A discrete criterion in $P U(2,1)$ by use of elliptic elements

By Shihai Yang and Ainong Fang
Department of Mathematics, Shanghai Jiaotong University, Shanghai, 200240, Chaina
(Communicated by Heisuke Hironaka, m. J. a., March 13, 2006)

Abstract

In this paper we show a 2-dimensional subgroup in $P U(2,1)$ which contains elliptics is discrete if and only if all its subgroups generated by two elliptics are discrete. This generalize the well-known discreteness criterion first established by T. Jørgensen.

Key words: Discrete groups; complex hyperbolic space; elliptic elements.

1. Introduction. The discreteness of Möbius groups is a fundamental problem, which have been discussed by many authors. In 1976, Jørgensen established his well-known result [12]:

Theorem A. A non-elementary subgroup G of Möbius transformations acting on $\overline{\mathbf{R}}^{2}$ is discrete if and only if for each f and g in G the group $\langle f, g\rangle$ is discrete.

This important result shows that the discreteness of a non-elementary Möbius group depends on the information of all its rank two subgroups. Furthermore, J. Gilman [7] and N. A. Isochenko [9] showed that the discreteness of all two-genrator subgroups, where each generator is loxodromic, is enough to secure the discreteness of the group.

For a space version of Theorem A, G. J. Martin [13] showed additional condition must be added, for example, the uniformly bounded torsion condition. In [6], Fang and Nai weakened it to Condition A, that is, there is no sequence $\left\{g_{n}\right\}$ of the involved group converging to the identity such that each g_{n} has more than two fixed points.
W. Abikoff and A. Hass in [1] constructed an example to show that for $n \geq 4$, there exist nonelementary subgroups of $\operatorname{Isom}\left(H^{n}\right)$ which are not discrete but their subgroups generated by finitely many elements are discrete. This means that in general Theorem A does not apply to space. They proved the following

Theorem B. An n-dimensional subgroup Γ of $\operatorname{Isom}\left(H^{n}\right)$ is discrete if and only if every twogenerator subgroup of Γ is discrete.

Here by definition in [1] the n-dimensional conditional condition means that Γ does not have any

[^0]Γ-invariant proper hyperbolic subspace. In addition, if n is even, they showed that Γ is discrete if and only if every two-generator subgroup of Γ is discrete.

In [5], Chen Min showed that for an n dimensional subgroup G of $\operatorname{Isom}\left(H^{n}\right)$ and some fixed non-trivial Möbius transformation h, if for each $g \in$ G the group $\langle h, g\rangle$ is discrete, then G is discrete. The interesting thing is the test map h may be not in G.

In this paper, we discuss the generalization of Theorem A to the complex hyperbolic space. Denote by H_{C}^{2} the two dimensional complex hyperbolic space, and $P U(2,1)$ its holomorphic isometry group. Let G be a subgroup of $P U(2,1)$. Similar to [1] we give the following definition:

Definition 1. G is 2-dimensional if G doesn't leave invariant a point in $\overline{H_{C}^{2}}$ or a proper totally geodesic submanifold of H_{C}^{2}.

According to [4, Corollary 4.5.2], if G is a 2 dimensional subgroup of $P U(2,1)$ such that the identity is not an accumulation point of the elliptic elements in G, then G is discrete. A direct consequence is that a 2 -dimensional subgroup containing no elliptics is discrete. So we are only interested in the case when the involved 2-dimensional group contains elliptic elements. The main purpose of this paper is to show the following result:

Theorem 1. Let G be a 2-dimensional subgroup in $P U(2,1)$ and contains elliptic elements. Then G is discrete if and only if for each pair of elliptic elements f and g in G, the subgroup $\langle f, g\rangle$ is discrete.

Jørgensen proved Theorem A by using the famous Jørgensen's inequality, which is a necessary condition for discreteness of two-generator groups. Recall that $\operatorname{PSL}(2, \mathbf{R})$ can be identified with one dimensional complex hyperbolic group $P U(1,1)$. The
generalization of Jørgensen's inequality to $P U(2,1)$ have been studied by A. Basmajian and R. Miner, Y. Jiang, J. Parker and S. Kamiya (See [2, 10, 11, 15, 16]). In this paper we use one of those generalization (cf. Coro. 11.1 in [2]) considering groups generated by two boundary elliptics, to prove our Theorem 1. The readers can refer to [8] for more about complex hyperbolic geometry.
2. Proof of the theorem. According to [14], a discrete subgroup G of $P U(2,1)$ is elementary if its limit set $L(G)$ contains at most two points and can be divided into the following three cases:
(a) elliptic type, i.e., $L(G)=\emptyset$. Then G is a finite group consisting of elliptics and all its elements share a common fixed point in H_{C}^{2};
(b) parabolic type, i.e., $L(G)=\{a\}$. Then G consists of parabolic elements and probably elliptics with the fixed point a;
(c) loxodromic type, i.e., $L(G)=\{a, b\}$. Then G has a cyclic subgroup of finite index generated by a loxodromic element with fixed points a and b. If G contains an elliptic element, then it either fixes or exchanges a and b.
Lemma 1 ([2]). Let f and g be boundary ellptic elements with fixed point chains C_{1} and C_{2} which are either linked or intersect at one point. Then there exists a positive real number ϵ so that if the group $\langle f, g\rangle$ is discrete, and f and g do not commute, then

$$
\max \{|\lambda(f)-1|,|\lambda(g)-1|\}>\epsilon
$$

Lemma 2. If the two complex geodesics bounded by chains C_{1} and C_{2} intersect, then C_{1} and C_{2} are linked.

Proof. Consider H_{C}^{2} as the ball model $\left\{\left(z_{1}, z_{2}\right)\right.$: $\left.\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1\right\}$ with S^{3} as its ideal boundary. Normalize so that the two complex geodesics intersect at the origin and C_{1} consists of the points $\left\{\left(z_{1}, 0\right)\right.$: $\left.\left|z_{1}\right|=1\right\}$. we may assume $C_{2}=\left\{(z, a z) \in S^{3}\right\}$, where a is a fixed complex number. Choose $q=$ $(1,0)$ as the pole. Then the ball model is mapped to the Siegal domain $\left\{\left(\omega_{1}, \omega_{2}\right): 2 \operatorname{Re}\left(\omega_{1}\right)+\left|\omega_{2}\right|^{2}<\right.$ $0\}$ by Cayley transformation $\left(z_{1}, z_{2}\right) \mapsto\left(z_{1} /(1+\right.$ $\left.\left.z_{2}\right),\left(1-z_{2}\right) /\left(2\left(1+z_{2}\right)\right)\right)$. Denote by $\mathcal{H}=\mathbf{C} \times \mathbf{R}$ the Heisenberg space, whose one point compactification is the ideal boundary of the Siegal domain. We have the natural map from the ideal boundary of the Siegal domain to H which maps $\left(z_{1}, z_{2}\right)$ to $\left(z_{2} / \sqrt{2}, \operatorname{Im}\left(z_{1}\right)\right)$. Then the Heisenberg stereographic projection $\mathbf{P}: S^{3}-\{q\} \mapsto \mathcal{H}$ maps $\left(z_{1}, z_{2}\right)$ to $\left(z_{2} /\left(\sqrt{2}\left(z_{1}-1\right)\right), \operatorname{Im}\left(z_{1}+1\right) / 2\left(z_{1}-1\right)\right)$. Obvi-
ously, C_{1} and C_{2} correspond to the vertical axis and $(a z /(\sqrt{2}(z-1)), \operatorname{Im}(z+1) /(2(z-1)))$ in \mathcal{H}, respectively. Recall that the image of a finite chain under the vertical projection π to $\{(z, 0)\}$ is an Euclidean circle. Denote by x and r the center and radius of $\pi\left(C_{2}\right)$, respectively. Then we get the equality

$$
|a z-\sqrt{2} x(z-1)|^{2}=2 r^{2}|z-1|^{2}
$$

Note that $|z|^{2}\left(|a|^{2}+1\right)=1$, since $(z, a z) \in$ S^{3}. We can deduce that $2\left(|x|^{2}-r^{2}\right)=\sqrt{2} a \bar{x}$. By combining the above equalities we obtain that $x=$ $-\sqrt{2} /(2 \bar{a})$ and $r^{2}=1+1 /|a|^{2}$. Now it is easy to see that C_{1} and C_{2} are linked.

Proof of Theorem 1. We only need to show the "if" part. Suppose that G is not discrete. Then there exists a sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ of distinct elliptic elements such that $g_{n} \rightarrow I$ by [4, Corollary 4.5.2]. The proof can be divided into two cases.

Case 1. Each g_{n} is regular elliptic. Since $\left\langle g_{m}, g_{k}\right\rangle$ is discrete from the assumption, it is nilpotent for sufficently large m and k by Margulis Lemma and then elementary accoording to [3, Proposition 3.1.1]. Because regular elliptic elements have unique fixed point in $H_{C}^{2},\left\langle g_{m}, g_{k}\right\rangle$ can not be a parabolic group. If $\left\langle g_{m}, g_{k}\right\rangle$ is of loxodromic type, g_{m} must swap two fixed points of some loxodrmic element in this group. Since $g_{n} \rightarrow I$, this is impossible if m and k are large enough. So we may assume all $\left\langle g_{m}, g_{k}\right\rangle$ is of elliptic type. Let $\operatorname{Fix}(\alpha)$ denote the set of points in $\overline{H_{C}^{2}}$ that are fixed by $\alpha \in P U(2,1)$. If α and β commute and $x \in \operatorname{Fix}(\beta)$, then $\alpha(x)=$ $\alpha \beta(x)=\beta \alpha(x)$. It follows that $\alpha(\operatorname{Fix}(\beta))=\operatorname{Fix}(\beta)$ and similarly $\beta(\operatorname{Fix}(\alpha))=\operatorname{Fix}(\alpha)$. Hence g_{m} and g_{k} share the same fixed point if and only if they commute because each g_{n} is regular elliptic. Find an element γ of the 2 -dimensional group G such that γ does not fix the common fixed point of g_{n}. Then both $\gamma g_{n} \gamma^{-1}$ and g_{n} are regular elliptic which converge to the identity as $n \rightarrow \infty$ but have different fixed point. By the same reason as above, $\left\langle\gamma g_{n} \gamma^{-1}, g_{n}\right\rangle$ is of elliptic type. This is a contradictition.

Case 2. Each g_{n} is boundary elliptic. Similarly, $\left\langle g_{m}, g_{k}\right\rangle$ is discrete and elementary for large m and k. If $\left\langle g_{m}, g_{k}\right\rangle$ is of elliptic type, g_{m} and g_{k} have a common fixed point in H_{C}^{2}. Then they commute by Lemma 1 and Lemma 2. If $\left\langle g_{m}, g_{k}\right\rangle$ is of parabolic or loxodromic type, we easily get g_{m} and g_{k} have a common fixed point in ∂H_{C}^{2}. Since the complex dilation factors $\lambda\left(g_{n}\right) \rightarrow 1$ as $n \rightarrow \infty, g_{m}$ and g_{k} commute for sufficently large m and k by Lemma 1 . So we may
assume any two elements of $\left\{g_{n}\right\}$ commute. Note that two boundary elliptic elements commute if and only if they have either the same fixed point chains or the totally geodesic planes in H_{C}^{2} bounded by these fixed point chains are orthogonal (See [2, p. 122]). Let $F i x_{0}(\alpha)$ denote the set of points in H_{C}^{2} that are fixed by $\alpha \in P U(2,1)$. Then each $\operatorname{Fix}_{0}\left(g_{n}\right)$ is either the same as or orthogonal to $\operatorname{Fix}_{0}\left(g_{1}\right)$. Since each $\operatorname{Fix}_{0}\left(g_{n}\right)$ is a complex geodesic, the two complex geodesics, say $\operatorname{Fix}_{0}\left(g_{n_{i}}\right)(i=1,2)$, orthogonal to $\operatorname{Fix}_{0}\left(g_{1}\right)$ in H_{C}^{2} are either the same or parallel. Note that $\left\{g_{n_{i}}\right\}$ also commute. Then $\operatorname{Fix}_{0}\left(g_{n_{i}}\right)(i=$ $1,2)$ must coincide. Thus we may pick out a subsequence of g_{n}, which is still denoted by $\left\{g_{n}\right\}$, such that each element shares the same fixed point set, which we denoted by π. Claim that there exist two points $x, y \in L(G)$ which are not contained in π. First, There must be such a point, say x. Otherwise, $L(G) \subset \pi$. Since G keeps $L(G)$ invariant and each element in $P U(2,1)$ preserves complex geodesics, it follows that π is invariant under G. This is a contradiction to the 2-dimensional condition. Next, assume that there is only one such a point, that is, $L(G)=$ $\{x\} \cup S$, where $S \subset \pi$. Since $g(L(G))=L(G)$ and g preserves complex geodesics for each $g \in G$, we must have $g(S)=(S)$ and then $g(x)=x$. This is also contradict to the 2-dimensional condition. Let U and V be neighbourhoods of x and y which do not intersect with π, respectively. Thus there is a loxodromic $\gamma \in$ G with one fixed point in U and the other in V by [17, Theorem 2R]. For p sufficiently large, $\gamma^{p}(\pi) \subset$ U and then $\gamma^{p}(\pi) \cap \pi=\emptyset$. Hence $\gamma^{p} g_{n} \gamma^{-p}$ and g_{n} do not commute. By the same procedure, it follows that $\left\langle\gamma^{p} g_{n} \gamma^{-p}, g_{n}\right\rangle$ is discrete and elementary for all large n and then $\gamma^{p} g_{n} \gamma^{-p}$ and g_{n} commute. This is a contradiction.

Acknowledgement. This research was supported by National Natural Science Foundation of China, 10271077.

References

[1] W. Abikoff and A. Haas, Nondiscrete groups of hyperbolic motions, Bull. London Math. Soc. 22 (1990), no. 3, 233-238.
[2] A. Basmajian and R. Miner, Discrete subgroups of complex hyperbolic motions, Invent. Math. 131 (1998), no. 1, 85-136.
[3] B. H. Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995), no. 1, 229-274.
[4] S. S. Chen and L. Greenberg, Hyperbolic spaces, in Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 49-87.
[5] M. Chen, Discreteness and convergence of Möbius groups, Geom. Dedicate 104 (2004), 61-69.
[6] A. Fang and B. Nai, On the discreteness and convergence in n-dimensional Möbius groups, J. London Math. Soc. (2) 61 (2000), no. 3, 761-773.
[7] J. Gilman, Inequalities in discrete subgroups of $\operatorname{PSL}(2, \mathbf{R})$, Canad. J. Math. 40 (1988), no. 1, 115-130.
[8] W. M. Goldman, Complex hyperbolic geometry, Oxford Univ. Press, New York, 1999.
[9] N. A. Isachenko, Systems of generators of subgroups of PSL $(2, C)$. (Russian) Sibirsk. Mat. Zh. 31 (1990), no. 1, 191-193, 223; translation in Siberian Math. J. 31 (1990), no. 1, 162-165.
[10] Y. Jiang, S. Kamiya and J. Parker, Jørgensen's inequality for complex hyperbolic space, Geom. Dedicata 97 (2003), 55-80.
[11] Y. Jiang, S. Kamiya and J. R. Parker, Uniform discreteness and Heisenberg screw motions, Math. Z. 243 (2003), no. 4, 653-669.
[12] T. Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), no. 3, 739-749.
[13] G. J. Martin, On discrete Möbius groups in all dimensions: a generalization of Jørgensen's inequality, Acta Math. 163 (1989), no. 3-4, 253-289.
[14] G. J. Martin and R. K. Skora, Group actions of the 2-sphere, Amer. J. Math. 111 (1989), no. 3, 387-402.
[15] J. R. Parker, Shimizu's lemma for complex hyperbolic space, Internat. J. Math. 3 (1992), no. 2, 291-308.
[16] J. R. Parker, Uniform discreteness and Heisenberg translations, Math. Z. 225 (1997), no. 3, 485-505.
[17] P. Tukia, Convergence groups and Gromov's metric hyperbolic spaces, New Zealand J. Math. 23 (1994), no. 2, 157-187.

[^0]: 2000 Mathematics Subject Classification. 30F40, 30C60, 20H10.

