Abelian varieties over Q associated with an imaginary quadratic field

By Tetsuo NAKAMURA

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan

(Communicated by Heisuke HIRONAKA, M.J.A., Oct. 12, 2007)

Abstract: For an imaginary quadratic field K with class number h, we shall characterize h-dimensional CM abelian varieties over K which descend to abelian varieties over \mathbf{Q} . These CM abelian varieties have minimal dimension h both over K and over \mathbf{Q} .

Key words: abelian variety; ellptic curve; complex multiplication; Hecke character.

Let K be an imaginary quadratic field with class number h. We shall characterize h-dimensional CM abelian varieties over K which descend to abelian varieties over the rational number field \mathbf{Q} by their algebraic Hecke characters. If an abelian variety A over K has complex multiplication, then the dimension of A is $h[H_g(\text{Im }\epsilon):H_g]$ or $2h [H_q(\operatorname{Im} \epsilon) : H_q]$. Here H_q is the genus class field of K (Proposition 2). Hence our CM abelian varieties have minimal dimension h both over K and over \mathbf{Q} . Under the conditions that $\operatorname{End}_{\mathbf{Q}}(A) \otimes \mathbf{Q}$ are maximal real subfields of $\operatorname{End}_K(A) \otimes \mathbf{Q}$ and some restrictions on the conductors of A, such abelian varieties are investigated in Yang [5]. In this note removing the above conditions, we treat these abelian varieties in general. We shall give a characterization of the associated characters of them (Theorem 1). In the final section we explicitely determine such characters.

Notation:

K: an imaginary quadratic field.

D: the discriminant of K.

H: the Hilbert class field of K.

h: the class number of K.

 $I(\mathfrak{f})$: the group of fractional ideals of K prime to \mathfrak{f} . (\mathfrak{f} is an integral ideal of K)

 $P(\mathfrak{f})$: the group of principal ideals of K prime to \mathfrak{f} . ρ : the complex conjugation of \mathbb{C} .

For an abelian variety A over a number field k, we put $\mathcal{E}_k(A) = \operatorname{End}_k(A) \otimes \mathbf{Q}$, the endomorphism algebra of A over k. All number fields are considered as subfields of \mathbf{C} .

1. CM Abelian varieties over K. Let A be a CM abelian variety over an imaginary quad-

ratic field K. We suppose that A is simple over K. Let ψ_A be the associated algebraic Hecke character of A over K, of conductor f. Then there is a character ϵ of $(O_K/\mathfrak{f})^{\times}$ such that

$$\psi_A((\alpha)) = \epsilon(\alpha)\alpha$$
 $((\alpha) \in P(\mathfrak{f})).$

We say that A is of type ϵ or ϵ is associated to A (or to ψ_A). Clearly ϵ satisfies $\epsilon(-1) = -1$ and for ideal class characters χ of K, $\psi_A \chi$ are the algebraic Hecke characters associated to ϵ (see [5, § 3]). Let $I_q(\mathfrak{f}) = \{\mathfrak{a} \in I(\mathfrak{f}); \mathfrak{a}^2 \text{ is principal}\}$. We put

$$T = K(\{\psi_A(\mathfrak{a}) \mid \mathfrak{a} \in I(\mathfrak{f})\})$$

and

$$T_q = K(\{\psi_A(\mathfrak{a}) \mid \mathfrak{a} \in I_q(\mathfrak{f})\}).$$

Let r+1 be the number of prime factors of D. Applying the argument in [3], we obtain ([5, Prop. 3.2])

Proposition 1. We have:

 $[T_g:K] \ge 2^r, \ [T:T_g] = h/2^r \ and \ T_g \supset \text{Im } \epsilon.$

Now we look the structure of T_g more closely. Let \mathfrak{f} be the conductor of ϵ . Let p_1, \ldots, p_{r+1} be the set of prime divisors of D. Let \mathfrak{p}_i denote the prime ideal of K such that $\mathfrak{p}_i^2 = (p_i)$ and \mathfrak{l}_i a prime ideal of K prime to \mathfrak{f} , which belongs to the same ideal class of \mathfrak{p}_i $(i = 1, \ldots, r+1)$. It is well known that the genus ideal class group $I_g(\mathfrak{f})/P(\mathfrak{f})$ is generated by $\mathfrak{l}_1, \ldots, \mathfrak{l}_{r+1}$. We denote by H_g the genus class field of K. Note that $[H_g:K] = 2^r$. Denote by w_0 a generator of 2-Sylow subgroup of Im ϵ . Since $\mathfrak{l}_i^2 = a_i^2 \mathfrak{p}_i^2$ $(i = 1, \ldots, r+1)$ for some $a_i \in K^{\times}$, we have

$$\psi_A(\mathfrak{l}_i) = \sqrt{\epsilon(p_i a_i^2) p_i a_i^2} = \sqrt{w_i p_i} a_i' z,$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 11G05, 11G10, 11G15.

where $a'_i \in K^{\times}$, $w_i \in \langle w_0 \rangle$, $z \in \text{Im } \epsilon$. Putting $t_{p_i} = \sqrt{w_i p_i}$, we get

$$T_g = K(\text{Im }\epsilon, t_p (p|D)).$$

We easily have the following relations:

$$\prod_{p|D} t_p \in K(\operatorname{Im} \epsilon)^{\times} \quad (\text{if } D \not\equiv 4 \mod 8)$$
$$\prod_{p|(D/4)} t_p \in K(\operatorname{Im} \epsilon)^{\times} \quad (\text{if } D \equiv 4 \mod 8).$$

In the following Proposition 2 we give an expression of dimension of A. Its proof is essentially those of Theorem 3.4 and Theorem 3.5 in [5].

Proposition 2. We suppose h > 1. Let A be a simple CM abelian variety over K and ϵ the associated character of A over K, of order m. Let w_0 be as above. Then we have

$$\dim A = \begin{cases} h \left[H_g(\operatorname{Im} \epsilon) : H_g \right] & \text{if } \sqrt{w_0} \notin T_g \\ 2h \left[H_g(\operatorname{Im} \epsilon) : H_g \right] & \text{if } \sqrt{w_0} \in T_g. \end{cases}$$

In particular dim A = h if and only if one of the following conditions holds:

(1) m = 2. A is isogenous to the scalar restriction $\operatorname{Res}_{H/K}(E)$ of an elliptic curve E over H.

(2) m = 6, $3 \mid D \text{ and } \epsilon_0(3a_1^2) = -1$.

(3) $m = 4, 2 \mid D \text{ and } \epsilon_0(2a^2)$ is of order 4.

(4) $m = 12, 6 \mid D, 4 \mid h, \epsilon_0(3a_1^2) = \pm 1$ and $\epsilon_0(2a^2)$ is of order 4.

Here ϵ_0 denotes the 2-power order part of ϵ and $a_1, a \in K^{\times}$ are chosen such that $3a_1^2$ and $2a^2$ are prime to the conductor of ϵ_0 . (Clearly the choices do not affect the statements above.)

Remark 1. The condition $\epsilon_0(3a_1^2) = \pm 1$ in (4) of Proposition 2 is missing in [5, Th 3.5 (4)]. It is necessary.

Remark 2. For h = 1 we have a result similar to Proposition 2 and Theorem 1. It is a little bit different.

Proof. Suppose $D \not\equiv 4 \mod 8$. Then $\sqrt{-1} \notin H_g$ and $T_g(\sqrt{w_0}) = H_g(\sqrt{w_0}, \operatorname{Im} \epsilon)$. We can check that $[H_g(\sqrt{w_0}, \operatorname{Im} \epsilon) : H_g(\operatorname{Im} \epsilon)] = 2$. Suppose $D \equiv 4 \mod 8$. Then $\sqrt{-1} \in H_g$, $\sqrt{2} \notin H_g$ and $T_g(\sqrt{w_0}) = H_g(\sqrt{w_0}, \sqrt{2}, \operatorname{Im} \epsilon)$. We also have $[H_g(\sqrt{w_0}, \sqrt{2}, \operatorname{Im} \epsilon)] = 2$. Noting dim $A = [T:K] = h [T_g:K]/[H_g:K]$, we obtain our first assertion.

If dim A = h, then $\sqrt{w_0} \notin T_g$ and $H_g(\text{Im } \epsilon) = H_g$. This implies $m \mid 12$. Furthermore if $3 \mid m$, then $\sqrt{-3} \in H_g(\sqrt{-1})$ or $H_g(\sqrt{2})$ and this shows $3 \mid D$. If $4 \mid m$ and $D \not\equiv 4 \mod 8$, then $H_g(\sqrt{-1}) = 1$ $T_q(\sqrt{-1}, \sqrt{2})$ and this shows $D \equiv 0 \mod 8$.

(1) m = 2. Then ϵ determines an elliptic curve E over H and $A = \operatorname{Res}_{H/K}(E)$ (the restriction of scalars of E from H to K) is an abelian variety of dimension h over K of type ϵ .

(2) m = 6. In this case $3 \mid D$ and $\sqrt{-3} \in T_g$. Then [T:K] = h is equivalent to $\sqrt{-1} \notin T_g$. Hence $t_3 = \sqrt{-3}$, so that $\epsilon_0(3a_1^2) = -1$.

(3) m = 4. Since $w_0 = \sqrt{-1}$, [T:K] = h is equivalent to $T_g(\sqrt{w_0}) = H_g(\sqrt{w_0}) \supseteq H_g$, hence $\sqrt{2} \notin T_g$. Noting $t_2 = \sqrt{\epsilon_0(2a^2)2} \in T_g$, it follows that dimA = h is equivalent to $\epsilon_0(2a^2) = \pm \sqrt{-1}$.

(4) m = 12. In this case $6 \mid D$ and $T_g = K(\sqrt{-1}, t_p (p|D))$. As in (3), if [T:K] = h, we have $\epsilon_0(2a^2) = \pm \sqrt{-1}$. Since $(t_3/\sqrt{3})^2 = \epsilon_0(3a_1^2)$ and $\sqrt{w_0} \notin T_g$, we obtain $\epsilon_0(3a_1^2) = \pm 1$. The converse is obvious.

2. Descent of abelian varieties.

Lemma 1. Let B be an abelian variety over a number field M. Let L/M be a quadratic extension in the algebraic closure \overline{M} of M. Let $\langle \tau \rangle =$ $\operatorname{Gal}(L/M)$ and τ is extended to an automorphism of \overline{M} . Assume that over L, B is a simple abelian variety with complex multiplication by a CM field $T(\subset \overline{M})$. Let ψ_B be the Hecke character of (B, θ) with an isomorphism $\theta : T \to \mathcal{E}_L(B)$. Then $\psi_B^{\tau}(=\tau\psi_B\tau^{-1})$ is the Hecke character of $(B, \theta\tau_0\tau)$ where $\tau_0 : T \to T$ is an automorphism induced by $\psi_B(\mathfrak{P}) \to \psi_B(\mathfrak{P}^{\tau})$ for prime ideals \mathfrak{P} of L prime to the conductor of ψ_B .

Proof. By [4, Prop. 1], ψ_B^{τ} is the Hecke character of $(B, \tau \theta \tau^{-1})$. Since $\theta(\psi_B(\mathfrak{P})^{\tau})$ is the Frobenius endomorphism of $B \mod \mathfrak{P}^{\tau}$, we have $\theta(\psi_B(\mathfrak{P}^{\tau})) = \theta(\psi_B(\mathfrak{P}))^{\tau}$, so that $\tau \theta = \theta \tau_0$.

Theorem 1. The notation being as in Proposition 2 and assume h > 1. Let A be an hdimensional CM abelian variety over K. Let ϵ be the associated character of A. (Hence ϵ satisfies the conditions of Proposition 2.) Then A can be descended to an abelian variety over **Q** if and only if ϵ satisfies one of the following conditions.

$$\begin{array}{l} (1) \ m=2, \ \epsilon^{\rho}=\epsilon. \\ (2) \ m=6. \\ (2\text{-i}) \ \epsilon^{\rho}=\epsilon \ and \ \epsilon_{0}(3a_{1}a_{1}^{\rho})=1. \\ (2\text{-ii}) \ \epsilon^{\rho}=\epsilon^{-1} \ and \ \epsilon_{0}(3a_{1}a_{1}^{\rho})=-1. \\ (3) \ m=4. \ (3\text{-i}) \ \epsilon^{\rho}=\epsilon \ and \ \epsilon(2aa^{\rho})=1. \\ (3\text{-ii}) \ \epsilon^{\rho}=\epsilon^{-1} \ and \ \epsilon(2aa^{\rho})=\epsilon(2a^{2}) \ is \ of \ order \ 4. \\ (4) \ m=12. \\ (4\text{-i}) \ \epsilon^{\rho}=\epsilon, \ \epsilon_{0}(2aa^{\rho})=1 \ and \ \epsilon_{0}(3a_{1}a_{1}^{\rho})=1. \\ (4\text{-ii}) \ \epsilon^{\rho}=\epsilon^{5}, \ \epsilon_{0}(2aa^{\rho})=1 \ and \ \epsilon_{0}(3)=-1. \end{array}$$

No. 8]

(4-iii) $\epsilon^{\rho} = \epsilon^{7}$, $\epsilon_{0}(3a_{1}a_{1}^{\rho}) = -1$ and $\epsilon_{0}(2aa^{\rho}) = \epsilon_{0}(2a^{2})$ is of order 4.

(4-iv) $\epsilon^{\rho} = \epsilon^{-1}$ and $\epsilon_0(2aa^{\rho}) = \epsilon_0(2a^2)$ is of order 4. (In case (4-ii) and (4-iv), the conductor of ϵ_0 is prime to 3.)

Proof. Let ψ_A be the Hecke character over Kassociated to (A, θ) with $\theta: T \to \mathcal{E}_K(A)$. Assume that A descends to an abelian variety over \mathbf{Q} . By Lemma 1, $\psi_A^{\rho} (= \rho \psi_A \rho^{-1})$ is the Hecke character of $(A, \theta \tau_0 \rho^{-1})$ for some $\tau_0: T \to T$. Then we have $\rho \psi_A \rho^{-1} = \rho \tau_0^{-1} \psi_A$. Since $\rho \tau_0^{-1} \epsilon = \epsilon^i$ for an integer iprime to m, we get $\epsilon^{\rho} = \epsilon^i$.

(1) m = 2. Assume $\epsilon^{\rho} = \epsilon$. Let E be an elliptic curve over H associated to ϵ . We may assume that $\rho(j_E) = j_E$. By [1, § 10], E descends to F = $\mathbf{Q}(j_E) \subset H$. Then $\operatorname{Res}_{H/K}(E)$ is an h-dimensional abelian variety over K of type ϵ and descends to $\operatorname{Res}_{F/\mathbf{Q}}(E)$.

(2) m = 6. In this case we must have $\epsilon^{\rho} = \epsilon^{\pm 1}$. As in (1) let E be an elliptic curve over H associated to ϵ_0 . Let k_1/H be the extension of degree 3 corresponding to $\epsilon_1 = \epsilon_0 \epsilon$. k_1 is Galois over \mathbf{Q} . Then $\operatorname{Res}_{k_1/H}(E)$ is isogenous to $E \times A_0$ where A_0 is a 2dimensional abelian variety over H, which is of type ϵ . We see that $\psi_{A_0} = \psi_A \circ N_{H/K}$ has values in $S = K(\sqrt{-3}) \subset T$ and A_0 can be descended to $F = \mathbf{Q}(j_E)$. By Lemma 1 there exists $\tau_0 \in \operatorname{Aut} S$ such that $\psi_{A_0} \rho = \tau_0 \psi_{A_0}$ and $\tau_0 = \rho$ on K.

Claim. If $\epsilon^{\rho} = \epsilon$, then $\tau_0 = \rho$ on S. If $\epsilon^{\rho} = \epsilon^{-1}$, then $\tau_0(\sqrt{-3}) = \sqrt{-3}$.

Proof of Claim. Assume first $\epsilon^{\rho} = \epsilon$. Since there exists $\alpha \in K$ such that $\psi_{A_0}((\alpha)) = \epsilon(\alpha)\alpha$ where $\epsilon(\alpha)$ is a primitive 3rd root of unity, $\psi_{A_0}((\alpha^{\rho})) = \epsilon(\alpha^{\rho})\alpha^{\rho} = \epsilon(\alpha)\alpha^{\rho}$, so that $\tau_0 = \rho$. If $\epsilon^{\rho} = \epsilon^{-1}$, then $\psi_{A_0}((\alpha^{\rho})) = \epsilon(\alpha)\alpha^{\rho} = \psi_{A_0}((\alpha))^{\tau_0}$. Hence $\tau_0(\epsilon(\alpha)) = \epsilon(\alpha)$. This proves Claim.

Let L_1 be the subfield of H corresponding to $\langle \mathfrak{p}_3 \rangle$ in the ideal class group $\operatorname{Cl}(K)$ of K with $\mathfrak{p}_3^2 = (3)$. Denote by F_1 the fixed subfield of L_1 by ρ . Put $B = \operatorname{Res}_{F/F_1}(A_0)$. Then B is isogenous to $A_1 \times A'_1$ over L_1 with $\psi_{A_1} = \psi_A \circ N_{H/L_1}$ and $\psi_{A'_1} = \psi_{A_1}\chi_1$, where χ_1 is a character of $\operatorname{Cl}(K)$ such that $\chi(\mathfrak{p}_3) = -1$. We have

$$\mathcal{E}_{L_1}(B) \cong S[T]/(T^2 - t_3^2) \cong S \oplus S$$

where $t_3 = \sqrt{-3}$. The conditions (2-i) and (2-ii) are equivalent to $\psi_{A_1}\rho = \tau_0\psi_{A_1}$. If this holds, we have $\psi_{A'_1}\rho = \tau_0\psi_{A'_1}$ and $\mathcal{E}_{F_1}(B) \cong S_0 \oplus S_0$ with $S_0 = \mathcal{E}_F(A_0)$. This implies that A_1 and A'_1 can be descended to F_1 and hence $A = \operatorname{Res}_{L_1/K}(A_1)$ can be descended to **Q**. Conversely if A is descended to **Q**, then $\psi_A \rho = \tau \psi_A$ for some $\tau \in \text{AutC}$. This shows $\psi_{A_1} \rho = \tau \psi_{A_1}$. Then $\mathcal{E}_{F_1}(B) \cong S_1 \oplus S_1$ with $S_1 = \{a \in S \mid \tau(a) = a\}$. Since $\mathcal{E}_{F_1}(B)$ is S_0 -algebra, we find $S_0 = S_1$, so that $\tau = \tau_0$. Hence (2-i) or (2-ii) holds.

(3) m = 4. We have $\epsilon^{\rho} = \epsilon^{\pm 1}$. Let k/H be the quadratic extension corresponding to ϵ^2 and let E be an elliptic curve defined over k corresponding to ϵ . Since k/\mathbf{Q} is Galois and $\mathbf{Q}(j_E)$ has a real place, we may assume that E is defined over $F'(\mathbf{Q}(j_E) \subset$ $F' \subset k$, which is fixed by ρ (cf. [1; §10]). Put $A_0 = \operatorname{Res}_{k/H}(E)$. Then A_0 descends to $\operatorname{Res}_{F'/F}(E)$ over F. By analogous argument as in (2), we obtain; $\mathcal{E}_H(A_0) \cong K(\sqrt{-1})$ and there exists $\tau_0 \in$ Aut $(K(\sqrt{-1}))$ such that $\psi_{A_0}\rho = \tau_0\psi_{A_0}$ with $\tau_0 = \rho$ on K. Let L be the subfield of H corresponding to $\langle \mathfrak{p}_2 \rangle$ in Cl(K) with $\mathfrak{p}_2^2 = (2)$. Denote by F_2 the fixed subfield of L by ρ . Put $B = \operatorname{Res}_{F/F_2}(A_0)$. Then B is isogenous over L to a direct product $A_1 \times A'_1$ of abelian varieties and $\mathcal{E}_L(B) \cong S \oplus S$ with S = $K(\sqrt{-1})$. As in (2) we see that $A = \operatorname{Res}_{L/K}(A_1)$ can be descended to \mathbf{Q} if and only if A_1 can be descended to F_2 . Also this is equivalent to $\psi_{A_1}\rho =$ $\tau_0\psi_{A_1}$, and we can check easily that this is equivalent to our statement (3) in Theorem 1.

(4) m = 12. Let $\epsilon = \epsilon_0 \epsilon_1$. If A is defined over **Q**, then $\epsilon_0^{\rho} = \epsilon_0^{\pm 1}$ and $\epsilon_1^{\rho} = \epsilon_1^{\pm 1}$. Let k and k_1 be the extensions of H corresponding to ϵ_0^2 and ϵ_1 , respectively. Using ϵ_0 , we define E and $A_0 = \operatorname{Res}_{k/H}(E)$ as in (3). Then $\operatorname{Res}_{k_1/H}(A_0)$ is isogenous to $A_0 \times A'_0$ over H, where A'_0 is a 4-dimensional abelian variety corresponding to ϵ with $\mathcal{E}_H(A'_0) = K(\sqrt{-1}, \sqrt{-3}).$ Since A_0 is defined over F, we may assume that A'_0 is defined over F. As in case (2) and (3), there exists $\tau_0 \in \operatorname{Aut}(K(\sqrt{-1}, \sqrt{-3}))$ such that $\psi_{A'_0} \rho = \tau_0 \psi_{A'_0}$. Let L_0 be the subfield of H corresponding to $\langle \mathfrak{p}_2, \mathfrak{p}_3 \rangle$ in Cl(K) and denote by F_0 the fixed subfield of L_0 by ρ . Put $B = \operatorname{Res}_{F/F_0}(A'_0)$. Then over L_0 , B is isogenous to a product $C_1 \times C_2 \times C_3 \times C_4$ of four abelian varieties. It follows that $A_i = \operatorname{Res}_{L_0/K}(C_i)$ (i = 1, 2, 3, 4) are abelian varieties over K of type ϵ and $\psi_{A_i} = \psi_{A_1} \chi_i$ (i = 2, 3, 4), where χ_i are characters of $\operatorname{Cl}(K)$ such that they induce on $\langle \mathfrak{p}_2, \mathfrak{p}_3 \rangle$ distinct non-trivial characters. A is isogenous to one of A_i (i = 1, 2, 3, 4). As in case (2) and (3), A can be descended to **Q** if and only if $\psi_{C_1}\rho = \tau_0\psi_{C_1}$. We can check that this is equivalent to the statement (4) in Theorem 1. For example, in case (4-ii), we have $\epsilon_0(3a_1^2) = \epsilon_0(3a_1a_1^{\rho}) = -1$. If the conductor

No. 8]

of ϵ_0 is not prime to 3, write $\epsilon_0 = \eta_3 \cdot \eta$, where η_3 has conductor \mathfrak{p}_3 (see [2; §3]) and η has conductor prime to 3. Putting $a_1 = \sqrt{D}/3$, we see $3a_1^2 = -3a_1a_1^{\rho}$. Since $\eta_3(-1) = -1$, it follows that $\epsilon_0(3a_1^2) = \eta_3(3a_1^2)\eta(3) = \eta_3(-3a_1a_1^{\rho})\eta(3) = -\epsilon_0(3a_1a_1^{\rho})$, a contradiction. Hence the conductor of ϵ_0 is prime to 3.

3. Construction of characters. We are going to construct explicitly characters ϵ over Kwith the following property; the CM abelian variety A over K of type ϵ can be descended to \mathbf{Q} and has dimension h. The characterization of such ϵ is given in Theorem 1. Let m be the order of ϵ .

1. m = 2. Then ϵ corresponds to a **Q**-curve over H whose Hecke character satisfy the condition (Sh) in [2, §4]. Such ϵ exists only when D is divisible by 8 or D has a prime divisor q with $q \equiv -1 \mod 4$. A classification of ϵ is given in [2, Theorem 2 and Theorem 3].

2. m = 6. Let $\epsilon = \epsilon_0 \epsilon_1$ be the decomposition such that ϵ_0 has order 2 and ϵ_1 has order 3. Then ϵ_0 is a character in Case 1. Since $\epsilon_1^{\rho} = \epsilon_1^{\pm 1}$, ϵ_1 corresponds to a cubic extension k_1/H such that k_1/\mathbf{Q} is Galois.

3. m = 4. For a rational prime ℓ , we denote by U_{ℓ} the local unit group $U(K \otimes \mathbf{Q}_{\ell})$ at ℓ . We can think of ϵ as a character of $U_K = \prod_{\ell} U_{\ell}$. Then we can write uniquely $\epsilon = \prod_{\ell} \epsilon_{\ell}$, where ϵ_{ℓ} is a character of U_{ℓ} of order dividing 4. It is obvious that $\epsilon^{\rho} = \epsilon$ (resp. $\epsilon^{\rho} = \epsilon^{-1}$) if and only if $\epsilon_{\ell}^{\rho} = \epsilon_{\ell}$ (resp. $\epsilon_{\ell}^{\rho} = \epsilon_{\ell}^{-1}$) for every ℓ . Let us ask for a local character λ of U_{ℓ} of order 4 such that $\lambda^{\rho} = \lambda^{\pm 1}$ and $\lambda(2a^2)$ is of order 4, where $2a^2$ ($a \in K^{\times}$) is prime to ℓ .

(i) $\ell \not\mid D$. Since $\lambda^{\rho} = \lambda^{\pm 1}$, we find that $\lambda(\mathbf{F}_{\ell}^{\times}) = \pm 1$ and $\lambda(2a^2) = \lambda(2) = \pm 1$.

(ii) $\ell \mid D, \ \ell \neq 2$. Since $\lambda^2(2) = \left(\frac{2}{\ell}\right) = -1$, we must have $\ell \equiv 5 \mod 8$. In this case there exists only two characters $\lambda^{\pm 1}$ of order 4 such that $\lambda^{\rho} = \lambda^{-1}$ and $\lambda(2)$ is of order 4.

(iii) $\ell = 2$. We use the notation of $[2, \S 2]$. Let X_2^0 be the set of characters $\nu : U_2 \to \pm 1$ such that $\nu^{\rho} = \nu$. We cosider in cases.

I. $D \equiv -4m$ with m = 1 + 4k. If we put $a = \frac{1+\sqrt{-m}}{2}$, then $2a^2 = \sqrt{-m} - 2k$ and $2aa^{\rho} = 1 + 2k$. Since $\lambda^2 \in X_2^0 = \langle \eta_{-4}, \epsilon_8 \rangle$ by [2, Proposition 2], we have $\lambda(\mathbf{Z}_2^{\times}) = \pm 1$. Put $c_1 = \sqrt{-m}$ and $c_3 = 3 - 2\sqrt{-m}$ ($\in 1 + \mathfrak{p}_2^3$), then

$$(1 + \mathfrak{p}_2)/(1 + \mathfrak{p}_2^6) \cong \langle c_1 \rangle \times \langle c_3 \rangle \times \langle 5 \rangle$$

where $\langle c_1 \rangle$ and $\langle c_3 \rangle$ are cyclic of order 4. Let δ

be a character of U_2 such that $\delta(c_1) = \sqrt{-1}$, $\delta(c_3) = \delta(5) = 1$. Then $\delta^{\rho} = \delta$, $\delta^2 = \eta_{-4}$, $\delta(-1) = -1$ and $\delta(2a^2)$ is of order 4. We have

$$\delta(2aa^{\rho}) = \begin{cases} 1 & \text{if } m \equiv 1 \mod 8\\ -1 & \text{if } m \equiv 5 \mod 8. \end{cases}$$

Let ϕ be a character of U_2 such that $\phi(c_3) = \sqrt{-1}$ and Ker $\phi = \langle c_1, \mathbf{Z}_2^{\times} \rangle$. Then $\phi^{\rho} = \phi$ and $\phi(2aa^{\rho}) =$ 1. Moreover we have; if $m \equiv 1 \mod 8$, then $\phi^2 = \epsilon_8$ and $\phi(2a^2) = \pm 1$; if $m \equiv 5 \mod 8$, then $\phi^2 = \epsilon_8 \eta_{-4}$ and $\phi(2a^2)$ is of order 4. Therefore if $m \equiv 1 \mod 8$, δ and $\delta\phi$ satisfy the condition (3-i) of Theorem 1. For an odd prime divisor p of D, η_p denotes the unique quadratic character of U_p . If $m \equiv 5 \mod 8$, then m has a prime divisor p with $p \equiv 5 \mod 8$ or a pair of prime divisors q_1 , q_2 satisfying $q_1 \equiv 3 \mod 8$ and $q_2 \equiv -1 \mod 8$. We check easily that $\eta_p \delta$ and $\eta_{q_1}\eta_{q_2}\delta$ satisfy the condition (3-i) of Theorem 1. We denote by δ_0 either $\eta_p \delta$ or $\eta_{q_1} \eta_{q_2} \delta$. Further if $m \ (m \equiv$ 5 mod 8) has a prime divisor q with $q \equiv 7 \mod 8$, then $\eta_a \phi$ also satisfies the condition (3-i) of Theorem 1.

II. D = -8m. We put $a = \sqrt{-2m/2}$. Then $-m = 2a^2$ and $m = 2aa^{\rho}$. By [2, Proposition 2], $X_2^0 = \langle \eta_{-8}, \epsilon_4 \rangle$ if $m \equiv 1 \mod 4$ and $X_2^0 = \langle \eta_8, \epsilon_4 \rangle$ if $m \equiv -1 \mod 4$. If $m \equiv 1 \mod 4$, then $\lambda^2 = \epsilon_4$ because $\eta_{-8}(-1) = -1$. Since $\epsilon_4(-m) = 1$, we see $\lambda(-m) = \pm 1$. Hence there are no characters satisfying (3) of Theorem 1 in this case.

Suppose $m \equiv -1 \mod 4$. Let κ be a character of $(\mathbf{Z}/32\mathbf{Z})^{\times}$ such that $\kappa(5)$ is of order 8 and $\kappa(-1) = 1$. Define $\omega = \kappa \circ N_{K/\mathbf{Q}}$. Then ω is a character of U_2 of order 4 with the following properties; if $m \equiv 3 \mod 8$, then $\omega(\pm m)$ is of order 4 and $\omega^2 =$ $\eta_8 \epsilon_4$ and if $m \equiv 7 \mod 8$, then $\omega(\pm m) = \pm 1$ and $\omega^2 = \eta_8$. Put $c_1 = 1 + \sqrt{-2m}$, then $U_2/\mathbf{Z}_2^{\times}U_2^4 \cong \langle c_1 \rangle$ is cyclic of order 4. Hence we can define a character ϕ of U_2 of order 4 by $\phi(c_1) = \sqrt{-1}$ and $\phi(\mathbf{Z}_2^{\times}) = 1$. We have $\phi^{\rho} = \phi$ and $\phi^2 = \epsilon_4$. Since $m \equiv 3 \mod 8$, mhas a prime divisor q with $q \equiv 3 \mod 4$. Then $\lambda_1 =$ $\eta_a \omega$ satisfies the condition (3-ii) of Theorem 1.

Summing up the above arguments, we obtain the following results.

(a) The set of characters C satisfying the condition (3-i).

Let Y be the set of quadratic characters χ of U_K such that

$$\chi^{\rho} = \chi, \quad \chi(-1) = \chi(2aa^{\rho}) = 1$$

If D = -4m, $m \equiv 1 \mod 8$, then $\mathcal{C} = \delta Y \cup \delta \phi Y$.

If D = -4m, $m \equiv 5 \mod 8$, then $\mathcal{C} = \delta_0 Y$. Furthermore if m has a prime divsor q with $q \equiv 7 \mod 8$, then $\mathcal{C} = \eta_q \phi Y$.

(b) The set of characters C' satisfying the condition (3-ii).

Let Y' be the set of characters χ of U_K of order dividing 4 such that

$$\chi^{\rho} = \chi^{-1}, \quad \chi(-1) = 1, \quad \chi(2a^2) = \chi(2aa^{\rho}) = \pm 1.$$

If D has a prime divisor p with $p \equiv 5 \mod 8$, we have $\mathcal{C}' = \lambda_p Y'$.

If D = -8m with $m \equiv 3 \mod 8$, for a prime divisor q of D with $q \equiv 3 \mod 4$, we have $\mathcal{C}' = \eta_q \omega Y'$.

Remark 3. In case D = -8m with $m \equiv 3 \mod 8$, the character $\lambda_2 = \eta_{-8}\phi \omega$ satisfies

$$\lambda_2^{\rho} = \lambda_2^{-1}, \ \lambda_2(-1) = -1, \ \lambda_2(-m) : \text{ of order 4.}$$

Since $\lambda_2(-m) \neq \lambda_2(m)$, λ_2 does not satisfy (3-ii).

4. m = 12. Let $\epsilon = \epsilon_0 \epsilon_1$ be the decomposition

such that ϵ_0 has order 4 and ϵ_1 has order 3. According to $\epsilon_1^{\rho} = \epsilon_1$ or $\epsilon_1^{\rho} = \epsilon_1^{-1}$, it suffices to choose ϵ_0 from the characters constructed in case 3 to satisfy the conditions (4) of Theorem 1.

References

- B. H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math. 776, Springer, Berlin, 1980.
- [2] T. Nakamura, A classification of Q-curves with complex multiplication, J. Math. Soc. Japan 56 (2004), no. 2, 635–648.
- [3] D. E. Rohrlich, Galois conjugacy of unramified twists of Hecke characters, Duke Math. J. 47 (1980), no. 3, 695–703.
- [4] G. Shimura, On the zeta-function of an abelian variety with complex multiplication, Ann. of Math. (2) 94 (1971), 504–533.
- [5] T. Yang, On CM abelian varieties over imaginary quadratic fields, Math. Ann. **329** (2004), no. 1, 87–117.