\left[H_{g}(\operatorname{Im} \epsilon): H_{g}\right]$ or $2 h\left[H_{g}(\operatorname{Im} \epsilon): H_{g}\right]$. Here H_{g} is the genus class field of K (Proposition 2). Hence our CM abelian varieties have minimal dimension h both over K and over \mathbf{Q}. Under the conditions that $\operatorname{End}_{\mathbf{Q}}(A) \otimes \mathbf{Q}$ are maximal real subfields of $\operatorname{End}_{K}(A) \otimes \mathbf{Q}$ and some restrictions on the conductors of A, such abelian varieties are investigated in Yang [5]. In this note removing the above conditions, we treat these abelian varieties in general. We shall give a characterization of the associated characters of them (Theorem 1). In the final section we explicitely determine such characters.

Notation:

K : an imaginary quadratic field.
D : the discriminant of K.
H : the Hilbert class field of K.
h : the class number of K.
$I(\mathfrak{f})$: the group of fractional ideals of K prime to \mathfrak{f}. (\mathfrak{f} is an integral ideal of K)
$P(\mathfrak{f})$: the group of principal ideals of K prime to \mathfrak{f}. ρ : the complex conjugation of \mathbf{C}.
For an abelian variety A over a number field k, we put $\mathcal{E}_{k}(A)=\operatorname{End}_{k}(A) \otimes \mathbf{Q}$, the endomorphism algebra of A over k. All number fields are considered as subfields of \mathbf{C}.

1. CM Abelian varieties over \boldsymbol{K}. Let A be a CM abelian variety over an imaginary quad-

[^0]ratic field K. We suppose that A is simple over K. Let ψ_{A} be the associated algebraic Hecke character of A over K, of conductor \mathfrak{f}. Then there is a character ϵ of $\left(O_{K} / \mathfrak{f}\right)^{\times}$such that
$$
\psi_{A}((\alpha))=\epsilon(\alpha) \alpha \quad((\alpha) \in P(\mathfrak{f}))
$$

We say that A is of type ϵ or ϵ is associated to A (or to ψ_{A}). Clearly ϵ satisfies $\epsilon(-1)=-1$ and for ideal class characters χ of $K, \psi_{A} \chi$ are the algebraic Hecke characters associated to ϵ (see [5, § 3]). Let $I_{g}(\mathfrak{f})=\left\{\mathfrak{a} \in I(\mathfrak{f}) ; \mathfrak{a}^{2}\right.$ is principal $\}$. We put

$$
T=K\left(\left\{\psi_{A}(\mathfrak{a}) \mid \mathfrak{a} \in I(\mathfrak{f})\right\}\right)
$$

and

$$
T_{g}=K\left(\left\{\psi_{A}(\mathfrak{a}) \mid \mathfrak{a} \in I_{g}(\mathfrak{f})\right\}\right) .
$$

Let $r+1$ be the number of prime factors of D. Applying the argument in [3], we obtain ([5, Prop. 3.2])

Proposition 1. We have: $\left[T_{g}: K\right] \geqq 2^{r},\left[T: T_{g}\right]=h / 2^{r}$ and $T_{g} \supset \operatorname{Im} \epsilon$.

Now we look the structure of T_{g} more closely. Let \mathfrak{f} be the conductor of ϵ. Let p_{1}, \ldots, p_{r+1} be the set of prime divisors of D. Let \mathfrak{p}_{i} denote the prime ideal of K such that $\mathfrak{p}_{i}^{2}=\left(p_{i}\right)$ and \mathfrak{l}_{i} a prime ideal of K prime to \mathfrak{f}, which belongs to the same ideal class of $\mathfrak{p}_{i}(i=1, \ldots, r+1)$. It is well known that the genus ideal class group $I_{g}(\mathfrak{f}) / P(\mathfrak{f})$ is generated by $\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{r+1}$. We denote by H_{g} the genus class field of K. Note that $\left[H_{g}: K\right]=2^{r}$. Denote by w_{0} a generator of 2 -Sylow subgroup of $\operatorname{Im} \epsilon$. Since $\mathfrak{l}_{i}^{2}=a_{i}^{2} \mathfrak{p}_{i}^{2}(i=1, \ldots, r+1)$ for some $a_{i} \in K^{\times}$, we have

$$
\psi_{A}\left(\mathfrak{l}_{i}\right)=\sqrt{\epsilon\left(p_{i} a_{i}^{2}\right) p_{i} a_{i}^{2}}=\sqrt{w_{i} p_{i}} a_{i}^{\prime} z
$$

where $a_{i}^{\prime} \in K^{\times}, w_{i} \in\left\langle w_{0}\right\rangle, z \in \operatorname{Im} \epsilon$. Putting $t_{p_{i}}=$ $\sqrt{w_{i} p_{i}}$, we get

$$
T_{g}=K\left(\operatorname{Im} \epsilon, t_{p}(p \mid D)\right)
$$

We easily have the following relations:

$$
\begin{gathered}
\prod_{p \mid D} t_{p} \in K(\operatorname{Im} \epsilon)^{\times} \quad(\text { if } D \not \equiv 4 \bmod 8) \\
\prod_{p \mid(D / 4)} t_{p} \in K(\operatorname{Im} \epsilon)^{\times} \quad(\text { if } D \equiv 4 \bmod 8) .
\end{gathered}
$$

In the following Proposition 2 we give an expression of dimension of A. Its proof is essentially those of Theorem 3.4 and Theorem 3.5 in [5].

Proposition 2. We suppose $h>1$. Let A be a simple $C M$ abelian variety over K and ϵ the associated character of A over K, of order m. Let w_{0} be as above. Then we have

$$
\operatorname{dim} A= \begin{cases}h\left[H_{g}(\operatorname{Im} \epsilon): H_{g}\right] & \text { if } \sqrt{w_{0}} \notin T_{g} \\ 2 h\left[H_{g}(\operatorname{Im} \epsilon): H_{g}\right] & \text { if } \sqrt{w_{0}} \in T_{g}\end{cases}
$$

In particular $\operatorname{dim} A=h$ if and only if one of the following conditions holds:
(1) $m=2$. A is isogenous to the scalar restriction $\operatorname{Res}_{H / K}(E)$ of an elliptic curve E over H.
(2) $m=6,3 \mid D$ and $\epsilon_{0}\left(3 a_{1}^{2}\right)=-1$.
(3) $m=4,2 \mid D$ and $\epsilon_{0}\left(2 a^{2}\right)$ is of order 4 .
(4) $m=12,6|D, 4| h, \epsilon_{0}\left(3 a_{1}^{2}\right)= \pm 1$ and $\epsilon_{0}\left(2 a^{2}\right)$ is of order 4 .
Here ϵ_{0} denotes the 2-power order part of ϵ and $a_{1}, a \in K^{\times}$are chosen such that $3 a_{1}^{2}$ and $2 a^{2}$ are prime to the conductor of ϵ_{0}. (Clearly the choices do not affect the statements above.)

Remark 1. The condition $\epsilon_{0}\left(3 a_{1}^{2}\right)= \pm 1$ in (4) of Proposition 2 is missing in [5, Th 3.5 (4)]. It is necessary.

Remark 2. For $h=1$ we have a result similar to Proposition 2 and Theorem 1. It is a little bit different.

Proof. Suppose $D \not \equiv 4 \bmod 8$. Then $\sqrt{-1} \notin$ H_{g} and $T_{g}\left(\sqrt{w_{0}}\right)=H_{g}\left(\sqrt{w_{0}}, \operatorname{Im} \epsilon\right)$. We can check that $\left[H_{g}\left(\sqrt{w_{0}}, \operatorname{Im} \epsilon\right): H_{g}(\operatorname{Im} \epsilon)\right]=2$. Suppose $D \equiv$ $4 \bmod 8$. Then $\sqrt{-1} \in H_{g}, \sqrt{2} \notin H_{g}$ and $T_{g}\left(\sqrt{w_{0}}\right)=$ $H_{g}\left(\sqrt{w_{0}}, \sqrt{2}, \operatorname{Im} \epsilon\right)$. We also have $\left[H_{g}\left(\sqrt{w_{0}}\right.\right.$, $\left.\sqrt{2}, \operatorname{Im} \epsilon): H_{g}(\operatorname{Im} \epsilon)\right]=2 . \quad$ Noting $\quad \operatorname{dim} A=$ $[T: K]=h\left[T_{g}: K\right] /\left[H_{g}: K\right]$, we obtain our first assertion.

If $\operatorname{dim} A=h$, then $\sqrt{w_{0}} \notin T_{g}$ and $H_{g}(\operatorname{Im} \epsilon)=$ H_{g}. This implies $m \mid 12$. Furthermore if $3 \mid m$, then $\sqrt{-3} \in H_{g}(\sqrt{-1})$ or $H_{g}(\sqrt{2})$ and this shows $3 \mid D$. If $4 \mid m$ and $D \not \equiv 4 \bmod 8$, then $H_{g}(\sqrt{-1})=$
$T_{g}(\sqrt{-1}, \sqrt{2})$ and this shows $D \equiv 0 \bmod 8$.
(1) $m=2$. Then ϵ determines an elliptic curve E over H and $A=\operatorname{Res}_{H / K}(E)$ (the restriction of scalars of E from H to K) is an abelian variety of dimension h over K of type ϵ.
(2) $m=6$. In this case $3 \mid D$ and $\sqrt{-3} \in T_{g}$. Then $[T: K]=h$ is equivalent to $\sqrt{-1} \notin T_{g}$. Hence $t_{3}=\sqrt{-3}$, so that $\epsilon_{0}\left(3 a_{1}^{2}\right)=-1$.
(3) $m=4$. Since $w_{0}=\sqrt{-1},[T: K]=h$ is equivalent to $T_{g}\left(\sqrt{w_{0}}\right)=H_{g}\left(\sqrt{w_{0}}\right) \supsetneqq H_{g}$, hence $\sqrt{2} \notin T_{g}$. Noting $t_{2}=\sqrt{\epsilon_{0}\left(2 a^{2}\right) 2} \in T_{g}$, it follows that $\operatorname{dim} A=h$ is equivalent to $\epsilon_{0}\left(2 a^{2}\right)= \pm \sqrt{-1}$.
(4) $m=12$. In this case $6 \mid D$ and $T_{g}=$ $K\left(\sqrt{-1}, t_{p}(p \mid D)\right)$. As in (3), if $[T: K]=h$, we have $\epsilon_{0}\left(2 a^{2}\right)= \pm \sqrt{-1}$. Since $\left(t_{3} / \sqrt{3}\right)^{2}=\epsilon_{0}\left(3 a_{1}^{2}\right)$ and $\sqrt{w_{0}} \notin T_{g}$, we obtain $\epsilon_{0}\left(3 a_{1}^{2}\right)= \pm 1$. The converse is obvious.

2. Descent of abelian varieties.

Lemma 1. Let B be an abelian variety over a number field M. Let L / M be a quadratic extension in the algebraic closure \bar{M} of M. Let $\langle\tau\rangle=$ $\operatorname{Gal}(L / M)$ and τ is extended to an automorphism of \bar{M}. Assume that over L, B is a simple abelian variety with complex multiplication by a CM field $T(\subset \bar{M})$. Let ψ_{B} be the Hecke character of (B, θ) with an isomorphism $\theta: T \rightarrow \mathcal{E}_{L}(B)$. Then $\psi_{B}^{\tau}\left(=\tau \psi_{B} \tau^{-1}\right)$ is the Hecke character of $\left(B, \theta \tau_{0} \tau\right)$ where $\tau_{0}: T \rightarrow T$ is an automorphism induced by $\psi_{B}(\mathfrak{P}) \rightarrow \psi_{B}\left(\mathfrak{P}^{\tau}\right)$ for prime ideals \mathfrak{P} of L prime to the conductor of ψ_{B}.

Proof. By [4, Prop. 1], ψ_{B}^{τ} is the Hecke character of $\left(B, \tau \theta \tau^{-1}\right)$. Since $\theta\left(\psi_{B}(\mathfrak{P})^{\tau}\right)$ is the Frobenius endomorphism of $B \bmod \mathfrak{P}^{\tau}$, we have $\theta\left(\psi_{B}\left(\mathfrak{P}^{\tau}\right)\right)=$ $\theta\left(\psi_{B}(\mathfrak{P})\right)^{\tau}$, so that $\tau \theta=\theta \tau_{0}$.

Theorem 1. The notation being as in Proposition 2 and assume $h>1$. Let A be an h dimensional CM abelian variety over K. Let ϵ be the associated character of A. (Hence ϵ satisfies the conditions of Proposition 2.) Then A can be descended to an abelian variety over \mathbf{Q} if and only if ϵ satisfies one of the following conditions.
(1) $m=2, \epsilon^{\rho}=\epsilon$.
(2) $m=6$.
(2-i) $\epsilon^{\rho}=\epsilon$ and $\epsilon_{0}\left(3 a_{1} a_{1}^{\rho}\right)=1$.
(2-ii) $\epsilon^{\rho}=\epsilon^{-1}$ and $\epsilon_{0}\left(3 a_{1} a_{1}^{\rho}\right)=-1$.
(3) $m=4$. $(3-\mathrm{i}) \epsilon^{\rho}=\epsilon$ and $\epsilon\left(2 a a^{\rho}\right)=1$.
(3-ii) $\epsilon^{\rho}=\epsilon^{-1}$ and $\epsilon\left(2 a a^{\rho}\right)=\epsilon\left(2 a^{2}\right)$ is of order 4 .
(4) $m=12$.
(4-i) $\epsilon^{\rho}=\epsilon, \epsilon_{0}\left(2 a a^{\rho}\right)=1$ and $\epsilon_{0}\left(3 a_{1} a_{1}^{\rho}\right)=1$.
(4-ii) $\epsilon^{\rho}=\epsilon^{5}, \epsilon_{0}\left(2 a a^{\rho}\right)=1$ and $\epsilon_{0}(3)=-1$.
(4-iii) $\epsilon^{\rho}=\epsilon^{7}, \epsilon_{0}\left(3 a_{1} a_{1}^{\rho}\right)=-1$ and $\epsilon_{0}\left(2 a a^{\rho}\right)=\epsilon_{0}\left(2 a^{2}\right)$ is of order 4 .
(4-iv) $\epsilon^{\rho}=\epsilon^{-1}$ and $\epsilon_{0}\left(2 a a^{\rho}\right)=\epsilon_{0}\left(2 a^{2}\right)$ is of order 4 . (In case (4-ii) and (4-iv), the conductor of ϵ_{0} is prime to 3.)

Proof. Let ψ_{A} be the Hecke character over K associated to (A, θ) with $\theta: T \rightarrow \mathcal{E}_{K}(A)$. Assume that A descends to an abelian variety over \mathbf{Q}. By Lemma 1, $\psi_{A}^{\rho}\left(=\rho \psi_{A} \rho^{-1}\right)$ is the Hecke character of $\left(A, \theta \tau_{0} \rho^{-1}\right)$ for some $\tau_{0}: T \rightarrow T$. Then we have $\rho \psi_{A} \rho^{-1}=\rho \tau_{0}^{-1} \psi_{A}$. Since $\rho \tau_{0}^{-1} \epsilon=\epsilon^{i}$ for an integer i prime to m, we get $\epsilon^{\rho}=\epsilon^{i}$.
(1) $m=2$. Assume $\epsilon^{\rho}=\epsilon$. Let E be an elliptic curve over H associated to ϵ. We may assume that $\rho\left(j_{E}\right)=j_{E}$. By $[1, \S 10], E$ descends to $F=$ $\mathbf{Q}\left(j_{E}\right) \subset H$. Then $\operatorname{Res}_{H / K}(E)$ is an h-dimensional abelian variety over K of type ϵ and descends to $\operatorname{Res}_{F / \mathbf{Q}}(E)$.
(2) $m=6$. In this case we must have $\epsilon^{\rho}=\epsilon^{ \pm 1}$. As in (1) let E be an elliptic curve over H associated to ϵ_{0}. Let k_{1} / H be the extension of degree 3 corresponding to $\epsilon_{1}=\epsilon_{0} \epsilon$. k_{1} is Galois over \mathbf{Q}. Then $\operatorname{Res}_{k_{1} / H}(E)$ is isogenous to $E \times A_{0}$ where A_{0} is a 2 dimensional abelian variety over H, which is of type ϵ. We see that $\psi_{A_{0}}=\psi_{A} \circ N_{H / K}$ has values in $S=$ $K(\sqrt{-3}) \subset T$ and A_{0} can be descended to $F=\mathbf{Q}\left(j_{E}\right)$. By Lemma 1 there exists $\tau_{0} \in \operatorname{Aut} S$ such that $\psi_{A_{0}} \rho=\tau_{0} \psi_{A_{0}}$ and $\tau_{0}=\rho$ on K.

Claim. If $\epsilon^{\rho}=\epsilon$, then $\tau_{0}=\rho$ on S. If $\epsilon^{\rho}=\epsilon^{-1}$, then $\tau_{0}(\sqrt{-3})=\sqrt{-3}$.

Proof of Claim. Assume first $\epsilon^{\rho}=\epsilon$. Since there exists $\alpha \in K$ such that $\psi_{A_{0}}((\alpha))=\epsilon(\alpha) \alpha$ where $\epsilon(\alpha)$ is a primitive 3 rd root of unity, $\psi_{A_{0}}\left(\left(\alpha^{\rho}\right)\right)=\epsilon\left(\alpha^{\rho}\right) \alpha^{\rho}=\epsilon(\alpha) \alpha^{\rho}$, so that $\tau_{0}=\rho$. If $\epsilon^{\rho}=$ ϵ^{-1}, then $\psi_{A_{0}}\left(\left(\alpha^{\rho}\right)\right)=\epsilon(\alpha) \alpha^{\rho}=\psi_{A_{0}}((\alpha))^{\tau_{0}}$. Hence $\tau_{0}(\epsilon(\alpha))=\epsilon(\alpha)$. This proves Claim.

Let L_{1} be the subfield of H corresponding to $\left\langle\mathfrak{p}_{3}\right\rangle$ in the ideal class group $\mathrm{Cl}(K)$ of K with $\mathfrak{p}_{3}^{2}=(3)$. Denote by F_{1} the fixed subfield of L_{1} by ρ. Put $B=\operatorname{Res}_{F / F_{1}}\left(A_{0}\right)$. Then B is isogenous to $A_{1} \times$ A_{1}^{\prime} over L_{1} with $\psi_{A_{1}}=\psi_{A} \circ N_{H / L_{1}}$ and $\psi_{A_{1}^{\prime}}=\psi_{A_{1}} \chi_{1}$, where χ_{1} is a character of $\mathrm{Cl}(K)$ such that $\chi\left(\mathfrak{p}_{3}\right)=$ -1 . We have

$$
\mathcal{E}_{L_{1}}(B) \cong S[T] /\left(T^{2}-t_{3}^{2}\right) \cong S \oplus S
$$

where $t_{3}=\sqrt{-3}$. The conditions (2-i) and (2-ii) are equivalent to $\psi_{A_{1}} \rho=\tau_{0} \psi_{A_{1}}$. If this holds, we have $\psi_{A_{1}^{\prime}} \rho=\tau_{0} \psi_{A_{1}^{\prime}}$ and $\mathcal{E}_{F_{1}}(B) \cong S_{0} \oplus S_{0}$ with $S_{0}=$ $\mathcal{E}_{F}\left(A_{0}\right)$. This implies that A_{1} and A_{1}^{\prime} can be descended to F_{1} and hence $A=\operatorname{Res}_{L_{1} / K}\left(A_{1}\right)$ can
be descended to \mathbf{Q}. Conversely if A is descended to \mathbf{Q}, then $\psi_{A} \rho=\tau \psi_{A}$ for some $\tau \in \operatorname{Aut} \mathbf{C}$. This shows $\psi_{A_{1}} \rho=\tau \psi_{A_{1}}$. Then $\mathcal{E}_{F_{1}}(B) \cong S_{1} \oplus S_{1}$ with $S_{1}=$ $\{a \in S \mid \tau(a)=a\}$. Since $\mathcal{E}_{F_{1}}(B)$ is S_{0}-algebra, we find $S_{0}=S_{1}$, so that $\tau=\tau_{0}$. Hence (2-i) or (2-ii) holds.
(3) $m=4$. We have $\epsilon^{\rho}=\epsilon^{ \pm 1}$. Let k / H be the quadratic extension corresponding to ϵ^{2} and let E be an elliptic curve defined over k corresponding to ϵ. Since k / \mathbf{Q} is Galois and $\mathbf{Q}\left(j_{E}\right)$ has a real place, we may assume that E is defined over $F^{\prime}\left(\mathbf{Q}\left(j_{E}\right) \subset\right.$ $F^{\prime} \subset k$), which is fixed by ρ (cf. [1; §10]). Put $A_{0}=\operatorname{Res}_{k / H}(E)$. Then A_{0} descends to $\operatorname{Res}_{F^{\prime} / F}(E)$ over F. By analogous argument as in (2), we obtain; $\mathcal{E}_{H}\left(A_{0}\right) \cong K(\sqrt{-1})$ and there exists $\tau_{0} \in$ $\operatorname{Aut}(K(\sqrt{-1}))$ such that $\psi_{A_{0}} \rho=\tau_{0} \psi_{A_{0}}$ with $\tau_{0}=\rho$ on K. Let L be the subfield of H corresponding to $\left\langle\mathfrak{p}_{2}\right\rangle$ in $\mathrm{Cl}(K)$ with $\mathfrak{p}_{2}^{2}=(2)$. Denote by F_{2} the fixed subfield of L by ρ. Put $B=\operatorname{Res}_{F / F_{2}}\left(A_{0}\right)$. Then B is isogenous over L to a direct product $A_{1} \times A_{1}^{\prime}$ of abelian varieties and $\mathcal{E}_{L}(B) \cong S \oplus S$ with $S=$ $K(\sqrt{-1})$. As in (2) we see that $A=\operatorname{Res}_{L / K}\left(A_{1}\right)$ can be descended to \mathbf{Q} if and only if A_{1} can be descended to F_{2}. Also this is equivalent to $\psi_{A_{1}} \rho=$ $\tau_{0} \psi_{A_{1}}$, and we can check easily that this is equivalent to our statement (3) in Theorem 1.
(4) $m=12$. Let $\epsilon=\epsilon_{0} \epsilon_{1}$. If A is defined over \mathbf{Q}, then $\epsilon_{0}^{\rho}=\epsilon_{0}^{ \pm 1}$ and $\epsilon_{1}^{\rho}=\epsilon_{1}^{ \pm 1}$. Let k and k_{1} be the extensions of H corresponding to ϵ_{0}^{2} and ϵ_{1}, respectively. Using ϵ_{0}, we define E and $A_{0}=\operatorname{Res}_{k / H}(E)$ as in (3). Then $\operatorname{Res}_{k_{1} / H}\left(A_{0}\right)$ is isogenous to $A_{0} \times A_{0}^{\prime}$ over H, where A_{0}^{\prime} is a 4-dimensional abelian variety corresponding to ϵ with $\mathcal{E}_{H}\left(A_{0}^{\prime}\right)=K(\sqrt{-1}, \sqrt{-3})$. Since A_{0} is defined over F, we may assume that A_{0}^{\prime} is defined over F. As in case (2) and (3), there exists $\tau_{0} \in \operatorname{Aut}(K(\sqrt{-1}, \sqrt{-3}))$ such that $\psi_{A_{0}^{\prime}} \rho=\tau_{0} \psi_{A_{0}^{\prime}}$. Let L_{0} be the subfield of H corresponding to $\left\langle\mathfrak{p}_{2}, \mathfrak{p}_{3}\right\rangle$ in $\mathrm{Cl}(K)$ and denote by F_{0} the fixed subfield of L_{0} by ρ. Put $B=\operatorname{Res}_{F / F_{0}}\left(A_{0}^{\prime}\right)$. Then over L_{0}, B is isogenous to a product $C_{1} \times C_{2} \times C_{3} \times C_{4}$ of four abelian varieties. It follows that $A_{i}=\operatorname{Res}_{L_{0} / K}\left(C_{i}\right)$ $(i=1,2,3,4)$ are abelian varieties over K of type ϵ and $\psi_{A_{i}}=\psi_{A_{1}} \chi_{i}(i=2,3,4)$, where χ_{i} are characters of $\mathrm{Cl}(K)$ such that they induce on $\left\langle\mathfrak{p}_{2}, \mathfrak{p}_{3}\right\rangle$ distinct non-trivial characters. A is isogenous to one of $A_{i}(i=1,2,3,4)$. As in case (2) and (3), A can be descended to \mathbf{Q} if and only if $\psi_{C_{1}} \rho=\tau_{0} \psi_{C_{1}}$. We can check that this is equivalent to the statement (4) in Theorem 1. For example, in case (4-ii), we have $\epsilon_{0}\left(3 a_{1}^{2}\right)=\epsilon_{0}\left(3 a_{1} a_{1}^{\rho}\right)=-1$. If the conductor
of ϵ_{0} is not prime to 3 , write $\epsilon_{0}=\eta_{3} \cdot \eta$, where η_{3} has conductor \mathfrak{p}_{3} (see [2; §3]) and η has conductor prime to 3 . Putting $a_{1}=\sqrt{D} / 3$, we see $3 a_{1}^{2}=$ $-3 a_{1} a_{1}^{\rho}$. Since $\eta_{3}(-1)=-1$, it follows that $\epsilon_{0}\left(3 a_{1}^{2}\right)=$ $\eta_{3}\left(3 a_{1}^{2}\right) \eta(3)=\eta_{3}\left(-3 a_{1} a_{1}^{\rho}\right) \eta(3)=-\epsilon_{0}\left(3 a_{1} a_{1}^{\rho}\right)$, a contradiction. Hence the conductor of ϵ_{0} is prime to 3 .
3. Construction of characters. We are going to construct explicitely characters ϵ over K with the following property; the CM abelian variety A over K of type ϵ can be descended to \mathbf{Q} and has dimension h. The characterization of such ϵ is given in Theorem 1. Let m be the order of ϵ.

1. $m=2$. Then ϵ corresponds to a \mathbf{Q}-curve over H whose Hecke character satisfy the condition (Sh) in $[2, \S 4]$. Such ϵ exists only when D is divisible by 8 or D has a prime divisor q with $q \equiv-1 \bmod 4$. A classification of ϵ is given in [2, Theorem 2 and Theorem 3].
2. $m=6$. Let $\epsilon=\epsilon_{0} \epsilon_{1}$ be the decomposition such that ϵ_{0} has order 2 and ϵ_{1} has order 3 . Then ϵ_{0} is a character in Case 1. Since $\epsilon_{1}^{\rho}=\epsilon_{1}^{ \pm 1}$, ϵ_{1} corresponds to a cubic extension k_{1} / H such that k_{1} / \mathbf{Q} is Galois.
3. $m=4$. For a rational prime ℓ, we denote by U_{ℓ} the local unit group $U\left(K \otimes \mathbf{Q}_{\ell}\right)$ at ℓ. We can think of ϵ as a character of $U_{K}=\prod_{\ell} U_{\ell}$. Then we can write uniquely $\epsilon=\prod_{\ell} \epsilon_{\ell}$, where ϵ_{ℓ} is a character of U_{ℓ} of order dividing 4. It is obvious that $\epsilon^{\rho}=\epsilon$ (resp. $\epsilon^{\rho}=\epsilon^{-1}$) if and only if $\epsilon_{\ell}^{\rho}=\epsilon_{\ell}$ (resp. $\epsilon_{\ell}^{\rho}=\epsilon_{\ell}^{-1}$) for every ℓ. Let us ask for a local character λ of U_{ℓ} of order 4 such that $\lambda^{\rho}=\lambda^{ \pm 1}$ and $\lambda\left(2 a^{2}\right)$ is of order 4, where $2 a^{2}\left(a \in K^{\times}\right)$is prime to ℓ.
(i) $\ell \not \backslash D$. Since $\lambda^{\rho}=\lambda^{ \pm 1}$, we find that $\lambda\left(\mathbf{F}_{\ell}^{\times}\right)=$ ± 1 and $\lambda\left(2 a^{2}\right)=\lambda(2)= \pm 1$.
(ii) $\ell \mid D, \ell \neq 2$. Since $\lambda^{2}(2)=\left(\frac{2}{\ell}\right)=-1$, we must have $\ell \equiv 5 \bmod 8$. In this case there exists only two characters $\lambda^{ \pm 1}$ of order 4 such that $\lambda^{\rho}=$ λ^{-1} and $\lambda(2)$ is of order 4.
(iii) $\ell=2$. We use the notation of [2, § 2]. Let X_{2}^{0} be the set of characters $\nu: U_{2} \rightarrow \pm 1$ such that $\nu^{\rho}=\nu$. We cosider in cases.
I. $D \equiv-4 m$ with $m=1+4 k$. If we put $a=$ $\frac{1+\sqrt{-m}}{2}$, then $2 a^{2}=\sqrt{-m}-2 k$ and $2 a a^{\rho}=1+2 k$. Since $\lambda^{2} \in X_{2}^{0}=\left\langle\eta_{-4}, \epsilon_{8}\right\rangle$ by [2, Proposition 2], we have $\lambda\left(\mathbf{Z}_{2}^{\times}\right)= \pm 1$. Put $c_{1}=\sqrt{-m}$ and $c_{3}=3-$ $2 \sqrt{-m}\left(\in 1+\mathfrak{p}_{2}^{3}\right)$, then

$$
\left(1+\mathfrak{p}_{2}\right) /\left(1+\mathfrak{p}_{2}^{6}\right) \cong\left\langle c_{1}\right\rangle \times\left\langle c_{3}\right\rangle \times\langle 5\rangle
$$

where $\left\langle c_{1}\right\rangle$ and $\left\langle c_{3}\right\rangle$ are cyclic of oeder 4 . Let δ
be a character of U_{2} such that $\delta\left(c_{1}\right)=\sqrt{-1}$, $\delta\left(c_{3}\right)=\delta(5)=1$. Then $\delta^{\rho}=\delta, \delta^{2}=\eta_{-4}, \delta(-1)=$ -1 and $\delta\left(2 a^{2}\right)$ is of order 4 . We have

$$
\delta\left(2 a a^{\rho}\right)=\left\{\begin{aligned}
1 & \text { if } m \equiv 1 \bmod 8 \\
-1 & \text { if } m \equiv 5 \bmod 8
\end{aligned}\right.
$$

Let ϕ be a character of U_{2} such that $\phi\left(c_{3}\right)=\sqrt{-1}$ and $\operatorname{Ker} \phi=\left\langle c_{1}, \mathbf{Z}_{2}^{\times}\right\rangle$. Then $\phi^{\rho}=\phi$ and $\phi\left(2 a a^{\rho}\right)=$ 1. Moreover we have; if $m \equiv 1 \bmod 8$, then $\phi^{2}=\epsilon_{8}$ and $\phi\left(2 a^{2}\right)= \pm 1$; if $m \equiv 5 \bmod 8$, then $\phi^{2}=\epsilon_{8} \eta_{-4}$ and $\phi\left(2 a^{2}\right)$ is of order 4 . Therefore if $m \equiv 1 \bmod 8$, δ and $\delta \phi$ satisfy the condition (3-i) of Theorem 1. For an odd prime divisor p of D, η_{p} denotes the unique quadratic character of U_{p}. If $m \equiv 5 \bmod 8$, then m has a prime divisor p with $p \equiv 5 \bmod 8$ or a pair of prime divisors q_{1}, q_{2} satisfying $q_{1} \equiv 3 \bmod 8$ and $q_{2} \equiv-1 \bmod 8$. We check easily that $\eta_{p} \delta$ and $\eta_{q_{1}} \eta_{q_{2}} \delta$ satisfy the condition (3-i) of Theorem 1 . We denote by δ_{0} either $\eta_{p} \delta$ or $\eta_{q_{1}} \eta_{q_{2}} \delta$. Further if $m(m \equiv$ $5 \bmod 8)$ has a prime divisor q with $q \equiv 7 \bmod 8$, then $\eta_{q} \phi$ also satisfies the condition (3-i) of Theorem 1.
II. $D=-8 m$. We put $a=\sqrt{-2 m} / 2$. Then $-m=2 a^{2}$ and $m=2 a a^{\rho}$. By [2, Proposition 2], $X_{2}^{0}=\left\langle\eta_{-8}, \epsilon_{4}\right\rangle$ if $m \equiv 1 \bmod 4$ and $X_{2}^{0}=\left\langle\eta_{8}, \epsilon_{4}\right\rangle$ if $m \equiv-1 \bmod 4$. If $m \equiv 1 \bmod 4$, then $\lambda^{2}=\epsilon_{4}$ because $\eta_{-8}(-1)=-1$. Since $\epsilon_{4}(-m)=1$, we see $\lambda(-m)= \pm 1$. Hence there are no characters satisfying (3) of Theorem 1 in this case.

Suppose $m \equiv-1 \bmod 4$. Let κ be a character of $(\mathbf{Z} / 32 \mathbf{Z})^{\times}$such that $\kappa(5)$ is of order 8 and $\kappa(-1)=1$. Define $\omega=\kappa \circ \mathrm{N}_{K / \mathbf{Q}}$. Then ω is a character of U_{2} of order 4 with the following properties; if $m \equiv 3 \bmod 8$, then $\omega(\pm m)$ is of order 4 and $\omega^{2}=$ $\eta_{8} \epsilon_{4}$ and if $m \equiv 7 \bmod 8$, then $\omega(\pm m)= \pm 1$ and $\omega^{2}=\eta_{8}$. Put $c_{1}=1+\sqrt{-2 m}$, then $U_{2} / \mathbf{Z}_{2}^{\times} U_{2}^{4} \cong\left\langle c_{1}\right\rangle$ is cyclic of order 4 . Hence we can define a character ϕ of U_{2} of order 4 by $\phi\left(c_{1}\right)=\sqrt{-1}$ and $\phi\left(\mathbf{Z}_{2}^{\times}\right)=1$. We have $\phi^{\rho}=\phi$ and $\phi^{2}=\epsilon_{4}$. Since $m \equiv 3 \bmod 8, m$ has a prime divisor q with $q \equiv 3 \bmod 4$. Then $\lambda_{1}=$ $\eta_{q} \omega$ satisfies the condition (3-ii) of Theorem 1.

Summing up the above arguments, we obtain the following results.
(a) The set of characters \mathcal{C} satisfying the condition (3-i).
Let Y be the set of quadratic characters χ of U_{K} such that

$$
\chi^{\rho}=\chi, \quad \chi(-1)=\chi\left(2 a a^{\rho}\right)=1
$$

If $D=-4 m, m \equiv 1 \bmod 8$, then $\mathcal{C}=\delta Y \cup \delta \phi Y$.

If $D=-4 m, m \equiv 5 \bmod 8$, then $\mathcal{C}=\delta_{0} Y$. Furthermore if m has a prime divsor q with $q \equiv 7 \bmod 8$, then $\mathcal{C}=\eta_{q} \phi Y$.
(b) The set of characters \mathcal{C}^{\prime} satisfying the condition (3-ii).
Let Y^{\prime} be the set of characters χ of U_{K} of order dividing 4 such that

$$
\chi^{\rho}=\chi^{-1}, \quad \chi(-1)=1, \quad \chi\left(2 a^{2}\right)=\chi\left(2 a a^{\rho}\right)= \pm 1
$$

If D has a prime divisor p with $p \equiv 5 \bmod 8$, we have $\mathcal{C}^{\prime}=\lambda_{p} Y^{\prime}$.
If $D=-8 m$ with $m \equiv 3 \bmod 8$, for a prime divisor q of D with $q \equiv 3 \bmod 4$, we have $\mathcal{C}^{\prime}=\eta_{q} \omega Y^{\prime}$.

Remark 3. In case $D=-8 m$ with $m \equiv$ $3 \bmod 8$, the character $\lambda_{2}=\eta_{-8} \phi \omega$ satisfies

$$
\lambda_{2}^{\rho}=\lambda_{2}^{-1}, \lambda_{2}(-1)=-1, \lambda_{2}(-m): \text { of order } 4
$$

Since $\lambda_{2}(-m) \neq \lambda_{2}(m), \lambda_{2}$ does not satisfy (3-ii).
4. $m=12$. Let $\epsilon=\epsilon_{0} \epsilon_{1}$ be the decomposition
such that ϵ_{0} has order 4 and ϵ_{1} has order 3 . According to $\epsilon_{1}^{\rho}=\epsilon_{1}$ or $\epsilon_{1}^{\rho}=\epsilon_{1}^{-1}$, it suffices to choose ϵ_{0} from the characters constructed in case 3 to satisfy the conditions (4) of Theorem 1.

References

[1] B. H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math. 776, Springer, Berlin, 1980.
[2] T. Nakamura, A classification of \mathbf{Q}-curves with complex multiplication, J. Math. Soc. Japan 56 (2004), no. 2, 635-648.
[3] D. E. Rohrlich, Galois conjugacy of unramified twists of Hecke characters, Duke Math. J. 47 (1980), no. 3, 695-703.
[4] G. Shimura, On the zeta-function of an abelian variety with complex multiplication, Ann. of Math. (2) 94 (1971), 504-533.
[5] T. Yang, On CM abelian varieties over imaginary quadratic fields, Math. Ann. 329 (2004), no. 1, 87-117.

[^0]: 2000 Mathematics Subject Classification. Primary 11G05, 11G10, 11G15.

