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Abstract: In this paper, we consider the Royden compactifications relative to p-Dirichlet

integrals of infinite graphs and noncompact Riemannian manifolds, and study the behavior of

rough isometries in the compactifications, proving bijective correspondence of the spaces of

p-harmonic functions with finite p-energy.
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1. Introduction. Let M be a connected

Riemannian manifold. The Riemannian distance

and the Riemannian measure will be denoted by dM
and �M , respectively. The Dirichlet space L1;pðMÞ
of exponent p, 1 < p < 1, is the class of all

functions f 2 L1
locðMÞ whose distributional gradi-

ents rf belong to LpðMÞ, and it is provided with a

semi-norm D1=p
p , where

DpðfÞ ¼
Z
M

jrf jpd�M; f 2 L1;pðMÞ:

Let us denote by L1;p
0 ðMÞ(resp. HL1;pðMÞ) the space

of functions f in L1;pðMÞ to which a sequence of

Lipschitz continuous functions fn of compact sup-

ports converge almost everywhere in such a way

that Dpðfn � fÞ ! 0 as n ! 1 (resp. the space of

p-harmonic functions in L1;pðMÞ, that is, functions

h 2 L1;pðMÞ satisfying
R
M jrhjp�2hrh;rgid�M ¼ 0

for all g 2 L1;p
0 ðMÞ). In the case where 1 2 L1;p

0 ðMÞ,
M is called p-parabolic; otherwise it is called

p-hyperbolic. In the latter case, the Royden

decomposition says that a function f 2 L1;pðMÞ is

uniquely expressed as follows: f ¼ hþ g, where h 2
HL1;pðMÞ and g 2 L1;p

0 ðMÞ. The Royden p-algebra

ApðMÞ consists of all functions of BL1;pðMÞ \ CðMÞ
with multiplication and addition defined pointwise

on M, where BL1;pðMÞ stands for L1;pðMÞ \ L1ðMÞ
and this convention will be kept in this paper.

Given the norm kfk ¼ kfkL1 þDpðfÞ1=p, ApðMÞ is a

commutative Banach algebra with unit element 1

and separates points in M. The maximal ideal space

<pðMÞ of ApðMÞ is referred to as the Royden p-

compactification, which can also be characterized as

the compact Hausdorff space containing M as its

open and dense subspace such that every function of

ApðMÞ is continuously extended to <pðMÞ and

ApðMÞ, viewed as a subspace of Cð<pðMÞÞ by this

continuous extension, is dense in Cð<pðMÞÞ with

respect to its supremum norm. We call the boun-

dary of M in <pðMÞ the Royden p-boundary of M,

which will be denoted by @<pðMÞ. For f 2 ApðMÞ,
we denote by �ff the continuous extension of f to

<pðMÞ and by trðfÞ the restriction of �ff to @<pðMÞ.
We distinguish the following important part of

the Royden p-boundary: �pðMÞ ¼ fx 2 @<pðMÞ j
trðfÞðxÞ ¼ 0; 8f 2 ApðMÞ \ L1;p

0 ðMÞg. The set

�pðMÞ is called the p-harmonic boundary of M.

It is known that �pðMÞ is empty if and only if

M is p-parabolic, and in the case where M is

p-hyperbolic, we have the following duality:

ApðMÞ \ L1;p
0 ðMÞ ¼ ff 2 ApðMÞ j trðfÞðxÞ ¼ 0, 8x 2

�pðMÞg. Moreover the maximum principle says

that for all h 2 BHL1;pðMÞ, min�pðMÞ trðhÞ � h �
max�pðMÞ trðhÞ, and for h1; h2 2 BHL1;pðMÞ, h1 ¼ h2

if trðh1Þ ¼ trðh2Þ. (See e.g., [14,16,17] for the facts

mentioned above.) In this paper, unless otherwise is

stated, connected Riemannian manifolds M are

assumed to be complete and noncompact, and

further to satisfy the following conditions:

(PI): M supports a weak locally ð1; pÞ-Poincaré
inequality (1 < p < þ1) with a constant Cp > 0,

that is, for all points x 2 M, all r 2 ð0; 1� and all

functions f 2 L1;p
locðMÞ,
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�
Z
Bðx;rÞ

jf � fBðx;rÞjd�M �

Cpr �
Z
Bðx;2rÞ

jrfjpd�M

 !1=p

;

where, if u is a measurable function on M and B is a

bounded measurable subset of M, then we set

uB :¼
1

�MðBÞ

Z
B

u d�M :¼ �
Z
B

u d�M;

and Bðx; rÞ stands for the metric ball of M around a

point x with radius r.

(VD): A locally volume doubling condition with a

constant Cv � 0 holds on M, that is, for all x 2 M

and all r 2 ð0; 1�,

�MðBðx; 2rÞÞ � Cv�MðBðx; rÞÞ:

(Va): There exists a constant v0 > 0 such that for all

x 2 M,

1

v0
� �MðBðx; 1ÞÞ � v0:

It is known that a p-harmonic function h on M is

Hölder continuous and in fact the following esti-

mate holds;

jhðxÞ � hðyÞj �ð1Þ

C1dMðx; yÞ� �
Z
Bðz;10Þ

jrhjpd�M

 !1=p

for all x, y 2 Bðz; 1Þ, where � 2 ð0; 1Þ and C1 > 0 are

constants depending only on p, Cp and Cv (cf. [2]).

Now a main result of this paper is stated in the

following

Theorem 1. Let M and N be connected

noncompact complete Riemannian manifolds. Sup-

pose that conditions (PI), (VD) and (Va) hold for M

and N and that there exists a map � : M �! N

satisfying the following condition:

(RI): There exist constants a � 1 and b > 0 such that

1

a
dMðx; yÞ � b � dNð�ðxÞ;�ðyÞÞ � adMðx; yÞ þ b

for all x, y 2 M; for some � > 0, the �-neighborhood

of the image �ðMÞ covers N. Then there is a

bijective map � : BHL1;pðNÞ �! BHL1;pðMÞ such

that

1

C
DpðhÞ � Dpð�ðhÞÞ � CDpðhÞ

for all h 2 BHL1;pðNÞ, where C > 0 is a constant

depending only on the given p, Cp, Cv, a and b;

moreover in the case where p ¼ 2, � is a linear

isomorphism.

Following [7], we say that a map � of a metric

space ðX; dXÞ to another one ðY ; dY Þ is a rough

isometry if it satisfies condition (RI) as in Theorem

1 and ðX; dXÞ is roughly isometric to ðY ; dY Þ if there

exists a rough isometry between them: being

roughly isometric is an equivalent relation.

Now a connected noncompact complete Rie-

mannian manifold M under consideration will be

assumed to satisfy, in addition to conditions (PI),

(VD) and (Va), the following

(Vb): for some constants s > 0, Cb > 0, it holds that

�MðBÞ � Cbr
s�MðBoÞ

whenever Bo is an arbitrary ball of radius 1 and

B ¼ Bðx; rÞ, x 2 Bo, r � 1.

Notice that the volume doubling condition

(VD) always implies (Vb) for some exponent

s � log2 Cv; moreover it is known that if p > s, then

jfðxÞ � fðyÞj �ð2Þ

C2dMðx; yÞ1�s=p �
Z
Bðz;10Þ

jrf jpd�M

 !1=p

for all f 2 L1;p
locðMÞ, all x, y 2 Bðz; 1Þ and z 2 M,

where C2 is a positive constant depending only on p,

Cp, Cv and Cb (cf. [4; Theorem 5.1]). This estimate

(2) is crucial for proving the following

Theorem 2. Let M and N be connected

noncompact complete Riemannian manifolds satis-

fying conditions (PI), (VD), (Va) and (Vb). Suppose

that M and N are roughly isometric. Then for p > s,

where s is as in (Vb), a rough isometry � : M ! N

induces a homeomorphism trð�Þ between the

Royden p-boundaries @<pðMÞ and @<pðNÞ which

sends �pðMÞ onto �pðNÞ.
Theorem 1 (resp. Theorem 2) follows from

Theorems 3 and 7 (resp. Theorems 3 and 8) in the

next two sections.

We remark that a connected noncompact

complete Riemannian manifold of dimension n such

that the Ricci curvature is bounded from below and

the injectivity radius is positive, for example, a

noncompact co-compact Riemannian regular cover,
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satisfies conditions (PI), (VD), (Va) and (Vb) (; in

this case, we can take p ¼ 1 in (PI) and s ¼ n in

(Vb)).

2. Graphs and rough isometries. In this

section, we consider a graph G ¼ ðV ;EÞ with vertex

set V and edge set E. The set V is assumed to be

countably infinite. For a pair of vertices x, y, we say

that x and y are adjacent if x is joined to y by an

edge of E, that is, fx; yg 2 E; in this case, we write

x � y. For x 2 V , we set Vx ¼ fy 2 V j y � xg and

the cardinality of the set Vx is called the degree of x

and denoted by degðxÞ. In what follows, we assume

that G is locally finite, that is, degðxÞ is finite for

any x 2 V . The measure on the graph is the

counting measure on V and the distance dGðx; yÞ
between a pair of vertices x; y is the smallest

number of vertices x ¼ x0; x1; x2; . . . ; xn�1; xn ¼ y

needed so that xi � xiþ1. The graph G is connected

if and only if dGðx; yÞ is finite for any x; y 2 V . For a

function f on V , the p-energy of f is defined by

DpðfÞ ¼
1

2

X
x2V

jrf jpðxÞ;

where jrf jðxÞ ¼ ð
P

y2Vx
jfðxÞ � fðyÞj2Þ1=2. The p-

Dirichlet space of G, L1;pðGÞ, consists of functions

on V with finite p-energy, and the closure

of the subspace of finitely supported functions

in L1;pðGÞ will be denoted by L1;p
0 ðGÞ. A function

f of L1;pðGÞ is said to be p-harmonic ifP
x2V
P

y2Vx
jrf jp�2ðxÞðfðyÞ � fðxÞÞðgðyÞ � gðxÞÞ ¼ 0

for all g 2 L1;p
0 ðGÞ; p-harmonic functions are

characterized as local minimizers of p-energy. The

space of p-harmonic functions will be denoted by

HL1;pðGÞ. As in the case of Riemannian manifolds,

we have the Royden decomposition, the Royden

p-algebra, the Royden compactification <pðGÞ, the

Royden p-boundary @<pðGÞ and the p-harmonic

boundary �pðGÞ of G (cf. e.g., [18], Chap. VI); for

a function f 2 BL1;pðGÞ, �ff (resp. trðfÞ) stands for

the continuous extension of f to <pðGÞ (resp. the

restriction of �ff to @<pðGÞ).
Theorem 3. Let G ¼ ðV ;EÞ and G0 ¼

ðV 0; E0Þ be two infinite graphs with bounded degrees.

Suppose that G and G0 are roughly isometric, that

is, there exists a rough isometry � : ðV ; dGÞ �!
ðV 0; dG0 Þ. Then � extends to a continuous map ���

of <pðGÞ to <pðG0Þ whose restriction to @<pðGÞ
induces a homeomorphism trð�Þ between @<pðGÞ
and @<pðG0Þ such that trð�Þð�pðGÞÞ ¼ �pðG0Þ.
Moreover assigning a function h of BHL1;pðG0Þ

the unique function �ðhÞ of BHL1;pðGÞ whose

trace on �pðGÞ coincides with trðhÞ � trð�Þ is

bijective, and moreover it holds that for some

constant C > 0,

C�1DpðhÞ � Dpð�ðhÞÞ � CDpðhÞ; h 2 BHL1;pðG0Þ:

Proof. By the definition of a rough isometry

and the assumption of the graphs having bounded

degrees, we first notice that there exists a constant

C3 such that Dpðf � �Þ � C3DpðfÞ for all f 2
L1;pðG0Þ, and that f � � 2 L1;p

0 ðGÞ whenever f 2
L1;p
0 ðG0Þ. For a sequence fvig of V converging to a

point v1 2 @<pðGÞ and a function f 2 BL1;pðG0Þ,
if a subsequence f�ðvjÞg of f�ðviÞg tends to

a point w 2 @<pðG0Þ, then we have trðfÞðwÞ ¼
limj!1 fð�ðvjÞÞ ¼ trðf � �Þðv1Þ. This shows that

the sequence f�ðviÞg converges to a point of

@<pðG0Þ, denoted by ���ðv1Þ, and trðfÞð���ðv1ÞÞ ¼
trðf � �Þðv1Þ. In particular, trðfÞð���ðv1ÞÞ ¼ 0

whenever v1 2 �pðGÞ and f 2 L1;p
0 ðG0Þ. Hence we

see that ���ð�pðGÞÞ � �pðG0Þ. Evidently the map
��� : <pðGÞ ! <pðG0Þ just obtained is continuous and

the restriction of ��� to @<pðGÞ will be denoted by

trð�Þ. Let � : V ! V 0 be another rough isometry

such that dG0 ð�ðvÞ;�ðvÞÞ � d for some constant d

and all v 2 V . Then for any f 2 BL1;pðG0Þ and

every v 2 V , we have

jfð�ðvÞÞ � fð�ðvÞÞj �

X
fw2V 0 jdG0 ð�ðvÞ;wÞ�dg

jrfjpðwÞ

0
@

1
A

1=p

;

the right side tends to 0 as v goes to @<pðGÞ. This

implies that trðfÞ � trð�Þ ¼ trðf � �Þ ¼ trðf ��Þ ¼
trðfÞ � trð�Þ for all f 2 BL1;pðG0Þ, and thus we can

conclude that trð�Þ ¼ trð�Þ. Now we observe that

if we have a rough isometry � : G0 ! G, then

trð� � �Þ ¼ trð�Þ � trð�Þ. In particular, if, in addi-

tion, dGð� � �ðvÞ; vÞ is bounded from above as v 2 V

goes to @<pðGÞ, then trð�Þ � trð�Þ coincides

with the identity map of @<pðGÞ. Thus taking

such a rough isometry � : G0 ! G, we see that

trð�Þ induces a homeomorphism from @<pðGÞ
onto @<pðG0Þ. Moreover given a function h 2
BHL1;pðG0Þ, let �ðhÞ be the p-harmonic part of

h � �. Then h is the p-harmonic part of �ðhÞ ��,

since trð�ðhÞ ��Þ ¼ trð�ðhÞÞ � trð�Þ ¼ trðhÞ � trð�Þ �
trð�Þ ¼ trðhÞ. Therefore we have Dpð�ðhÞÞ �
Dpðh � �Þ � C3DpðhÞ and also DpðhÞ � Dpð�ðhÞ �
�Þ � C4Dpð�ðhÞÞ for some constant C4 > 0. Thus
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we arrive at the inequality of the theorem. This

completes the proof of Theorem 3. �

3. Discrete approximation of Riemanni-

an manifolds. Let M be a connected noncompact

complete Riemannian manifold satisfying condi-

tions (PI), (VD) and (Va). Fix a positive number �

and take a maximal �-separated subset V of M,

where we mean by a �-separated subset that

dMðv; wÞ � � for all pairs of distinct two points

v; w of the subset. Define a graph G ¼ ðV ;EÞ as

follows: a point v in V is adjacent to another point

w, that is, fv; wg belongs to the set of edges E if

0 < dMðv; wÞ � 3�. Then the graph G obtained in

this way is roughly isometric to M. Moreover by

virtue of (VD), we see that G has uniformly

bounded degrees and more precisely the numbers

of points in a metric r-ball BGðv; rÞ of G and also the

intersection of a metric r-ball BMðx; rÞ of M with V

are bounded by a constant nðrÞ depending only on

Cv, � and r. Given a locally summable function f on

M, we define a function �ðfÞ on V by

�ðfÞðvÞ ¼ fBðv;4�Þ; v 2 V :

Define a sort of ‘‘inverse’’ of �, we choose a partition

of unity f�vgv2V associated to V in such a way that

supp �v � BMðv; 2�Þ and sup jr�vj � C5 for some

positive constant C5 depending only on Cv and �.

Then given a function f on V , we define a function

�ðfÞ on M by

�ðfÞðxÞ ¼
X
v2V

fðvÞ�vðxÞ; x 2 M:

In what follows, Ci’s denote some positive constants

depending only on the given p, Cp, Cv, v0 and �.

Then the following results are due to Kanai [8]

(see also [5]).

Lemma 4. (i) For any f of L1;pðMÞ, �ðfÞ
belongs to L1;pðGÞ and satisfies

Dpð�ðfÞÞ � C6DpðfÞ;

in addition, �ðfÞ 2 L1;p
0 ðGÞ whenever f 2 L1;p

0 ðMÞ.
(ii) For every f of L1;pðGÞ, �ðfÞ belongs to

L1;pðMÞ and satisfies

Dpð�ðfÞÞ � C7DpðfÞ;

in addition, �ðfÞ 2 L1;p
0 ðMÞ whenever f 2 L1;p

0 ðGÞ.
Now we prove the following

Lemma 5. There exists a constant C8 such

that for any f 2 BL1;pðGÞ and every v 2 V ,

jfðvÞ � �ð�ðfÞÞðvÞj � C8

X
w2BGðv;8Þ

jrf jpðwÞ

0
@

1
A

1=p

;

in particular one has

trð�ð�ðfÞÞÞ ¼ trðfÞ on @<pðGÞ.

Proof. Observe first that ð�wÞBM ðv;4�Þ ¼ 0 if

dGðv; wÞ > 8. Therefore we have

jfðvÞ � �ð�ðfÞÞðvÞj

¼
X

dGðv;wÞ�8

ðfðvÞ � fðwÞÞð�wÞBM ðv;4�Þ

������
������

�
X

dGðv;wÞ�8

jfðvÞ � fðwÞj

� nð8Þ1�1=p
X

dGðv;wÞ�8

jrf jpðwÞ

0
@

1
A

1=p

:

This shows that limr!1 supV nBGðo;rÞ jf � �ð�ðfÞÞj ¼
0 for any fixed o 2 V . Thus the proof of Lemma 5

is completed. �

Lemma 6. There exists a constant C9 such

that for any h 2 BHL1;pðMÞ and every x 2 M,

jhðxÞ � �ð�ðhÞÞðxÞj � C9

Z
BM ðx;8�Þ

jrhjpd�M

 !1=p

;

in particular, one has

trð�ð�ðhÞÞÞ ¼ trðhÞ on @<pðMÞ.

Proof. In view of (1), we see that for any

x 2 M and every v 2 V such that �vðxÞ 6¼ 0,

jhðxÞ � hBM ðv;4�Þj � C10

Z
BM ðx;8�Þ

jrhjpd�M

 !1=p

:

Using this, we obtain

jhðxÞ � �ð�ðhÞÞðxÞj

¼
X
v2V

ðhðxÞ � hBðv;4�ÞÞ�vðxÞ
�����

�����
�

X
v2V ;�vðxÞ6¼0

jhðxÞ � hBðv;4�Þj

� nð2�ÞC10

Z
BM ðx;8�Þ

jrhjpd�M

 !1=p

:

This implies that limr!1 supMnBM ðo;rÞ jh� �ð�ðhÞÞj ¼
0 for any fixed o 2 M. This completes the proof of

Lemma 6. �
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Now given a function h of BHL1;pðMÞ, we

denote by �ðhÞ the p-harmonic part of the function

�ðhÞ in the Royden decomposition. Then � induces

a map of BHL1;pðMÞ to BHL1;pðGÞ. In the same

way, for a function h of BHL1;pðGÞ, 	ðhÞ denotes the

p-harmonic part of �ðhÞ. Then 	 defines a map of

BHL1;pðGÞ to BHL1;pðMÞ.
Theorem 7. Let � :BHL1;pðMÞ!BHL1;pðGÞ

and 	 : BHL1;pðGÞ ! BHL1;pðMÞ be as above. Then

� � 	ðhÞ ¼ h for all h 2 BHL1;pðGÞ and 	 � �ðhÞ ¼ h

for all h 2 BHL1;pðMÞ. Moreover there exists a

constant C depending only on p, Cp, Cv, v0 and �

such that

C�1DpðhÞ � Dpð�ðhÞÞ � CDpðhÞ

for all h 2 BHL1;pðMÞ, and it holds that k�ðhÞkL1 ¼
khkL1 for all h 2 BHL1;pðMÞ.

Proof. Given h 2 BHL1;pðMÞ, �ðhÞ � �ðhÞ be-

longs to L1;p
0 ðGÞ and �ð�ðhÞÞ � 	ð�ðhÞÞ is a function

in L1;p
0 ðMÞ, since �ð�ðhÞÞ � 	ð�ðhÞÞ ¼ �ð�ðhÞ �

�ðhÞÞ þ �ð�ðhÞÞ � 	ð�ðhÞÞ. This, together with

Lemma 5, implies that trð	ð�ðhÞÞÞ ¼ trð�ð�ðhÞÞÞ ¼
trðhÞ. Therefore we conclude that 	ð�ðhÞÞ ¼ h.

In the same way, using Lemma 6, we see that

�ð	ðhÞÞ ¼ h for all h 2 BHL1;pðGÞ. Finally the

inequalities in Theorem 7 follow from Lemma 4.

This completes the proof of the theorem. �

In what follows, we consider the case where a

manifold M under consideration satisfies further

condition (Vb) and p > s, where s is the exponent

in (Vb). Then in view of (2), we see that for any

f 2 L1;pðMÞ, the restriction of f to V , rV ðfÞ, belongs

to L1;pðGÞ and for all x 2 M, we have

jfðxÞ � �ðrV ðfÞÞðxÞj �

C11

Z
BM ðx;8�Þ

jrf jpd�M

 !1=p

;

where C11 > 0 is a constant depending only on p, s

Cp, Cv, v0, Cb and �; in addition, rV ðfÞ 2 L1;p
0 ðGÞ if

f 2 L1;p
0 ðMÞ. Now applying the same arguments as

in the proof of Theorem 3, we arrive at the following

Theorem 8. Let M and G ¼ ðV ;EÞ be as

above and suppose that p > s. Then the inclusion

map 
 of V into M extends to a continuous map �

 of
<pðGÞ to <pðMÞ whose restriction to @<pðGÞ induces
a homeomorphism trð
Þ between @<pðGÞ and

@<pðMÞ such that trð
Þð�pðGÞÞ ¼ �pðMÞ.
Relevantly to Theorem 8, we would like to

show another implication of estimate (2). Let K be

a nonempty closed subset of a Riemmanian mani-

fold M of dimension n. We fix an exponent p > n, so

that any function in L1;pðMÞ may be assumed to be

continuous in M. In fact, estimate (2) holds for

relatively compact open subsets of M, although the

constants there may vary upon the subsets. For a

continuous function u on K, we set Au ¼ ff 2
L1;pðMÞ j fjK ¼ ug and DpðujKÞ ¼ inffDpðfÞ jf 2
Aug. Here we understand DpðujKÞ ¼ þ1 if Au is

empty. Let L1;pðKjMÞ ¼ fu 2 CðKÞ j DpðujKÞ <
þ1g. Then we have the following

Proposition 9. Let M be a Riemannian

manifold of dimension n and consider the Dirichlet

space L1;pðMÞ with exponent p > n. Then the

following assertions hold:

(i) Given a nonempty closed subset K of M and

a function u 2 L1;pðKjMÞ, there exists a unique p-

energy minimizer Hu in Au that is p-harmonic

outside of K.

(ii) For nonempty closed subsets K;L with

K � L and a function u 2 L1;pðLjMÞ, one has

DpðujK jKÞ � DpðujLÞ.
(iii) For an increasing sequence fKig of finite

subsets of M whose union is dense in M, one has

L1;pðMÞ ¼ ff 2 CðMÞ j lim
i!1

DpðfjKi
jKiÞ < þ1g;

DpðfÞ ¼ lim
i!1

DpðfjKi
jKiÞ:

Proof. To prove (i), we take a minimizing

sequence ffig in Au. Then it follows from the

uniform convexity of the semi-norm D1=p
p and

estimate (2) that ffig is a Cauchy sequence relative

to D1=p
p and converges to a function f 2 L1;pðMÞ

uniformly on each compact subset of M. Since

fi ¼ u on K, f also equals u there and hence belongs

to Au. Thus f is a minimizer in Au; the uniqueness

is also implied by the uniform convexity of D1=p
p .

Thus assertion (i) is verified. The second one is

obvious. To prove assertion (iii), we first notice

that limi!1 DpðfjKi
jKiÞ � DpðfÞ by the definition

of Dpðf jKÞ. For the opposite direction, we take

a unique minimizer Hi in Afi for each Ki, where

fi ¼ fjKi
. Since DpðHiÞ � limi!1 DpðfijKiÞ < þ1

and Hi ¼ Hj ¼ f on Ki for all j � i, in view of (2),

fHig converges to f uniformly on each compact

subset of M. Hence we obtain DpðfÞ �
lim infi!1 DpðHiÞ � limi!1 DpðfijKiÞ. Thus asser-

tion (iii) is verified. This completes the proof of

Proposition 9. �

We conclude this paper with the following
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Remarks. (i) In the presence of conditions

(PI), (VD), (Va) and (Vb), our results are not

restricted to the case of the p-Dirichlet integrals on

Riemannian manifolds and applicable to the cases

of the p-energy associated to subelliptic operators

on manifolds studied in [2], the p-Dirichlet integrals

on admissible Riemannian polyhedra investigated

in [3], those on Alexandrov spaces taken up in [11],

and so on. (ii) We refer the reader to [1,5,6,12,15,18]

and the references therein for some related results

to ours. In [13], similar claims to Theorems 1 and 2

are found; the proofs, however, have certain gaps in

using Lemmas 3 and 4 there. (iii) We say that a

(locally finite) graph G ¼ ðV ;EÞ satisfies a strong

isoperimetric inequality if there exists a constant

CI > 0 such that ]ð@V AÞ � CI]A for every finite

subset A, where, for a finite subset A, we denote by

]A its cardinality and by @V A the combinatorial

boundary of A defined as the subset of all vertices in

A which are adjacent to a vertex not in A. Then it is

known that (a) for two rough isometric graphs G1

and G2 of bounded degrees, if G1 satisfies a strong

isoperimetric inequality, then so does G2; (b) a

graph G ¼ ðV ;EÞ of bounded degree satisfies a

strong isoperimetric inequality if and only if there is

a constant C > 0 such that
P

x2V degðxÞjfðxÞjp �
CDpðfÞ for every finitely supported f on V (cf.

[1,9,18] and the references therein for details and

related topics). As a result of this inequality, we see

that if a graph G ¼ ðV ;EÞ of bounded degree

satisfies a strong isoperimetric inequality, then

@<pðGÞ ¼ �pðGÞ for any p 2 ð1;þ1Þ. Using this,

we can deduce for instance that for a homogeneous

tree T of degree greater than two, any singleton of

�pðT Þ is not a G� set and further �pðT Þ has no

isolated points. This is observed in [18], Chap. VI

when p ¼ 2; but the arguments there are valid for

any p 2 ð1;1Þ. On the other hand, it is proved in

[10] that for a graph G ¼ ðV ;EÞ, @<2ðGÞ ¼ �2ðGÞ
and <2ðGÞ is metrizable if G is of bounded effective

resistance, that is, supx;y2V Rðx; yÞ < þ1, where

we put Rðx; yÞ ¼ supfjfðxÞ � fðyÞj2=D2ðfÞ j f 2
L1;2ðGÞg for x; y 2 V .
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