ℓ-adic properties of certain modular forms

By Hyunsuk Moon ${ }^{*)}$ and Yuichiro Taguchi ${ }^{* *)}$

(Communicated by Shigefumi Mori, m.J.A., Sept. 12, 2006)

Abstract

Nilpotence modulo powers of 3,5 and 7 is proved for Hecke operators on the space of certain modular forms, and is applied to the arithemtic of quadratic forms and Fourier coefficients of modular forms.

Key words: Modular form; Hecke operator; mod ℓ Galois representation; Serre's ε Conjecture.

In this paper, we prove the nilpotence modulo powers of 3,5 and 7 of the action of the Hecke algebra on the space of certain modular forms. This extends Theorems 1.1 and 1.2 of [11], in which the nilpotence was proved modulo powers of 2 . For a subring \mathcal{O} of the complex number field \mathbf{C}, we denote by $M_{k}\left(\Gamma_{0}(M), \varepsilon ; \mathcal{O}\right)\left(\right.$ resp. $\left.S_{k}\left(\Gamma_{0}(M), \varepsilon ; \mathcal{O}\right)\right)$ the $\mathcal{O}-$ module of modular forms (resp. cusp forms) of integer weight k and Nebentypus character $\varepsilon:(\mathbf{Z} / M \mathbf{Z})^{\times}$ $\rightarrow \mathcal{O}^{\times}$whose Fourier coefficients lie in \mathcal{O}. Let $q=e^{2 \pi \sqrt{-1} z}$. Our main result is:

Theorem 1. Let $k \geq 1$ be a positive integer. Let (ℓ, N) be a pair of integers which is either (3,4), $(5,2)$ or $(7,1)$, and $a \geq 0$ a non-negative integer. Let $\varepsilon:\left(\mathbf{Z} / \ell^{a} N \mathbf{Z}\right)^{\times} \rightarrow \mathbf{C}^{\times}$be a Dirichlet character. Let L be an algebraic number field of finite degree over \mathbf{Q}, with ring of integers \mathcal{O}_{L}. Let λ be a prime ideal of \mathcal{O}_{L} lying above ℓ, and denote by $\mathcal{O}_{L, \lambda}$ the localization of \mathcal{O}_{L} at λ. Then there exist integers $c \geq 0$ and $e \geq 1$, depending only on $k, \ell, N, a, \varepsilon, L$ and λ, such that for any modular form $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in$ $M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; \mathcal{O}_{L, \lambda}\right)$, any integer $t \geq 1$, and any $c+$ et primes $p_{1}, p_{2}, \cdots, p_{c+e t} \equiv-1(\bmod \ell N)$, we have
(1) $\quad f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{c+e t}} \equiv 0 \quad\left(\bmod \lambda^{t}\right)$.

Furthermore, if the primes $p_{1}, p_{2}, \cdots, p_{c+e t}$ are distinct, then for any positive integer m coprime to $p_{1}, p_{2}, \cdots, p_{c+e t}$, we have
(2) $\quad a\left(p_{1} p_{2} \cdots p_{c+e t} m\right) \equiv 0 \quad\left(\bmod \lambda^{t}\right)$.

2000 Mathematics Subject Classiffcation. 11F11, 11R32, 11S15.
*) Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
**) Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-8581, Japan

The constant e can be taken to be 1 if L is so large that the actions of the Hecke operators T_{p} on $M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; L\right)$ for all $p \nmid \ell N$ are diagonalizable.

Remark. The last condition on L is satisfied if it contains all the Fourier coefficients of the Eisenstein series in $M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; \mathbf{C}\right)$ and the newforms in $S_{k}\left(\Gamma_{0}(M), \varepsilon ; \mathbf{C}\right)$ for all divisors M of $\ell^{a} N$ which are divisible by the conductor of ε. Note also that the Fourier coefficients of the Eisenstein series in $M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; \mathbf{C}\right)$ are contained in a cyclotomic field.

In the case of $\ell=2([11]), \mathrm{K}$. Ono and the second author derived such a theorem from the nonexistence of certain 2 -dimensional mod 2 representations of the absolute Galois group $G_{\mathbf{Q}}$ of the rational number field \mathbf{Q}. In the case of $\ell \geq 3$, however, we may appeal instead to the proved part of Serre's ε Conjecture. Stated in the form we need, it is:

Theorem 2. (cf. Th. 1.12 of [5]). Let ℓ be an odd prime, and let $\rho: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbf{F}}_{\ell}\right)$ be a continuous, odd and irreducible representation. If ρ is modular of some type $\left(\ell^{a} N, k, \varepsilon\right)_{\overline{\mathbf{Q}}}$ with N prime to ℓ, and if we assume further that $N>1$ when $\ell=3$, then it is isomorphic to a representation of the form $\chi^{\alpha} \otimes \rho^{\prime}$, where χ is the mod ℓ cyclotomic character, $0 \leq \alpha<\ell-1$, and ρ^{\prime} is modular of type $\left(N^{\prime}, k^{\prime}, \varepsilon^{\prime}\right)_{\overline{\mathbf{Q}}}$ with $N^{\prime} \mid N, 2 \leq k^{\prime} \leq \ell+1$, and ε^{\prime} is the "prime-to- ℓ part" of ε.

Here, we say that a representation $\rho: G_{\mathbf{Q}} \rightarrow$ $\mathrm{GL}_{2}\left(\overline{\mathbf{F}}_{\ell}\right)$ is modular of type $(N, k, \varepsilon)_{\overline{\mathbf{Q}}}$ if it comes (by Deligne's construction [4]) from an eigenform in $S_{k}\left(\Gamma_{0}(N), \varepsilon ; \overline{\mathbf{Q}}\right)$ (In other words, if it comes from a $\bmod \ell$ eigenform over $\overline{\mathbf{F}}_{\ell}$ of type (N, k, ε) in the sense of Serre [13]). Note that this theorem is often stated (as in [5]) with mod ℓ modular forms in the sense of Katz ([7]), but when the weight is ≥ 2 and either
$\ell>3$ or $N>1$, there is no distinction between mod ℓ modular forms in Serre's sense and Katz's sense ([5], Lemma 1.9).

In Theorem 2, that one can take ρ^{\prime} to be of Serre weight $k^{\prime} \leq \ell+1$ follows from Theorem 3.4 of [6]. That one may assume $k^{\prime} \geq 2$ is because if ρ^{\prime} comes from an eigenform f of weight 1 , then it also comes from $f E_{\ell-1}(\bmod \ell)$, where $E_{\ell-1}$ is the Eisenstein series of weight $\ell-1$, which has Fourier expansion $E_{\ell-1} \equiv 1(\bmod \ell)$.

Proof of Theorem 1. In proving the theorem, we may replace (L, λ) by a finite extension $\left(L^{\prime}, \lambda^{\prime}\right)$, at the expense of multiplying the constant e by the ramification index. Thus we may assume L is so large that the actions of the Hecke operators T_{p} on $M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; L\right)$ for all $p \nmid \ell N$ are diagonalizable.

Suppose first that $f \in M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; \mathcal{O}_{L, \lambda}\right)$ is a Hecke eigenform with T_{p}-eigenvalue $a(p)$;

$$
f \mid T_{p}=a(p) f
$$

for each prime $p \nmid \ell N$. To prove (1) with $e=1$ (and with $c=0$ in this case), it is enough to show that

$$
a(p) \equiv 0 \quad(\bmod \lambda) \quad \text { if } p \equiv-1 \quad(\bmod \ell N)
$$

By Hecke (cf. Chap. 7 of [9]) and Deligne ([4]), there exists a continuous representation

$$
\rho_{f, \lambda}: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{2}(\kappa(\lambda)) \hookrightarrow \mathrm{GL}_{2}\left(\overline{\mathbf{F}}_{\ell}\right)
$$

such that

$$
\begin{equation*}
\operatorname{Tr}\left(\rho_{f, \lambda}\left(\operatorname{Frob}_{p}\right)\right) \equiv a(p) \quad(\bmod \lambda) \tag{3}
\end{equation*}
$$

for each prime $p \nmid \ell N$, where $\kappa(\lambda)$ denotes the residue field of λ and Frob_{p} denotes a Frobenius element at p. If $\rho_{f, \lambda}$ is irreducible (so in particular f is not an Eisenstein series), then by Theorem 2 it is of the form $\chi^{\alpha} \otimes \rho^{\prime}$, where ρ^{\prime} is modular of some type $\left(N^{\prime}, k^{\prime}, \varepsilon^{\prime}\right)_{\overline{\mathbf{Q}}}$ with $N^{\prime} \mid N$ and $2 \leq k^{\prime} \leq \ell+1$. But for $(\ell, N)=$ $(3,4),(5,2),(7,1)$, there are no cusp forms of level N and weight $2 \leq k^{\prime} \leq \ell+1$. Hence $\rho_{f, \lambda}$ must be reducible;

$$
\rho_{f, \lambda} \sim\left(\begin{array}{cc}
\psi_{1} & * \\
& \psi_{2}
\end{array}\right)
$$

The character $\psi_{i}: G_{\mathbf{Q}} \rightarrow \overline{\mathbf{F}}_{\ell}^{\times}$factors through the group $\left(\mathbf{Z} / \ell^{b} N \mathbf{Z}\right)^{\times}$for some $b \geq 1$ (cf. [3, 8]) and, further, through the quotient $(\mathbf{Z} / \ell N \mathbf{Z})^{\times}$since $\overline{\mathbf{F}}_{\ell}^{\times}$
has no elements of order divisible by ℓ. Since $\rho_{f, \lambda}$ is odd, if $c \in G_{\mathbf{Q}}$ is a complex conjugation, we have

$$
\operatorname{det}\left(\rho_{f, \lambda}(c)\right)=\left(\psi_{1} \psi_{2}\right)(c)=\left(\psi_{1} \psi_{2}^{-1}\right)(c)=-1
$$

Since c and Frob_{p} for $p \equiv-1(\bmod \ell N)$ are both mapped to -1 in $(\mathbf{Z} / \ell N \mathbf{Z})^{\times}$by the canonical map $G_{\mathbf{Q}} \rightarrow \operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{\ell N}\right) / \mathbf{Q}\right) \simeq(\mathbf{Z} / \ell N \mathbf{Z})^{\times}$, we have

$$
\left(\psi_{1} \psi_{2}^{-1}\right)\left(\operatorname{Frob}_{p}\right)=-1
$$

for $p \equiv-1(\bmod \ell N)$. On the other hand, for any $\sigma \in G_{\mathbf{Q}}$, we have

$$
\begin{aligned}
\operatorname{Tr}\left(\rho_{f, \lambda}(\sigma)\right) & =\psi_{1}(\sigma)+\psi_{2}(\sigma) \\
& =\psi_{2}(\sigma)\left(\left(\psi_{1} \psi_{2}^{-1}\right)(\sigma)+1\right)
\end{aligned}
$$

Then it follows that, for any $p \equiv-1(\bmod \ell N)$, we have

$$
\operatorname{Tr}\left(\rho_{f, \lambda}\left(\operatorname{Frob}_{p}\right)\right)=0
$$

and hence by (3),

$$
a(p) \equiv 0 \quad(\bmod \lambda)
$$

To prove (1) with $e=1$ for a general f in $M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; \mathcal{O}_{L, \lambda}\right)$, let f_{1}, \ldots, f_{r} be a set of Hecke eigenforms which forms a basis of the L-vector space $M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; L\right)$ (cf. [1]). Then since the $\mathcal{O}_{L, \lambda^{-}}$ module $\sum_{i=1}^{r} \mathcal{O}_{L, \lambda} \cdot f_{i}$ is of finite index in $M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; \mathcal{O}_{L, \lambda}\right)$, there is an integer $c \geq 0$ such that $\lambda^{c} M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; \mathcal{O}_{L, \lambda}\right) \subset \sum_{i=1}^{r} \mathcal{O}_{L, \lambda} \cdot f_{i}$. Thus for any $f \in M_{k}\left(\Gamma_{0}\left(\ell^{a} N\right), \varepsilon ; \mathcal{O}_{L, \lambda}\right)$, if we write

$$
f=a_{1} f_{1}+\cdots+a_{r} f_{r} \quad \text { with } a_{i} \in L
$$

then we have $\operatorname{ord}_{\lambda}\left(a_{i}\right) \geq-c$ for all $i=1, \ldots, r$. Now the congruence (1) follows from the case of eigenforms.

The congruence (2) then follows by using Proposition 6.1 of [11], which we record here for the convenience of the reader:

Lemma 3. If a modular form $f(z)=$ $\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k}\left(\Gamma_{0}(M), \varepsilon ; \mathcal{O}_{L, \lambda}\right)$ satisfies

$$
f(z)\left|T_{p_{1}}\right| T_{p_{2}}|\cdots| T_{p_{c}} \equiv 0 \quad\left(\bmod \lambda^{t}\right)
$$

for c distinct primes $p_{i} \nmid M$, then one has

$$
a\left(p_{1} p_{2} \cdots p_{c} m\right) \equiv 0 \quad\left(\bmod \lambda^{t}\right)
$$

for any positive integer m coprime to $p_{1} p_{2} \ldots p_{c}$.

Next we give some applications of Theorem 1. The first one is to the Fourier coefficients of ℓ-adic modular forms. Let \mathbf{C}_{ℓ} be the completion of $\overline{\mathbf{Q}}$ with respect to an extension to $\overline{\mathbf{Q}}$ of the ℓ-adic valuation of \mathbf{Q}, and let $\mathcal{O}_{\mathbf{C}_{\ell}}$ be the valuation ring of \mathbf{C}_{ℓ}. For our purpose, an ℓ-adic modular form $f=\sum_{n=0}^{\infty} a(n) q^{n}$ of weight $k \in \mathbf{Z}_{\ell}$, tame level N and character ε : $(\mathbf{Z} / \ell N \mathbf{Z})^{\times} \rightarrow \mathcal{O}_{\mathbf{C}_{\ell}}^{\times}$is a power series in $\mathcal{O}_{\mathbf{C}_{\ell}} \llbracket q \rrbracket$ such that, for any integer $t \geq 1$, there exists a modular form $f_{t}=\sum_{n=0}^{\infty} a_{t}(n) q^{n} \in M_{k_{t}}\left(\Gamma_{0}\left(\ell^{a_{t}} N\right), \varepsilon ; \overline{\mathbf{Q}}\right)$ in the classical sense such that

$$
f \equiv f_{t} \quad\left(\bmod \ell^{t}\right)
$$

where k_{t} is an integer ≥ 1 with the sequence $\left(k_{t}\right)_{t \geq 1}$ converging ℓ-adically to k and a_{t} is any integer ≥ 0. Theorem 1 implies:

Corollary 4. Let $(\ell, N)=(3,4),(5,2)$ or $(7,1)$. If $f=\sum_{n=0}^{\infty} a(n) q^{n} \in \mathcal{O}_{\mathbf{C}_{\ell}} \llbracket q \rrbracket$ is an ℓ-adic modular form of tame level N, then for any integer $t \geq 1$, there exists an integer $c \geq 0$ such that for any c distinct primes $p_{1}, p_{2}, \ldots, p_{c} \equiv-1(\bmod \ell N)$ and any positive integer m coprime to $p_{1} p_{2} \cdots p_{c}$, we have

$$
a\left(p_{1} p_{2} \cdots p_{c} m\right) \equiv 0 \quad\left(\bmod \ell^{t}\right)
$$

Here, we applied Theorem 1 to each f_{t} approximating the ℓ-adic modular form f, and so the constant c depends on f and t.

Let us look at an example coming from the "modular invariant" $j(z)=\sum_{n=-1}^{\infty} c(n) q^{n}=q^{-1}+$ $744+196884 q+21493760 q^{2}+\cdots$, which is a modular function of weight 0 and level 1. It is known ([12], Th. 5.2) that the series
$j^{\prime}(z):=\sum_{n=0}^{\infty} c(\ell n) q^{n} \quad$ and $\quad j_{-}(z):=\sum_{\left(\frac{-n}{\ell}\right)=-1} c(n) q^{n}$ are ℓ-adic modular forms of weight 0 , tame level 1 , and trivial character. Hence Corollary 4 implies:

Corollary 5. Let $\ell=3,5$ or 7 . For any integer $t \geq 1$, there exists an integer $c \geq 0$ such that for any c distinct primes $p_{1}, p_{2}, \ldots, p_{c} \equiv-1(\bmod \ell)$ and any positive integer m coprime to $p_{1} p_{2} \cdots p_{c}$, we have

$$
c\left(p_{1} p_{2} \cdots p_{c} m\right) \equiv 0 \quad\left(\bmod \ell^{t}\right)
$$

whenever either $\ell \mid m$ or

$$
\left(\frac{m}{\ell}\right)= \begin{cases}(-1)^{c} & \text { if } \ell=3,7 \\ -1 & \text { if } \ell=5\end{cases}
$$

The next application is to the number of representations of an integer by quadratic forms. Let $Q\left(x_{1}, \ldots, x_{k}\right)=\frac{1}{2} \sum_{1 \leq i, j \leq k} a_{i j} x_{i} x_{j}$ be a positive definite quadratic form in \bar{k} variables over \mathbf{Z}; thus the coefficient matrix $A=\left(a_{i j}\right)$ is positive definite and is in the set \mathbf{E}_{k} of $k \times k$ symmetric matrices $\left(a_{i j}\right)$ with $a_{i j} \in \mathbf{Z}$ and $a_{i i} \in 2 \mathbf{Z}$. For any integer n, let $r(Q, n)$ denote the number of representations of n by Q;

$$
r(Q, n):=\#\left\{\left(n_{1}, \ldots, n_{k}\right) \in \mathbf{Z}^{k} \mid n=Q\left(n_{1}, \ldots, n_{k}\right)\right\}
$$

The generating function for the sequence $(r(Q, n))_{n \geq 0}$,

$$
\begin{aligned}
\theta(z, Q) & :=\sum_{\left(n_{1}, \ldots, n_{k}\right) \in \mathbf{Z}^{k}} q^{Q\left(n_{1}, \ldots, n_{k}\right)} \\
& =\sum_{n=0}^{\infty} r(Q, n) q^{n}
\end{aligned}
$$

is called the theta series associated with the quadratic form Q ([2], Chap. 1, §1, (1.13)). The level M of the quadratic form Q (or of the coefficient matrix A) is by definition the smallest positive integer M such that $M A^{-1}$ is in \mathbf{E}_{k} ([2], Chap. 1, §3). It is known ([2], Chap. 2, Th. 2.2) that, if Q is of k variables and level M, then $\theta(z, Q)$ is a modular form of weight $k / 2$ on $\Gamma_{0}(M)$ with some quadratic character ε_{Q}. By Theorem 1, we obtain:

Corollary 6. Let $(\ell, N)=(3,4),(5,2)$ or $(7,1)$. Suppose Q is a positive definite quadratic form over \mathbf{Z} in an even number of variables and of level dividing $\ell^{a} N$ for some $a \geq 0$. Then there exist integers $c \geq 0$ and $e \geq 1$ such that for any integer $t \geq 1$, any $c+$ et distinct primes $p_{1}, p_{2}, \ldots, p_{c+e t} \equiv-1$ $(\bmod \ell N)$, and any positive integer m coprime to $p_{1} p_{2} \cdots p_{c+e t}$, we have

$$
r\left(Q, p_{1} p_{2} \cdots p_{c+e t} m\right) \equiv 0 \quad\left(\bmod \ell^{t}\right)
$$

For example, this applies to the quadratic form $Q=x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 k}^{2}$, which is of level 4.

Acknowledgements. Most ideas in this paper come from [10] and [11]. The authors are grateful to Ken Ono for sharing his insights with them and suggesting the possibility of further applications of the results of this paper.

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann. 185 (1970), 134-160.
[2] A. N. Andrianov and V. G. Zhuravlev, Modular forms and Hecke Operators, Math. Monographs vol.145, A.M.S., Providence, 1995.
[3] H. Carayol, Sur les représentations galoisiennes modulo ℓ attachées aux formes modulaires, Duke Math. J. 59 (1989), 785-801
[4] P. Deligne, Formes modulaires et représentations ℓ-adiques, Séminaire Bourbaki, 1968/69, Exp. 355, Lect. Notes in Math. 179, Springer-Verlag, 1971.
[5] B. Edixhoven, Serre's conjecture, in Modular forms and Fermat's last theorem, (Boston, MA, 1995), 209-242, Springer, New York.
[6] B. Edixhoven, The weight in Serre's conjectures on modular forms, Invent. Math. 109 (1992), no.3, 563-594.
[7] N. Katz, p-adic properties of modular schemes and modular forms, in Modular functions of one variable, III (Proc. Internat. Summer School,

Univ. Antwerp, Antwerp, 1972), 69-190, Lecture Notes in Math., 350, Springer, Berlin, 1973.
[8] R. Livné, On the conductors of $\bmod \ell$ Galois representations coming from modular forms, J. Number Theory 31 (1989), 133-141.
[9] T. Miyake, Modular Forms, Springer-Verlag, New York, 1989.
[10] K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and q-series, A.M.S., Providence, 2004.
[11] K. Ono and Y. Taguchi, 2-adic properties of certain modular forms and their applications to arithmetic functions, Int. J. Number Theory 1 (2005), 75-101.
[12] J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, L'Enseignement Math. 22 (1976), 227-260.
[13] J.-P. Serre, Sur les représentations modulaires de degré 2 de $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, Duke Math. J. 54 (1987), 179-230.

