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Abstract: We consider the problem of the compactification of the iso level sets of the Hessen-
berg matrices which is propounded by Ercolani et al. We determine the structure of the cohomology
ring of the compact iso level set and obtain a new expression of the flag variety G/B.
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1. Introduction. In this note, we study the
compactification of the iso level set of the Hessenberg
matrices. Let Λ be a shift matrix

∑n−1
i=1 Ei,i+1. The

matrices of the form Λ+ b̄ are called Hessenberg ma-
trices, where b̄ is the Borel subalgebra of the lower
triangular matrices. The equation of the Hessenberg
matrix L(t), L̇(t) = [L(t)+, L(t)] is called the full
Kostant-Toda lattice, where L(t)+ is the projection
of L(t) on the Borel subalgebra of upper triangular
matrices. The orbit of the full Kostant-Toda lattice
L(t) stays in a given iso level set. However, L(t) has
poles in finite time. By adding points at infinity to
the iso level set, the compactification of the iso level
set is obtained. In the case of the ordinary Toda lat-
tice, the compactifiction of the iso level set is already
studied by Flaschka and Haine[2]. By Painlevé anal-
ysis for singularities of the Toda lattice, they char-
acterize the poles by elements of Weyl group. They
realize the compact iso level set of the Toda lattice
as the toroidal orbit in the flag variety G/B. Since
the Lax operator of the ordinary Toda lattice is a
tri-diagonal matrix(2n-dimensional system), we can
regard their compactification as a certain variant of
the Theorem of Liouville and Arnol’d. In the case of
the full Kostant-Toda lattice, the degree of freedom
is so many (n(n+ 1)/2) compared with the ordinary
Toda lattice. Ercolani et al. consider the geometry
of the full Kostant-Toda lattice by using new inte-
grals (k-chop integrals)[1]. We parameterize poles
of the full Kostant-Toda lattice by points of the an-
other algebraic variety. By adding the poles to the
iso level set, we obtain new variety. The cell decom-
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position of the new variety implies the compactness
of it and also determines Z-module structure of the
cohomology group. Moreover, considering the line
bundles defined by eigen vectors of the Hessnberg
matrices, we obtain the structure of its cohomology
ring. The cohomology ring of the compact iso level
set is isomorphic to that of the flag variety G/B.
This fact asserts the new expression of the flag vari-
ety by using iso level set. If we restrict eigenvalues
α = (α1, . . . , αn)(see the following section) to Rn,
the compact iso level set in this note remains in real.
However we can not treat the structure of the co-
homology of the compact iso level set as complex
case. If we find a metric so that the orbits of the full
Kostant-Toda lattice are geodesics on the iso level
set of the full Kostant-Toda lattice, the full Kostant-
Toda flows would be applied to the conic compact-
ification[3] of the real iso level sets of Hessenberg
matrices.

2. Iso spectral varieties in the Lie alge-
bra. Let G be GL(n,C), B a Borel subgroup of
upper triangular matrices and N a unipotent sub-
group of B. Furthermore B̄ and N̄ are the opposites
of B and N respectively. Let g, b, n, b̄ and n̄ be
the Lie algebras of G, B, N , B̄ and N̄ respectively.
Let us provide α = (α1, . . . , αn) ∈ Cn. We assume
that αi �= αj if i �= j. The iso spectral set Aα is the
subset of g whose eigenvalues are α1, . . . , αn. Note
that Aα is n2 − n dimensional algebraic variety. Its
defining equations are |αkIn −X | = 0, k = 1, . . . , n.
Let Pi,j(X,αk) be the i, j cofactor of |αkIn−X |. Fix
i, then we have the following equations by expansion
along the i-th row of |αkIn −X |
(1) Pi,1(X,αk)xi,1 + · · · + Pi,n(X,αk)xi,n
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= αkPi,i(X,αk), k = 1, . . . , n.

Put Qi(X,α) = det(Pi,j(X,αk)). The i-th co-
ordinate neighborhood Vi is defined by {X ∈
Aα|Qi(X,α) �= 0}. The defining equations become
xi,j = Qi,j(X,α)/Qi(X,α), j = 1, . . . , n on Vi, where
Qi,j(X,α) is the determinant of matrix whose j-th
colum is t(α1Pi,i(X,α1), . . . , αnPi,i(X,αn)) and the
other colums are the same as those of Qi(X,α). Let
Sn be the n-th symmetric group. Let ε > 0 be a suf-
ficiently small number. For A = (ai,j) ∈ g, we define
the norm ||A|| by ||A|| = max1≤i,j≤n|ai,j |. We define
Vσ

diag for σ ∈ Sn by

Vσ
diag = {X ∈ Aα|||diag(ασ(1), . . . , ασ(n))−X || < ε}.

Consider the characteristic polynomial |λIn −X | =
λn + Kn−1(X)λn−1 + · · · + K0(X). Since X ∈ Aα,
the coefficients of the characteristic polynomial are
constants, say, M0, . . . ,Mn−1. By solving Ki(X) =
Mi, i = 0, . . . , n− 1, the defining equations become
xi,i = ασ(i) + fσ

i (X ′) i = 1, . . . , n on Vσ
diag, where

X ′ is X − diag(x1,1, . . . , xn,n) and fσ
i (X ′) are al-

gebraic functions of components of X ′ which satis-
fies fσ

i (0) = 0. We see that {Vi,Vσ
diag}i=1,...,n,σ∈Sn

are n2 − n dimensional local coordinate systems.
We see that XΞi(X) = Ξi(X)diag(α1, . . . , αn) on
Vi, where Ξi(X) = t(Pi,j(X,αk)). Since X ∈
Vi, we see that Ξi(X) ∈ G. Then we have
X = Ξi(X)diag(α1, . . . , αn)Ξi(X)−1. Put eX =
(ϕi,j(X)).

Proposition 1. ϕi,j(X) are rational functions
on Vi.

Proof. We see that eX = Ξi(X)diag(eα1 ,
. . . , eαn)Ξi(X)−1. Since Ξi(X) = t(Pi,j(X,αk)), the
components of Ξi(X), Ξi(X)−1 and then the com-
ponents of eX are rational functions on Vi. �

Proposition 2. ϕi,j(X) are algebraic functions
on Vσ

diag for any σ ∈ Sn.
Proof. We consider the case of σ = id

and abbreviate V id
diag to V . Put ξ(αi) =

t(Pi,1(X,αi), . . . , Pi,i(X,αi), . . . , Pi,n(X,αi)) on V .
We have Xξ(αi) = αiξ(αi). Let I be an ideal of
Aα generated by xµ,ν , µ �= ν. Then we have

(2) Pi,i(X,αi) ≡ (αi − x1,1) · · · (αi − xi−1,i−1)

×(αi − xi+1,i+1) · · · (αi − xn,n)modI.
We see that xj,j = αj + fj(X ′), j = 1, . . . , n
on V . Substituting them, we obtain ξ(αi) =
m(αi)ei + fi(X ′), where ei is the i-th elemental

vector, m(αi) = Πj �=i(αi − αj) and fi(X ′) ∈ I ⊗
Cn. Dividing by m(αi), we normalize ξ(αi). Put
Ξ(X) = (ξ(α1), . . . , ξ(αn)). Then we have Ξ(X) =
En + Ψ(X ′), where Ψ(X ′) ∈ I ⊗Mat(n,C). Since
Ψ(0) = 0, we see that Ξ(X) ∈ G on V . Then we
have eX = Ξ(X)diag(eα1 , . . . , eαn)Ξ(X)−1. Since
the components of Ξ(X) are algebraic functions of
X ′, we have conclusion. �

3. Compactification of the level sets
and Bruhat decomposition. Let us consider the
Gauss decomposition for X ∈ Aα

(3) W∞(X)−1W0(X) = eX ,

where W∞(X) ∈ N̄ and W0(X) ∈ B. Put
W∞(X) = (wi,j(X)). We can solve (3) for-
maly wi,j(X) = −τφ

i,j(X)/τφ
i (X), where τφ

i (X) =
det(ϕk,�(X))1≤k,�≤i−1 and τφ

i,j(X) is determinant of
matrix whose j- th row is (ϕi,1(X), . . . , ϕi,i−1(X))
and other rows are the same as those of τφ

i (X).
We define the divisor Θφ on Aα by Θφ := {X ∈
Aα|τφ

2 (X) · · · τφ
n (X) = 0}. Let us consider the alge-

braic morphism Fφ : Aα − Θφ → N̄ by Fφ(X) =
W∞(X). For σ ∈ Sn, we consider the Gauss decom-
position

(3)σ W σ
∞(X)−1W σ

0 (X) = σ−1eX ,

where W σ
∞(X) ∈ N̄ and W σ

0 (X) ∈ B and
we identify σ with Σn

i=1Eσ(i),i. Put W σ∞(X) =
(wσ

i,j(X)). We can also solve (3)σ formaly
such as wσ

i,j(X) = −τσ
i,j(X)/τσ

i (X), where
τσ
i (X) = det(ϕσ(k),�(X))1≤k,�≤i−1 and τσ

i,j(X) is
the determinant of matrix whose j-th row is
(ϕσ(i),1(X), . . . , ϕσ(i),i−1(X)) and other rows are the
same as those of τσ

i (X). The divisor Θσ is defined
by Θσ := {X ∈ Aα|τσ

2 (X) · · · τσ
n (X) = 0}. We de-

fine the algebraic morphism Fσ : Aα − Θσ → N̄

by Fσ(X) = W σ
∞(X). Put Uσ = ImFσ for σ ∈ Sn

(Uid = ImFφ). Then we obtain n! patches {Uσ}σ∈Sn .
We glue together these patches as follows. For W ∈
Uσ and W ′ ∈ Uτ , if there exists X ∈ Aα − (Θσ ∪Θτ )
such that W = Fσ(X) and W ′ = Fτ (X), then we
identify W and W ′. This gluing is well defined. Sup-
pose that there exists another X ′ ∈ Aα − (Θσ ∪Θτ )
such that W = Fσ(X ′). Then we have eX′

= eXb,
where b = W σ

0 (X ′)−1W σ
0 (X) ∈ B. We see that

Fτ (X ′)−1W τ
0 (X ′) = τ−1eX′

= τ−1eXb

= W ′−1(W τ
0 (X)b).
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By the uniqueness of the Gauss decomposition, we
have Fτ (X ′) = W ′.

We denote the resulting variety by S̄α and call it
as the compactification of Sα, where Sα ⊂ Aα is the
iso level set of the Hessenberg matrices (cf. torus
embedding [5]). We show the compactness of S̄α.
Put Zσ = Fσ(Θφ∩(Aα−Θσ)) for σ ∈ Sn. Note that
the Bruhat decomposition G/B = 	σ∈SnN̄σB/B in-
duces the cell decomposition of the grand cell such
as N̄B/B = 	σ∈Sn(N̄ ∩ σ−1N̄σ)B/B. Suppose
X ∈ Θφ. There exists unique σ ∈ Sn satisfying

(4) W∞(X)−1W0(X) = σ−1eX ,

where W∞(X) ∈ N̄ ∩ σ−1N̄σ and W0(X) ∈ B

from the decomposition of the grand cell mentioned
above[4]. Let us explain (4) briefly. X ∈ Θφ means
eX does not belong to the grand cell N̄B/B. Thus
there exists σ ∈ Sn such that eX belongs to σ-cell of
G/B. Then there exists W̃∞(X) ∈ N̄ and W̃0(X) ∈
B satisfying W̃∞(X)−1σW̃0(X) = eX . There exist
n1, . . . , nr ∈ N̄ such that σ−1W̃∞(X)−1n1 · · ·nrσ ∈
N̄ and σ−1niσ ∈ N, i = 1, . . . , r(the proof of the
existence of such ni’s is given in [4] which is essen-
tially Gauss’ elimination method). Put W∞(X) =
σ−1n−1

r · · ·n−1
1 W̃∞(X)σ. We see that W∞(X) ∈

N̄ and σW∞(X)σ−1 = n−1
r · · ·n−1

1 W̃∞(X) ∈ N̄ .
Then we have W∞(X) ∈ N̄ ∩ σ−1N̄σ. From
W̃∞(X)−1σW̃0(X) = eX , we have

W∞(X)−1σ−1n−1
r · · ·n−1

1 σW̃0(X) = σ−1eX .

Put W0(X) = σ−1n−1
r · · ·n−1

1 σW̃0(X). Since

σ−1n−1
r · · ·n−1

1 σ = σ−1n−1
r σ · · ·σ−1n−1

1 σ ∈ N,

we have W0(X) ∈ B. Then we have (4).
Each point of Θφ determines point of S̄α whose

representative element is W∞(X) ∈ N̄ ∩ σ−1N̄σ.
Comparing (4) with (3)σ, each of representatives be-
longs to Zσ. Since each of representative elements
does not coincide with any other representative ele-
ments under the rule of glueing patches {Uσ}σ∈Sn ,
we obtaine the cell decomposition of the following
form

(5) S̄α = 	σ∈SnTσ,

where the poins of Tσ are consisted of points whose
representatives belong to N̄ ∩ σ−1N̄σ. We see that
Tσ 
 Cn(n−1)/2−�(σ) 
 Dn(n−1)−2�(σ), where 	(σ) is
a number of inversions of σ and Dk is k-dimensional

real open ball, and T̄σ has the cell decomposition
T̄σ = 	τ≥σTτ . Then, from the cell decomposition
(5), we see that S̄α is compact and H∗(S̄α;Z) ∼=
H∗(G/B;Z) as Z-module.

4. Cohomology rings of the compact-
ified iso level sets. For L ∈ Sα, it is known
that there exists unique a ∈ N̄ such that a−1La =
Λ +

∑n
j=1 	j(α)En,j(= Λ(α)), where 	j(α) are func-

tions of α. We consider the trivial bundles {Uσ ×
Sα}σ∈Sn . The section on Uσ is defined by Lσ(X) =
Fσ(X)Λ(α)Fσ(X)−1, X ∈ Aα − Θσ. For X ∈
Aα − (Θσ ∪ Θτ ), we have

Lτ (X) = Fτ (X)Λ(α)Fτ (X)−1

= Ad(Fσ(X)Fτ (X)−1)−1Lσ(X).

Then we obtain a principal N̄ bundle over S̄α from
{Uσ × Sα}σ∈Sn . We denote this principal N̄ bun-
dle by p : Lax → S̄α. For the integers 1 ≤ i1 <

· · · < ik ≤ n, we define the associated fiber bun-
dle πi1,...,ik : E i1,...,ik → S̄α as follows. The fiber on
W ∈ S̄α is the Grassmann manifold Gk(Cn)

E i1,...,ik

W : = {< ηi1 , . . . , ηik
>C |Lηiµ = αiµηiµ , µ

= 1, . . . , k, for some L ∈ LaxW }.
Lemma. E i1,...,ik is a principal N̄ bundle on

S̄α.
Proof. For a ∈ N̄ , we define the right action of

N̄ by < ηi1 , . . . , ηik
>Ca =< a−1ηi1 , . . . , a

−1ηik
>C.

Since L ∈ LaxW and Lηiµ = αiµηiµ , we
have a−1La ∈ LaxW and (a−1La)(a−1ηiµ) =
αiµ(a−1ηiµ ). Then < a−1ηi1 , . . . , a

−1ηik
>C∈

E i1,...,ik

W . �
In general, let M be a complex manifold. More-

over let proj : N → M be a holomorphic fiber
bundle and p̃roj : H → N a complex vector bun-
dle. Let L1, . . . ,Lr be complex line bundles over
M . We denote the curvature form on N by R ∈
Ω2(N ) ⊗ End(H). Furthermore we denote the first
chern class defined by Li by c1(Li) ∈ H2(M,Z). If
H ∼= ⊕r

i=1proj
∗Li as vector bundles on N , then it

holds that

det(λ− 1
2πi

R) = Πr
i=1(λ − proj∗c1(Li)).

We define the vector bundle �i1,...,ik : Ki1,...,ik →
E i1,...,ik as follows. We can write P ∈ E i1,...,ik as
P = (W,< ηi1 , . . . , ηik

>C) in local. The fiber on P
is a vector space ⊕k

µ=1Cηiµ . Moreover, the complex
line bundles F i i = 1, . . . , n on S̄α are defined as
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follows: The section L(W ) of Γ(S̄α, Lax) is defined
by L(W ) = WΛ(α)W−1. Let ξi(W ) ∈ Cn be the
eigen vector such that L(W )ξi(W ) = αiξi(W ) and
||ξi(W )|| = 1. The fiber on W ∈ S̄α is defined by
F i

W = Cξi(W ). Let F be the vector bundle of the
direct sum ⊕n

i=1F i. We abbreviate π1,...,n : E1,...,n →
S̄α to π : E → S̄α and �1,...,n : K1,...,n → E1,...,n to
� : K → E . Since e1, . . . , en ∈ Γ(E ,K), we see that
K is a trivial bundle, that is, K = E × Cn. Suppose
W ∈ Uσ∩Uτ andW = Fσ(X) on Uσ andW = Fτ (X)
on Uτ for X ∈ Aα − (Θσ ∪ Θτ ). Then we have
ξi(Fτ (X)) = Fτ (X)Fσ(X)−1ξi(Fσ(X))ψi

τσ(W ),
where ψi

τσ(W ) ∈ C∗ is a factor to normal-
ize Fτ (X)Fσ(X)−1ξi(Fσ(X)). Transition functions
ψi

στ : Uσ ∩ Uτ → C∗ define the 1-st Chern class
c1(F i) ∈ H2(S̄α;Z). Let π∗ ⊕n

i=1 F i and π∗F i be
the pullback of ⊕n

i=1F i and F i by π respectively. As
vector bundles over E , we see that π∗(⊕n

i=1F i) ∼=
⊕n

i=1π
∗(F i) and it holds that K ∼= ⊕n

i=1π
∗(F i) as

vector bundles on E . From the cell decomposition
(5), we see that the cohomology ring of S̄α is gener-
ated by 1-st Chern classes. Since K is trivial, we see
that H∗(S̄α;Z) ∼= H∗(G/B;Z) as cohomology ring
by the following theorem.

Theorem. It holds that
∑

1≤i1<···<ik≤n

c1(F i1) · · · c1(F ik ) = 0, k = 1, . . . , n.

Proof. Since K is trivial, its curvature form R is
0. Since K ∼= ⊕n

i=1π
∗(F i), we have

det(λ− 1
2πi

R) = λn = Πn
i=1(λ− π∗c1(F i)).

Then we have
∑

1≤i1<···<ik≤n

π∗(c1(F i1)) · · ·π∗(c1(F ik))

= π∗


 ∑

1≤i1<···<ik≤n

c1(F i1 ) · · · c1(F ik)




= 0. Since π : E → S̄α is surjective, then π∗ :
H∗(S̄α;Z) → H∗(E ;Z) is injective. Hence we have
conclusion. �

Application. Take L0 ∈ S̄α. Note that L0 +
· · ·+Ln

0 ∈ A[α], where [α] = (α1 + · · ·+αn
1 , . . . , αn +

· · ·+αn
n). Put t = (t1, . . . , tn) ∈ (0, 1]n. Consider the

Gauss decomposition W∞(t)−1W0(t) = exp(t1L0 +
· · · + tnL

n
0 ). This Gauss decomposition gives orbit

of the full Kostant-Toda lattice. Suppose L0 + · · ·+
Ln

0 ∈ A[α]−Θφ. Then we see that W∞(t) belongs to
the grand cell near t = (1, . . . , 1). Note that S̄t·[α] is
homotopic to S̄[α]. In finite time, t1L0 + · · · + tnL

n
0

meets the singular divisor. Then, W∞(t) leaves from
the large cell. Although W∞(t) has pole at this time,
the same W∞(t) is a usual point in another patch.
Then, we obtain the compactification of the orbit of
the full Kostant -Toda lattice.
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Birkhäuser Boston, Boston, 1998.

[ 4 ] K. Ikeda, The full Kostant-Toda flow associated
with the small cell of the flag variety. (Preprint).

[ 5 ] B. Shipman, On the geometry of certain isospec-
tral sets in the full Kostant-Toda lattice, Pacific
Jour. Math. 181 (1997), 159–185.

　


