Dirichlet finite harmonic functions and points at infinity of graphs and manifolds

By Tae HATTORI and Atsushi KASUE

Department of Mathematics, Kanazawa University, Kanazawa 920-1192, Japan

(Communicated by Heisuke HIRONAKA, M.J.A., Sept. 12, 2007)

Abstract: In this paper, we consider the Royden compactifications relative to *p*-Dirichlet integrals of infinite graphs and noncompact Riemannian manifolds, and study the behavior of rough isometries in the compactifications, proving bijective correspondence of the spaces of *p*-harmonic functions with finite *p*-energy.

Key words: graph; Riemannian manifold; *p*-energy; rough isometry; Royden's compactification.

1. Introduction. Let M be a connected Riemannian manifold. The Riemannian distance and the Riemannian measure will be denoted by d_M and μ_M , respectively. The Dirichlet space $L^{1,p}(M)$ of exponent p, 1 , is the class of all $functions <math>f \in L^1_{loc}(M)$ whose distributional gradients ∇f belong to $L^p(M)$, and it is provided with a semi-norm $D_p^{1/p}$, where

$$D_p(f) = \int_M |\nabla f|^p d\mu_M, \qquad f \in L^{1,p}(M).$$

Let us denote by $L_0^{1,p}(M)$ (resp. $HL^{1,p}(M)$) the space of functions f in $L^{1,p}(M)$ to which a sequence of Lipschitz continuous functions f_n of compact supports converge almost everywhere in such a way that $D_p(f_n - f) \to 0$ as $n \to \infty$ (resp. the space of p-harmonic functions in $L^{1,p}(M)$, that is, functions $h \in L^{1,p}(M)$ satisfying $\int_{M} |\nabla h|^{p-2} \langle \nabla h, \nabla g \rangle d\mu_{M} = 0$ for all $g \in L_{0}^{1,p}(M)$. In the case where $1 \in L_{0}^{1,p}(M)$, M is called *p*-parabolic; otherwise it is called *p*-hyperbolic. In the latter case, the Royden decomposition says that a function $f \in L^{1,p}(M)$ is uniquely expressed as follows: f = h + g, where $h \in$ $HL^{1,p}(M)$ and $g \in L^{1,p}_0(M)$. The Royden *p*-algebra $A^p(M)$ consists of all functions of $BL^{1,p}(M) \cap C(M)$ with multiplication and addition defined pointwise on M, where $BL^{1,p}(M)$ stands for $L^{1,p}(M) \cap L^{\infty}(M)$ and this convention will be kept in this paper. Given the norm $||f|| = ||f||_{L^{\infty}} + D_p(f)^{1/p}$, $A^p(M)$ is a commutative Banach algebra with unit element 1

and separates points in M. The maximal ideal space $\Re_p(M)$ of $A^p(M)$ is referred to as the Royden pcompactification, which can also be characterized as the compact Hausdorff space containing M as its open and dense subspace such that every function of $A^p(M)$ is continuously extended to $\Re_p(M)$ and $A^p(M)$, viewed as a subspace of $C(\Re_p(M))$ by this continuous extension, is dense in $C(\Re_p(M))$ with respect to its supremum norm. We call the boundary of M in $\Re_p(M)$ the Royden p-boundary of M, which will be denoted by $\partial \Re_p(M)$. For $f \in A_p(M)$, we denote by \overline{f} the continuous extension of f to $\Re_p(M)$ and by tr(f) the restriction of \overline{f} to $\partial \Re_p(M)$. We distinguish the following important part of the Royden *p*-boundary: $\Delta_p(M) = \{x \in \partial \Re_p(M) \mid$ $tr(f)(x) = 0, \ \forall f \in A_p(M) \cap \hat{L}_0^{1,p}(M) \}.$ The set $\Delta_p(M)$ is called the *p*-harmonic boundary of *M*. It is known that $\Delta_p(M)$ is empty if and only if M is p-parabolic, and in the case where M is *p*-hyperbolic, we have the following duality: $A_p(M) \cap L_0^{1,p}(M) = \{ f \in A_p(M) \mid tr(f)(x) = 0, \forall x \in M \}$ $\Delta_p(M)$. Moreover the maximum principle says that for all $h \in BHL^{1,p}(M)$, $\min_{\Delta_p(M)} tr(h) \le h \le$ $\max_{\Delta_p(M)} tr(h)$, and for $h_1, h_2 \in BHL^{1,p}(M)$, $h_1 = h_2$ if $tr(h_1) = tr(h_2)$. (See e.g., [14,16,17] for the facts mentioned above.) In this paper, unless otherwise is stated, connected Riemannian manifolds M are assumed to be complete and noncompact, and further to satisfy the following conditions:

(PI): M supports a weak locally (1, p)-Poincaré inequality $(1 with a constant <math>C_p > 0$, that is, for all points $x \in M$, all $r \in (0, 1]$ and all functions $f \in L^{1,p}_{loc}(M)$,

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C21, 58D17, 58J50.

$$\begin{split} \oint_{B(x,r)} |f - f_{B(x,r)}| d\mu_M &\leq \\ C_p r \left(\oint_{B(x,2r)} |\nabla f|^p d\mu_M \right)^{1/p} \end{split}$$

where, if u is a measurable function on M and B is a bounded measurable subset of M, then we set

$$u_B := \frac{1}{\mu_M(B)} \int_B u \ d\mu_M := \int_B u \ d\mu_M$$

and B(x,r) stands for the metric ball of M around a point x with radius r.

(VD): A locally volume doubling condition with a constant $C_v \ge 0$ holds on M, that is, for all $x \in M$ and all $r \in (0, 1]$,

$$\mu_M(B(x,2r)) \le C_v \mu_M(B(x,r)).$$

(Va): There exists a constant $v_0 > 0$ such that for all $x \in M$,

$$\frac{1}{v_0} \le \mu_M(B(x,1)) \le v_0.$$

It is known that a p-harmonic function h on M is Hölder continuous and in fact the following estimate holds;

(1)
$$|h(x) - h(y)| \le C_1 d_M(x, y)^{\alpha} \left(\oint_{B(z, 10)} |\nabla h|^p d\mu_M \right)^{1/p}$$

for all $x, y \in B(z, 1)$, where $\alpha \in (0, 1)$ and $C_1 > 0$ are constants depending only on p, C_p and C_v (cf. [2]). Now a main result of this paper is stated in the following

Theorem 1. Let M and N be connected noncompact complete Riemannian manifolds. Suppose that conditions (PI), (VD) and (Va) hold for Mand N and that there exists a map $\Phi: M \longrightarrow N$ satisfying the following condition:

(RI): There exist constants $a \ge 1$ and b > 0 such that

$$\frac{1}{a}d_M(x,y) - b \le d_N(\Phi(x),\Phi(y)) \le ad_M(x,y) + b$$

for all $x, y \in M$; for some $\epsilon > 0$, the ϵ -neighborhood of the image $\Phi(M)$ covers N. Then there is a bijective map $\eta : BHL^{1,p}(N) \longrightarrow BHL^{1,p}(M)$ such that

$$\frac{1}{C}D_p(h) \le D_p(\eta(h)) \le CD_p(h)$$

for all $h \in BHL^{1,p}(N)$, where C > 0 is a constant depending only on the given p, C_p , C_v , a and b; moreover in the case where p = 2, η is a linear isomorphism.

Following [7], we say that a map Φ of a metric space (X, d_X) to another one (Y, d_Y) is a rough isometry if it satisfies condition (RI) as in Theorem 1 and (X, d_X) is roughly isometric to (Y, d_Y) if there exists a rough isometry between them: being roughly isometric is an equivalent relation.

Now a connected noncompact complete Riemannian manifold M under consideration will be assumed to satisfy, in addition to conditions (PI), (VD) and (Va), the following

(Vb): for some constants s > 0, $C_b > 0$, it holds that

$$\mu_M(B) \ge C_b r^s \mu_M(B_o)$$

whenever B_o is an arbitrary ball of radius 1 and $B = B(x, r), x \in B_o, r \leq 1.$

Notice that the volume doubling condition (VD) always implies (Vb) for some exponent $s \leq \log_2 C_v$; moreover it is known that if p > s, then

(2)
$$|f(x) - f(y)| \le C_2 d_M(x, y)^{1-s/p} \left(\oint_{B(z, 10)} |\nabla f|^p d\mu_M \right)^{1/p}$$

for all $f \in L^{1,p}_{loc}(M)$, all $x, y \in B(z,1)$ and $z \in M$, where C_2 is a positive constant depending only on p, C_p , C_v and C_b (cf. [4; Theorem 5.1]). This estimate (2) is crucial for proving the following

Theorem 2. Let M and N be connected noncompact complete Riemannian manifolds satisfying conditions (PI), (VD), (Va) and (Vb). Suppose that M and N are roughly isometric. Then for p > s, where s is as in (Vb), a rough isometry $\Phi : M \to N$ induces a homeomorphism $tr(\Phi)$ between the Royden p-boundaries $\partial \Re_p(M)$ and $\partial \Re_p(N)$ which sends $\Delta_p(M)$ onto $\Delta_p(N)$.

Theorem 1 (resp. Theorem 2) follows from Theorems 3 and 7 (resp. Theorems 3 and 8) in the next two sections.

We remark that a connected noncompact complete Riemannian manifold of dimension n such that the Ricci curvature is bounded from below and the injectivity radius is positive, for example, a noncompact co-compact Riemannian regular cover, satisfies conditions (PI), (VD), (Va) and (Vb) (; in this case, we can take p = 1 in (PI) and s = n in (Vb)).

2. Graphs and rough isometries. In this section, we consider a graph G = (V, E) with vertex set V and edge set E. The set V is assumed to be countably infinite. For a pair of vertices x, y, we say that x and y are adjacent if x is joined to y by an edge of E, that is, $\{x, y\} \in E$; in this case, we write $x \sim y$. For $x \in V$, we set $V_x = \{y \in V \mid y \sim x\}$ and the cardinality of the set V_x is called the degree of xand denoted by deg(x). In what follows, we assume that G is locally finite, that is, deg(x) is finite for any $x \in V$. The measure on the graph is the counting measure on V and the distance $d_G(x, y)$ between a pair of vertices x, y is the smallest number of vertices $x = x_0, x_1, x_2, \ldots, x_{n-1}, x_n = y$ needed so that $x_i \sim x_{i+1}$. The graph G is connected if and only if $d_G(x, y)$ is finite for any $x, y \in V$. For a function f on V, the *p*-energy of f is defined by

$$D_p(f) = \frac{1}{2} \sum_{x \in V} |\nabla f|^p(x),$$

where $|\nabla f|(x) = (\sum_{y \in V_x} |f(x) - f(y)|^2)^{1/2}$. The *p*-Dirichlet space of G, $L^{1,p}(G)$, consists of functions on V with finite *p*-energy, and the closure of the subspace of finitely supported functions in $L^{1,p}(G)$ will be denoted by $L^{1,p}_0(G)$. A function f of $L^{1,p}(G)$ is said to be p-harmonic if $\sum_{x \in V} \sum_{y \in V_x} |\nabla f|^{p-2} (x) (f(y) - f(x)) (g(y) - g(x)) = 0$ for all $g \in L_0^{1,p}(G)$; *p*-harmonic functions are characterized as local minimizers of *p*-energy. The space of p-harmonic functions will be denoted by $HL^{1,p}(G)$. As in the case of Riemannian manifolds, we have the Royden decomposition, the Royden *p*-algebra, the Royden compactification $\Re_n(G)$, the Royden *p*-boundary $\partial \Re_p(G)$ and the *p*-harmonic boundary $\Delta_p(G)$ of G (cf. e.g., [18], Chap. VI); for a function $f \in BL^{1,p}(G)$, \overline{f} (resp. tr(f)) stands for the continuous extension of f to $\Re_p(G)$ (resp. the restriction of \overline{f} to $\partial \Re_p(G)$).

Theorem 3. Let G = (V, E) and G' = (V', E') be two infinite graphs with bounded degrees. Suppose that G and G' are roughly isometric, that is, there exists a rough isometry $\Phi : (V, d_G) \longrightarrow (V', d_{G'})$. Then Φ extends to a continuous map $\overline{\Phi}$ of $\Re_p(G)$ to $\Re_p(G')$ whose restriction to $\partial \Re_p(G)$ induces a homeomorphism $tr(\Phi)$ between $\partial \Re_p(G)$ and $\partial \Re_p(G')$ such that $tr(\Phi)(\Delta_p(G)) = \Delta_p(G')$. Moreover assigning a function h of $BHL^{1,p}(G')$ the unique function $\eta(h)$ of $BHL^{1,p}(G)$ whose trace on $\Delta_p(G)$ coincides with $tr(h) \circ tr(\Phi)$ is bijective, and moreover it holds that for some constant C > 0,

$$C^{-1}D_p(h) \le D_p(\eta(h)) \le CD_p(h), \quad h \in BHL^{1,p}(G').$$

Proof. By the definition of a rough isometry and the assumption of the graphs having bounded degrees, we first notice that there exists a constant C_3 such that $D_p(f \circ \Phi) \leq C_3 D_p(f)$ for all $f \in$ $L^{1,p}(G')$, and that $f \circ \Phi \in L^{1,p}_0(G)$ whenever $f \in$ $L_0^{1,p}(G')$. For a sequence $\{v_i\}$ of V converging to a point $v_{\infty} \in \partial \Re_p(G)$ and a function $f \in BL^{1,p}(G')$, if a subsequence $\{\Phi(v_i)\}$ of $\{\Phi(v_i)\}$ tends to a point $w \in \partial \Re_p(G')$, then we have tr(f)(w) = $\lim_{i\to\infty} f(\Phi(v_i)) = tr(f \circ \Phi)(v_\infty)$. This shows that the sequence $\{\Phi(v_i)\}$ converges to a point of $\partial \Re_p(G')$, denoted by $\bar{\Phi}(v_\infty)$, and $tr(f)(\bar{\Phi}(v_\infty)) =$ $tr(f \circ \Phi)(v_{\infty})$. In particular, $tr(f)(\bar{\Phi}(v_{\infty})) = 0$ whenever $v_{\infty} \in \Delta_p(G)$ and $f \in L_0^{1,p}(G')$. Hence we see that $\overline{\Phi}(\Delta_p(G)) \subset \Delta_p(G')$. Evidently the map $\overline{\Phi}: \Re_p(G) \to \Re_p(G')$ just obtained is continuous and the restriction of $\overline{\Phi}$ to $\partial \Re_p(G)$ will be denoted by $tr(\Phi)$. Let $\Psi: V \to V'$ be another rough isometry such that $d_{G'}(\Phi(v), \Psi(v)) \leq d$ for some constant d and all $v \in V$. Then for any $f \in BL^{1,p}(G')$ and every $v \in V$, we have

$$|f(\Phi(v)) - f(\Psi(v))| \le \left(\sum_{\{w \in V' | d_{G'}(\Phi(v), w) \le d\}} |\nabla f|^p(w)\right)^{1/p};$$

the right side tends to 0 as v goes to $\partial \Re_p(G)$. This implies that $tr(f) \circ tr(\Phi) = tr(f \circ \Phi) = tr(f \circ \Psi) =$ $tr(f) \circ tr(\Psi)$ for all $f \in BL^{1,p}(G')$, and thus we can conclude that $tr(\Phi) = tr(\Psi)$. Now we observe that if we have a rough isometry $\Theta: G' \to G$, then $tr(\Theta \circ \Phi) = tr(\Theta) \circ tr(\Phi)$. In particular, if, in addition, $d_G(\Theta \circ \Phi(v), v)$ is bounded from above as $v \in V$ goes to $\partial \Re_p(G)$, then $tr(\Theta) \circ tr(\Phi)$ coincides with the identity map of $\partial \Re_p(G)$. Thus taking such a rough isometry $\Theta: G' \to G$, we see that $tr(\Phi)$ induces a homeomorphism from $\partial \Re_n(G)$ onto $\partial \Re_p(G')$. Moreover given a function $h \in$ $BHL^{1,p}(G')$, let $\eta(h)$ be the p-harmonic part of $h \circ \Phi$. Then h is the p-harmonic part of $\eta(h) \circ \Theta$, since $tr(\eta(h) \circ \Theta) = tr(\eta(h)) \circ tr(\Theta) = tr(h) \circ tr(\Phi) \circ$ $tr(\Theta) = tr(h)$. Therefore we have $D_p(\eta(h)) \leq$ $D_p(h \circ \Phi) \leq C_3 D_p(h)$ and also $D_p(h) \leq D_p(\eta(h) \circ$ Θ) $\leq C_4 D_p(\eta(h))$ for some constant $C_4 > 0$. Thus

we arrive at the inequality of the theorem. This completes the proof of Theorem 3. $\hfill \Box$

3. Discrete approximation of Riemannian manifolds. Let M be a connected noncompact complete Riemannian manifold satisfying conditions (PI), (VD) and (Va). Fix a positive number κ and take a maximal κ -separated subset V of M, where we mean by a κ -separated subset that $d_M(v,w) \geq \kappa$ for all pairs of distinct two points v, w of the subset. Define a graph G = (V, E) as follows: a point v in V is adjacent to another point w, that is, $\{v, w\}$ belongs to the set of edges E if $0 < d_M(v, w) \leq 3\kappa$. Then the graph G obtained in this way is roughly isometric to M. Moreover by virtue of (VD), we see that G has uniformly bounded degrees and more precisely the numbers of points in a metric r-ball $B_G(v, r)$ of G and also the intersection of a metric r-ball $B_M(x,r)$ of M with V are bounded by a constant n(r) depending only on C_v , κ and r. Given a locally summable function f on M, we define a function $\mu(f)$ on V by

$$\mu(f)(v) = f_{B(v,4\kappa)}, \quad v \in V.$$

Define a sort of "inverse" of μ , we choose a partition of unity $\{\chi_v\}_{v\in V}$ associated to V in such a way that supp $\chi_v \subset B_M(v, 2\kappa)$ and $\sup |\nabla \chi_v| \leq C_5$ for some positive constant C_5 depending only on C_v and κ . Then given a function f on V, we define a function $\nu(f)$ on M by

$$\nu(f)(x) = \sum_{v \in V} f(v)\chi_v(x), \quad x \in M.$$

In what follows, C_i 's denote some positive constants depending only on the given p, C_p , C_v , v_0 and κ .

Then the following results are due to Kanai [8] (see also [5]).

Lemma 4. (i) For any f of $L^{1,p}(M)$, $\mu(f)$ belongs to $L^{1,p}(G)$ and satisfies

$$D_p(\mu(f)) \le C_6 D_p(f);$$

in addition, $\mu(f) \in L_0^{1,p}(G)$ whenever $f \in L_0^{1,p}(M)$.

(ii) For every f of $L^{1,p}(G)$, $\nu(f)$ belongs to $L^{1,p}(M)$ and satisfies

$$D_p(\nu(f)) \le C_7 D_p(f);$$

in addition, $\nu(f) \in L_0^{1,p}(M)$ whenever $f \in L_0^{1,p}(G)$. Now we prove the following

Lemma 5. There exists a constant C_8 such that for any $f \in BL^{1,p}(G)$ and every $v \in V$,

$$|f(v) - \mu(\nu(f))(v)| \le C_8 \left(\sum_{w \in B_G(v,8)} |\nabla f|^p(w)\right)^{1/p};$$

 $in \ particular \ one \ has$

 $tr(\mu(\nu(f))) = tr(f) \quad on \ \partial \Re_p(G).$

Proof. Observe first that $(\chi_w)_{B_M(v,4\kappa)} = 0$ if $d_G(v,w) > 8$. Therefore we have

$$\begin{split} |f(v) - \mu(\nu(f))(v)| \\ &= \left| \sum_{d_G(v,w) \le 8} (f(v) - f(w))(\chi_w)_{B_M(v,4\kappa)} \right| \\ &\le \sum_{d_G(v,w) \le 8} |f(v) - f(w)| \\ &\le n(8)^{1-1/p} \left(\sum_{d_G(v,w) \le 8} |\nabla f|^p(w) \right)^{1/p}. \end{split}$$

This shows that $\lim_{r\to\infty} \sup_{V\setminus B_G(o,r)} |f - \mu(\nu(f))| = 0$ for any fixed $o \in V$. Thus the proof of Lemma 5 is completed.

Lemma 6. There exists a constant C_9 such that for any $h \in BHL^{1,p}(M)$ and every $x \in M$,

$$|h(x) - \nu(\mu(h))(x)| \le C_9 \left(\int_{B_M(x,8\kappa)} |\nabla h|^p d\mu_M \right)^{1/p};$$

in particular, one has

 $tr(\nu(\mu(h))) = tr(h) \quad on \ \partial \Re_p(M).$

Proof. In view of (1), we see that for any $x \in M$ and every $v \in V$ such that $\chi_v(x) \neq 0$,

$$|h(x) - h_{B_M(v,4\kappa)}| \le C_{10} \left(\int_{B_M(x,8\kappa)} |\nabla h|^p d\mu_M \right)^{1/p}.$$

Using this, we obtain

$$\begin{split} |h(x) - \nu(\mu(h))(x)| \\ &= \left| \sum_{v \in V} \left(h(x) - h_{B(v,4\kappa)} \right) \chi_v(x) \right| \\ &\leq \sum_{v \in V, \chi_v(x) \neq 0} |h(x) - h_{B(v,4\kappa)}| \\ &\leq n(2\kappa) C_{10} \left(\int_{B_M(x,8\kappa)} |\nabla h|^p d\mu_M \right)^{1/p}. \end{split}$$

This implies that $\lim_{r\to\infty} \sup_{M\setminus B_M(o,r)} |h - \nu(\mu(h))| = 0$ for any fixed $o \in M$. This completes the proof of Lemma 6.

Now given a function h of $BHL^{1,p}(M)$, we denote by $\sigma(h)$ the p-harmonic part of the function $\mu(h)$ in the Royden decomposition. Then σ induces a map of $BHL^{1,p}(M)$ to $BHL^{1,p}(G)$. In the same way, for a function h of $BHL^{1,p}(G)$, $\rho(h)$ denotes the p-harmonic part of $\nu(h)$. Then ρ defines a map of $BHL^{1,p}(G)$ to $BHL^{1,p}(M)$.

Theorem 7. Let $\sigma: BHL^{1,p}(M) \to BHL^{1,p}(G)$ and $\rho: BHL^{1,p}(G) \to BHL^{1,p}(M)$ be as above. Then $\sigma \circ \rho(h) = h$ for all $h \in BHL^{1,p}(G)$ and $\rho \circ \sigma(h) = h$ for all $h \in BHL^{1,p}(M)$. Moreover there exists a constant C depending only on p, C_p , C_v , v_0 and κ such that

$$C^{-1}D_p(h) \le D_p(\sigma(h)) \le CD_p(h)$$

for all $h \in BHL^{1,p}(M)$, and it holds that $\|\sigma(h)\|_{L^{\infty}} = \|h\|_{L^{\infty}}$ for all $h \in BHL^{1,p}(M)$.

Proof. Given $h \in BHL^{1,p}(M)$, $\mu(h) - \sigma(h)$ belongs to $L_0^{1,p}(G)$ and $\nu(\mu(h)) - \rho(\sigma(h))$ is a function in $L_0^{1,p}(M)$, since $\nu(\mu(h)) - \rho(\sigma(h)) = \nu(\mu(h) - \sigma(h)) + \nu(\sigma(h)) - \rho(\sigma(h))$. This, together with Lemma 5, implies that $tr(\rho(\sigma(h))) = tr(\nu(\mu(h))) =$ tr(h). Therefore we conclude that $\rho(\sigma(h)) = h$. In the same way, using Lemma 6, we see that $\sigma(\rho(h)) = h$ for all $h \in BHL^{1,p}(G)$. Finally the inequalities in Theorem 7 follow from Lemma 4. This completes the proof of the theorem. \Box

In what follows, we consider the case where a manifold M under consideration satisfies further condition (Vb) and p > s, where s is the exponent in (Vb). Then in view of (2), we see that for any $f \in L^{1,p}(M)$, the restriction of f to $V, r_V(f)$, belongs to $L^{1,p}(G)$ and for all $x \in M$, we have

$$egin{aligned} f(x) &-
u(r_V(f))(x)| \leq \ & C_{11} igg(\int_{B_M(x,8\kappa)} |
abla f|^p d\mu_M igg)^{1/p}, \end{aligned}$$

where $C_{11} > 0$ is a constant depending only on p, $s C_p$, C_v , v_0 , C_b and κ ; in addition, $r_V(f) \in L_0^{1,p}(G)$ if $f \in L_0^{1,p}(M)$. Now applying the same arguments as in the proof of Theorem 3, we arrive at the following

Theorem 8. Let M and G = (V, E) be as above and suppose that p > s. Then the inclusion map ι of V into M extends to a continuous map $\overline{\iota}$ of $\Re_p(G)$ to $\Re_p(M)$ whose restriction to $\partial \Re_p(G)$ induces a homeomorphism $tr(\iota)$ between $\partial \Re_p(G)$ and $\partial \Re_p(M)$ such that $tr(\iota)(\Delta_p(G)) = \Delta_p(M)$.

Relevantly to Theorem 8, we would like to show another implication of estimate (2). Let K be

a nonempty closed subset of a Riemmanian manifold M of dimension n. We fix an exponent p > n, so that any function in $L^{1,p}(M)$ may be assumed to be continuous in M. In fact, estimate (2) holds for relatively compact open subsets of M, although the constants there may vary upon the subsets. For a continuous function u on K, we set $\mathcal{A}_u = \{f \in$ $L^{1,p}(M) \mid f_{|K} = u\}$ and $D_p(u|K) = \inf\{D_p(f) \mid f \in$ $\mathcal{A}_u\}$. Here we understand $D_p(u|K) = +\infty$ if \mathcal{A}_u is empty. Let $L^{1,p}(K|M) = \{u \in C(K) \mid D_p(u|K) < +\infty\}$. Then we have the following

Proposition 9. Let M be a Riemannian manifold of dimension n and consider the Dirichlet space $L^{1,p}(M)$ with exponent p > n. Then the following assertions hold:

(i) Given a nonempty closed subset K of M and a function $u \in L^{1,p}(K|M)$, there exists a unique penergy minimizer H_u in \mathcal{A}_u that is p-harmonic outside of K.

(ii) For nonempty closed subsets K, L with $K \subset L$ and a function $u \in L^{1,p}(L|M)$, one has $D_p(u|_K|K) \leq D_p(u|L)$.

(iii) For an increasing sequence $\{K_i\}$ of finite subsets of M whose union is dense in M, one has

$$L^{1,p}(M) = \{ f \in C(M) \mid \lim_{i \to \infty} D_p(f_{|K_i|} | K_i) < +\infty \}; D_p(f) = \lim_{i \to \infty} D_p(f_{|K_i|} | K_i).$$

Proof. To prove (i), we take a minimizing sequence $\{f_i\}$ in \mathcal{A}_u . Then it follows from the uniform convexity of the semi-norm $D_n^{1/p}$ and estimate (2) that $\{f_i\}$ is a Cauchy sequence relative to $D_p^{1/p}$ and converges to a function $f \in L^{1,p}(M)$ uniformly on each compact subset of M. Since $f_i = u$ on K, f also equals u there and hence belongs to \mathcal{A}_u . Thus f is a minimizer in \mathcal{A}_u ; the uniqueness is also implied by the uniform convexity of $D_n^{1/p}$. Thus assertion (i) is verified. The second one is obvious. To prove assertion (iii), we first notice that $\lim_{i\to\infty} D_p(f_{|K_i|}|K_i) \leq D_p(f)$ by the definition of $D_p(f|K)$. For the opposite direction, we take a unique minimizer H_i in \mathcal{A}_{f_i} for each K_i , where $f_i = f_{|K_i}$. Since $D_p(H_i) \leq \lim_{i \to \infty} D_p(f_i|K_i) < +\infty$ and $H_i = H_j = f$ on K_i for all $j \ge i$, in view of (2), $\{H_i\}$ converges to f uniformly on each compact subset of M. Hence we obtain $D_p(f) \leq$ $\liminf_{i\to\infty} D_p(H_i) \leq \lim_{i\to\infty} D_p(f_i|K_i)$. Thus assertion (iii) is verified. This completes the proof of Proposition 9.

We conclude this paper with the following

Remarks. (i) In the presence of conditions (PI), (VD), (Va) and (Vb), our results are not restricted to the case of the *p*-Dirichlet integrals on Riemannian manifolds and applicable to the cases of the *p*-energy associated to subelliptic operators on manifolds studied in [2], the *p*-Dirichlet integrals on admissible Riemannian polyhedra investigated in [3], those on Alexandrov spaces taken up in [11], and so on. (ii) We refer the reader to [1,5,6,12,15,18]and the references therein for some related results to ours. In [13], similar claims to Theorems 1 and 2 are found; the proofs, however, have certain gaps in using Lemmas 3 and 4 there. (iii) We say that a (locally finite) graph G = (V, E) satisfies a strong isoperimetric inequality if there exists a constant $C_I > 0$ such that $\sharp(\partial_V A) \ge C_I \sharp A$ for every finite subset A, where, for a finite subset A, we denote by $\sharp A$ its cardinality and by $\partial_V A$ the combinatorial boundary of A defined as the subset of all vertices in A which are adjacent to a vertex not in A. Then it is known that (a) for two rough isometric graphs G_1 and G_2 of bounded degrees, if G_1 satisfies a strong isoperimetric inequality, then so does G_2 ; (b) a graph G = (V, E) of bounded degree satisfies a strong isoperimetric inequality if and only if there is a constant C > 0 such that $\sum_{x \in V} \deg(x) |f(x)|^p \leq$ $CD_p(f)$ for every finitely supported f on V (cf. [1,9,18] and the references therein for details and related topics). As a result of this inequality, we see that if a graph G = (V, E) of bounded degree satisfies a strong isoperimetric inequality, then $\partial \Re_p(G) = \Delta_p(G)$ for any $p \in (1, +\infty)$. Using this, we can deduce for instance that for a homogeneous tree T of degree greater than two, any singleton of $\Delta_p(T)$ is not a G_{δ} set and further $\Delta_p(T)$ has no isolated points. This is observed in [18], Chap. VI when p = 2; but the arguments there are valid for any $p \in (1, \infty)$. On the other hand, it is proved in [10] that for a graph $G = (V, E), \ \partial \Re_2(G) = \Delta_2(G)$ and $\Re_2(G)$ is metrizable if G is of bounded effective resistance, that is, $\sup_{x,y \in V} R(x,y) < +\infty$, where we put $R(x, y) = \sup\{|f(x) - f(y)|^2 / D_2(f) \mid f \in$ $L^{1,2}(G)$ for $x, y \in V$.

Acknowledgement. The second author was partially supported by Grant-in-Aid for Scientific Research (A)(19204004), Japan Society for the Promotion of Science.

References

- T. Coulhon and L. Saloff-Coste, Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana 11 (1995), no. 3, 687–726.
- T. Coulhon, I. Holopainen and L. Saloff-Coste, Harnack inequality and hyperbolicity for subelliptic *p*-Laplacians with applications to Picard type theorems, Geom. Funct. Anal. **11** (2001), no. 6, 1139–1191.
- J. Eells and B. Fuglede, Harmonic maps between Riemannian polyhedra, Cambridge Univ. Press, Cambridge, 2001.
- P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101 pp.
- [5] I. Holopainen, Rough isometries and p-harmonic functions with finite Dirichlet integral, Rev. Mat. Iberoamericana 10 (1994), no. 1, 143–176.
- [6] I. Holopainen and P. M. Soardi, p-harmonic functions on graphs and manifolds, Manuscripta Math. 94 (1997), no. 1, 95–110.
- M. Kanai, Rough isometries, and combinatorial approximations of geometries of noncompact Riemannian manifolds, J. Math. Soc. Japan 37 (1985), no. 3, 391–413.
- [8] M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan 38 (1986), no. 2, 227–238.
- [9] M. Kanai, Analytic inequalities, and rough isometries between noncompact Riemannian manifolds, in *Curvature and topology of Riemannian manifolds* (Katata, 1985), 122–137, Lecture Notes in Math., 1201, Springer, Berlin.
- [10] A. Kasue, Convergence of metric graphs and energy forms. (Preprint).
- [11] K. Kuwae, Y. Machigashira and T. Shioya, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269–316.
- [12] Y. H. Lee, Rough isometry and energy finite solutions of elliptic equations on Riemannian manifolds, Math. Ann. **318** (2000), no. 1, 181– 204.
- [13] Y. H. Lee, Rough isometry and p-harmonic boundaries of complete Riemannian manifolds, Potential Anal. 23 (2005), no. 1, 83–97.
- M. Nakai, Potential theory on Royden compactifications, Bull. Nagoya Inst. Tech. 47 (1995), 171–191. (in Japanese).
- [15] M. Nakai, Existence of quasi-isometric mappings and Royden compactifications, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 1, 239–260.
- H. Tanaka, Harmonic boundaries of Riemannian manifolds, Nonlinear Anal. 14 (1990), no. 1, 55– 67.
- [17] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Springer, New York, 1970.
- [18] P. M. Soardi, Potential theory on infinite networks, Lecture Notes in Math., 1590, Springer, Berlin, 1994.