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Small gaps between primes exist

By Daniel Alan Goldston,∗) Yoichi Motohashi,∗∗) János Pintz,∗∗∗) and Cem Yalçın Yıldırım∗∗∗∗)

(Communicated by Shigefumi Mori, m. j. a., April 12, 2006)

Abstract: In the preprint [3], Goldston, Pintz, and Yıldırım established, among other
things,

(0) lim inf
n→∞

pn+1 − pn

log pn
= 0,

with pn the nth prime. In the present article, which is essentially self-contained, we shall develop
a simplified account of the method used in [3]. We include a short expository last section.

Key word: Prime number.

1. Basic lemma. In this section we shall
prove an asymptotic formula relevant to Selberg’s
sieve, which is to be modified so as to involve primes
in the next section. The two asymptotic formulas
thus obtained will be combined in a simple weighted
sieve setting, and give rise to (0) in the third section.

Let N be a parameter increasing monotonically
to infinity. There are four other basic parameters
H,R, k, ` in our discussion. We impose the following
conditions to them:

(1.1) H � logN � logR ≤ logN,

and

(1.2) integers k, ` > 0 are arbitrary but bounded.

To prove a quantitative assertion superseding (0),
we need to regard k, ` as functions of N ; but for our
present purpose the above is sufficient (this aspect
is to be discussed in the publication version of [3]
and its continuations). All implicit constants in the
sequel are possibly dependent on k, ` at most; and
besides, the symbol c stands for a positive constant
with the same dependency, whose value may differ
at each occurrence.
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Let

H = {h1, h2, . . . , hk} ⊆ [1,H] ∩ Z,

with hi 6= hj for i 6= j. For a prime p, let Ω(p) be the
set of different residue classes among −h (mod p),
h ∈ H, and write n ∈ Ω(p) instead of n (mod p) ∈
Ω(p). We call H admissible if

(1.3) |Ω(p)| < p for all p,

and assume this unless otherwise stated. We extend
Ω multiplicatively, so that n ∈ Ω(d) with square-
free d if and only if n ∈ Ω(p) for all p|d, which is
equivalent to d|P (n;H) with P (n;H) = (n+h1)(n+
h2) · · · (n + hk). Also, we put, with µ the Möbius
function,

λR(d; a) =

0 if d > R,

1
a!
µ(d)

(
log

R

d

)a

if d ≤ R,

and

ΛR(n;H, a) =
∑

n∈Ω(d)

λR(d; a)

=
1
a!

∑
d|P (n;H)

d≤R

µ(d)
(

log
R

d

)a

.

With this, we shall consider the evaluation of

(1.4)
∑

N<n≤2N

ΛR(n;H, k + `)2.

Expanding out the square, we have∑
d1,d2

λR(d1; k + `)λR(d2; k + `)
∑

N<n≤2N
n∈Ω(d1),n∈Ω(d2)

1.
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The condition on n is equivalent to n ∈ Ω([d1, d2]),
with [d1, d2] the least common multiple of the two
integers; and (1.4) is equal to

NT +O

(∑
d

|Ω(d)| |λR(d; k + `)|

)2
 ,

in which

T =
∑
d1,d2

|Ω([d1, d2])|
[d1, d2]

λR(d1; k + `)λR(d2; k + `).

We have |Ω(d)| ≤ τk(d) with the generalized divisor
function τk. Thus∑
N<n≤2N

ΛR(n;H, k + `)2 = NT +O
(
R2(logR)c

)
.

On noting that for a ≥ 1

λR(d; a) =
µ(d)
2πi

∫
(1)

(
R

d

)s
ds

sa+1
,

with (α) the vertical line in the complex plane pass-
ing through α, we have

T =
1

(2πi)2

∫
(1)

∫
(1)

F (s1, s2; Ω)
Rs1+s2

(s1s2)k+`+1
ds1 ds2,

where

F (s1,s2;Ω) =
∑
d1,d2

µ(d1)µ(d2)
|Ω([d1,d2])|
[d1,d2]ds1

1 d
s2
2

=
∏
p

(
1− |Ω(p)|

p

(
1
ps1

+
1
ps2

− 1
ps1+s2

))
in the region of absolute convergence.

Since |Ω(p)| = k for p > H, we put

G(s1, s2; Ω)

= F (s1, s2; Ω)
(
ζ(s1 + 1)ζ(s2 + 1)
ζ(s1 + s2 + 1)

)k

,
(1.5)

with ζ the Riemann zeta-function. This is regular
and bounded for Re s1,Re s2 > −c. In particular,
we have the singular series

S(H) = G(0, 0;Ω) =
∏
p

(
1− |Ω(p)|

p

)(
1− 1

p

)−k

,

which does not vanish, because of (1.3). We have
the bound

G(s1, s2; Ω)

� exp
(
c(logN)−2σ log log logN

)
,

(1.6)

with min(Re s1,Re s2, 0) = σ ≥ −c, as can be seen
via the Euler product expansion of the right side

of (1.5). In fact, the part corresponding to those
p > H is uniformly bounded in the indicated region
since |Ω(p)| = k; and the logarithm of the remain-
ing part is estimated to be� H−2σ

∑
p≤H p−1. Note

that the restrictions (1.1) and (1.2) are relevant here.

Now, we have

T =
1

(2πi)2

∫
(1)

∫
(1)

G(s1,s2;Ω)
(

ζ(s1 +s2 +1)
ζ(s1 +1)ζ(s2 +1)

)k

× Rs1+s2

(s1s2)k+`+1
ds1ds2.

Let us put U = exp
(√

logN
)
, and shift the s1 and

s2-contours to the vertical lines c0(logU)−1 + it and
to c0(2 logU)−1 + it, t ∈ R, respectively, with a suf-
ficiently small constant c0 > 0; necessary facts about
the functions ζ and 1/ζ can be found in [4, Sec-
tion 3.11], from which the choice of c0 transpires.
We truncate the contours to |t| ≤ U and |t| ≤ U/2,
and denote the results by L1 and L2, respectively.
On noting (1.1) and (1.6), we have readily that

T =
1

(2πi)2

∫
L2

∫
L1

G(s1,s2;Ω)

×
(

ζ(s1 +s2 +1)
ζ(s1 +1)ζ(s2 +1)

)k
Rs1+s2

(s1s2)k+`+1
ds1ds2

+O
(
exp
(
−c
√

logN
))
.

We then shift the s1-contour to L3: −c0(logU)−1 +
it, |t| ≤ U . We encounter singularities at s1 = 0
and s1 = −s2, which are poles of orders `+ 1 and k,
respectively. We have

T =
1

2πi

∫
L2

{
Res
s1=0

+ Res
s1=−s2

}
ds2

+O
(
exp

(
−c
√

logN
))

,

(1.7)

in which we have used (1.6). We rewrite the residue,
and have

Res
s1=−s2

=
1

2πi

∫
C(s2)

G(s1, s2; Ω)

×
(

ζ(s1 + s2 + 1)
ζ(s1 + 1)ζ(s2 + 1)

)k
Rs1+s2

(s1s2)k+`+1
ds1,

with the circle C(s2): |s1+s2| = (logN)−1. By (1.6),
we have G(s1, s2; Ω) � (log logN)c; ζ(s1 +s2 +1) �
logN ; Rs1+s2 � 1. Also, since |s2| � |s1| � |s2|,
we have (s1ζ(s1 + 1))−1 � (|s2|+ 1)−1 log(|s2|+ 2),
loc.cit. Thus
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Res
s1=−s2

� (logN)k−1(log logN)c

×
(

log(|s2|+ 2)
|s2|+ 1

)2k

|s2|−2`−2.
(1.8)

Inserting this into (1.7), we get

T =
1

2πi

∫
L2

{
Res
s1=0

}
ds2

+O
(
(logN)k+`−1/2(log logN)c

)
.

(1.9)

To evaluate the last integral, we put

Z(s1, s2) = G(s1, s2; Ω)

×
(

(s1 + s2)ζ(s1 + s2 + 1)
s1ζ(s1 + 1)s2ζ(s2 + 1)

)k

,

which is regular in a neighborhood of the point (0, 0).
Then we have

Res
s1=0

=
Rs2

`! s`+1
2

(
∂

∂s1

)`

s1=0

{
Z(s1, s2)
(s1 + s2)k

Rs1

}
.

We insert this into (1.9) and shift the contour to
L4: −c0(logU)−1 + it, |t| ≤ U/2. We see the new
integral is O

(
exp
(
−c
√

logN
))

; the necessary bound
for the integrand can be obtained in much the same
way as in (1.8). Thus

T = Res
s2=0

Res
s1=0

+O
(
(logN)k+`

)
=

1
(2πi)2

∫
C2

∫
C1

Z(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1 ds2

+O
(
(logN)k+`

)
,

where C1, C2 are the circles |s1| = ρ, |s2| = 2ρ, with
a small ρ > 0. We write s1 = s, s2 = sξ. Then the
double integral is equal to

1
(2πi)2

∫
C3

∫
C1

Z(s, sξ)Rs(ξ+1)

(ξ + 1)kξ`+1sk+2`+1
ds dξ,

where C3 is the circle |ξ| = 2. This is equal to

Z(0, 0)
2πi(k + 2`)!

(logR)k+2`

∫
C3

(ξ + 1)2`

ξ`+1
dξ

+O
(
(logN)k+2`−1(log logN)c

)
,

where we have used (1.6); note that Z(0, 0) = S(H).
Hence, we have obtained our basic implement:

Lemma 1. If (1.1) and (1.2) hold , then we
have, for R ≤ N1/2/(logN)C with a sufficiently large
C > 0 depending only on k and `,

∑
N<n≤2N

ΛR(n;H, k + `)2

=
S(H)

(k + 2`)!

(
2`
`

)
N(logR)k+2`

+O
(
N(logN)k+2`−1(log logN)c

)
.

(1.10)

2. Twist with primes. Next, let $(n) be
equal to log n if n is a prime, and to 0 otherwise; and
let us consider the evaluation of the sum

(2.1)
∑

N<n≤2N

$(n+ h)ΛR(n;H, k + `)2,

with an arbitrary positive integer h ≤ H. We first
observe that this is equal to

(2.2)
∑

N<n≤2N

$(n+ h)ΛR(n;H \ {h}, k + `)2,

provided R < N ; in fact, if $(n + h) 6= 0 and h ∈
H, then the factor n + h of P (n;H) is irrelevant in
computing ΛR(n;H; k + `).

We shall work on the assumption: There exists
an absolute constant 0 < θ < 1 such that we have,
for any fixed A > 0,∑

q≤xθ

max
y≤x

max
a

(a,q)=1

∣∣∣∣ϑ∗(y; a, q)− y

ϕ(q)

∣∣∣∣
� x

(log x)A
,

(2.3)

with

ϑ∗(y; a, q) =
∑

y<n≤2y
n≡a mod q

$(n),

where ϕ is the Euler totient function, and the implicit
constant depends only on A.

We assume that

R ≤ Nθ/2.

In particular, we may assume also that h /∈ H
in (2.1).

With this, expanding out the square in (2.1), we
see that the sum is equal to

∑
d1,d2

λR(d1; k + `)λR(d2; k + `)

×
∑

b∈Ω([d1,d2])

δ((b+ h, [d1, d2]))ϑ∗(N ; b+ h, [d1, d2])

+O
(
R2(logN)c

)
,

(2.4)

where δ(x) is the unit measure placed at x = 1, be-
cause ϑ∗(N ; b + h, [d1, d2]) = 0 if b + h and [d1, d2]
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are not coprime. Then, by (2.3), this is equal to

(2.5) NT ∗ +O

(
N

(logN)A/3

)
,

with

T ∗ =
∑
d1,d2

λR(d1; k + `)λR(d2; k + `)
ϕ([d1, d2])

×
∑

b∈Ω([d1,d2])

δ((b+ h, [d1, d2])).
(2.6)

The error term in (2.5) might require an explana-
tion: We consider first the part of (2.4) in which
|Ω([d1, d2])| ≤ τk([d1, d2]) < (logN)A/2. Note that
then |{d1, d2 : [d1, d2] = d}| = τ3(d) is less than
(logN)(A log 3)/(2 log k). With this, we appeal to (2.3).
On the other hand the remaining part is

� N(logR)2(k+`) logN

×
∑

d1,d2≤R

τk([d1, d2])
(logN)A/2

|Ω([d1, d2])|
[d1, d2]

� N

(logN)A/3
,

provided A is sufficiently large.
It remains for us to evaluate T ∗. The inner sum

of (2.6) is equal to

∏
p|[d1,d2]

 ∑
b∈Ω(p)

δ((b+ h, p))

 =
∏

p|[d1,d2]

(|Ω+(p)|−1).

Here Ω+ corresponds to the set H+ = H ∪ {h}. In
fact, δ((b + h, p)) vanishes if and only if −h ∈ Ω(p);
and the latter is equivalent to Ω(p) = Ω+(p). Note
that the analogue of (1.3) for Ω+ can be violated.
Nevertheless, we have, as before,

T ∗ =
1

(2πi)2

∫
(1)

∫
(1)

∏
p

(
1− |Ω+(p)| − 1

p− 1

·
(

1
ps1

+
1
ps2

− 1
ps1+s2

))
Rs1+s2

(s1s2)k+`+1
ds1 ds2.

(2.7)

For p > H, we have |Ω+(p)| = k + 1, as we have
h /∈ H. Thus, we consider the function∏

p

( · · · )
(
ζ(s1 + 1)ζ(s2 + 1)
ζ(s1 + s2 + 1)

)k

as in (1.5). If H+ is admissible, the singular series
is S(H+) and the argument and computation of res-
idues is analogous to the above. We find that pro-
vided h /∈ H

T ∗ =
S(H+)
(k + 2`)!

(
2`
`

)
(logR)k+2`

+O
(
(logN)k+2`−1(log logN)c

)
.

(2.8)

On the other hand, if H+ is not admissible, i.e.,
S(H+) = 0, then the Euler product in (2.7) vanishes
at either s1 = 0 or s2 = 0 to the order equal to the
number of primes such that |Ω+(p)| = p. However,
since we have then p ≤ k + 1, the necessary change
to the above reasoning results only in the lack of the
main term in (2.8) and the error term remains to be
the same or actually smaller.

Finally, if h ∈ H, then the above evaluation ap-
plies with the translation k 7→ k−1, ` 7→ `+1 to (2.8)
because of (2.2).

From this, we obtain

Lemma 2. If (1.1), (1.2), and (2.3) hold ,
then we have, for R ≤ Nθ/2,

∑
N<n≤2N

$(n+ h)ΛR(n;H, k + `)2

=



S(H ∪ {h})
(k + 2`)!

(
2`
`

)
N(logR)k+2`

+O(N(logN)k+2`−1(log logN)c) if h 6∈ H,

S(H)
(k + 2`+ 1)!

(
2(`+ 1)
`+ 1

)
N(logR)k+2`+1

+O(N(logN)k+2`(log logN)c) if h ∈ H.

(2.9)

3. Proof of (0). We are now ready to prove
the assertion (0). To this end, we shall evaluate the
expression∑

H⊆[1,H]
|H|=k

∑
N<n≤2N

∑
h≤H

$(n+ h)− log 3N


× ΛR(n;H, k + `)2,

(3.1)

where we set R = Nθ/2 so that both (1.10) and (2.9)
hold. If (3.1) turns out to be positive, then there
exists an integer n ∈ (N, 2N ] such that∑

h≤H

$(n+ h)− log 3N > 0.

That is, there exists a subinterval of length H in
(N, 2N +H] which contains two primes; hence

min
N<pr≤2N+H

(pr+1 − pr) ≤ H.

Here, we need to quote, from [2],

(3.2)
∑

H⊆[1,H]
|H|=k

S(H) = (1 + o(1))Hk,
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as H tends to infinity; note that the permutations
of the elements {h1, . . . , hk} are counted on the left
side. With this and Lemma 1, we see that (3.1) is
asymptotically equal to

∑
H⊆[1,H]
|H|=k

∑
N<n≤2N


∑
h≤H
h/∈H

+
∑
h≤H
h∈H


×$(n+ h)ΛR(n;H, k + `)2

− 1
(k + 2`)!

(
2`
`

)
NHk(logN)(logR)k+2`,

with an error of the size of o
(
NHk(logN)k+2`+1

)
.

By Lemma 2 and (3.2) with an appropriate replace-
ment of H, this is asymptotically equal, in the same
sense, to

1
(k + 2`)!

(
2`
`

)
NHk+1(logR)k+2`

+
k

(k + 2`+ 1)!

(
2(`+ 1)
`+ 1

)
NHk(logR)k+2`+1

− 1
(k + 2`)!

(
2`
`

)
NHk(logN)(logR)k+2`

=
{
H +

k

k + 2`+ 1
· 2(2`+ 1)

`+ 1
· logR− logN

}
× 1

(k + 2`)!

(
2`
`

)
NHk(logR)k+2`.

(3.3)

Hence (3.1) is positive, provided

(3.4)
H

logN
≥ 1 + ε− k

k + 2`+ 1
· 2(2`+ 1)

`+ 1
· θ
2
,

with any fixed ε > 0. Therefore, with ` =
[√
k
]
, say,

we obtain

lim inf
n→∞

pn+1 − pn

log pn
≤ max {0, 1− 2θ} .

In particular, the Bombieri-Vinogradov prime num-
ber theorem [1, Théorème 17] gives rise to the asser-
tion (0), since we may choose θ to be any number
less than 1/2.

Finally, we shall exhibit a conditional assertion:
If (2.3) holds with an absolute constant θ > 1/2,
then there will be infinitely many n such that pn+1−
pn ≤ c(θ) with an absolute constant c(θ). In fact, we
would be able to suppose H > c(θ) in the above as
far as (3.3), and the assertion follows immediately.

4. Exposition. The principal idea in [3] is
the amazing effect induced by the introduction of
the parameter ` in (1.4). The sieve with weight
µ(d)(logm/d)k+`, d|m, applied to the polynomial

m = P (n;H) detects n with which P (n;H) has k+ `

distinct prime factors at most, implying that the in-
tegers n + hj , j ≤ k, are mostly primes, provided k

is large compared with `, and P (n;H) is squarefree;
note that those n such that P (n;H) is not squarefree
are easily excluded. By a standard method in this
field, we approximate these weights by λR(d; k + `),
and consider the Selberg sieve situation (1.4), with
the parameters ` and R at our disposal. An asymp-
totic formula for the sum (1.4) is given in (1.10).
Then, to detect at least two primes among n + hj ,
j ≤ k, a usual weighted sieve situation is consid-
ered at (3.1); for this the asymptotic formula (2.9) is
needed. The upshot is condensed in (3.3) and (3.4).
The proof of (0) requires that both k and ` can
be taken appropriately and the Bombieri-Vinogradov
prime number theorem be available.

Rendering the above more technically, the rea-
son for success lies not only in the introduction of the
parameter ` but also in the trivial fact (2.2), which
brings forth the translation ` 7→ ` + 1 as remarked
in the proof of Lemma 2. This introduces the factor(
2(`+1)

`+1

)
on the right of (2.9). One should note that(

2(`+1)
`+1

)/(
2`
`

)
= 2(2` + 1)/(` + 1), which tends to 4

as `→∞. This is extremely critical when appealing
to the Bombieri-Vinogradov prime number theorem.
On the other hand, the translation k 7→ k−1 does not
cause any effect as long as k is much larger than `.
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