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Meromorphic solutions of functional equations

with nonconstant coefficients

By Ping Li∗) and Chung-Chun Yang∗∗)

(Communicated by Heisuke Hironaka, m.j.a., Dec. 12, 2006)

Abstract: We have continued, by utilizing Nevanlinna’s value distribution theory, our pre-
vious studies on the existence or solvability of meromorphic solutions of functional equations with
constant coefficients to that of similar types of functional equations with meromorphic (small func-
tions) coefficients. The results obtained are relating to value sharing or unicity of meromorphic
functions.

Key words: value distribution theory; functional equation; admissible solution.

1. Introduction and results. The well-
known Picard’s theorem states that if, on the com-
plex plan C, a meromorphic function f fails to take
three values on C, the extended complex plane, then
f must be a constant. Thus, for instance, the equa-
tion: ez = a, for any value a other than 0,∞, must
have at least one root in C. However, Picard’s the-
orem won’t be able to tell us how many such roots?
In 1920s, R. Nevanlinna [10] developed the so called
value distribution theory which enables one to give
a relatively elementary proof of the Picard’s theo-
rem and, more importantly, provides the above equa-
tion a quantitative estimation of the number of the
roots in terms of the growth of the function f. Since
then the studies of value distribution theory has
been extended to algebroid functions, meromorphic
mappings, in terms of the concepts of Riemann sur-
faces and tools such Ahlfor’s covering theorem, com-
plex geometry or differential geometry. We refer the
reader to ref [5] and [7] for the basic notations and
theorems of the so called Nevanlinna’s value distri-
bution theory. The theory mainly consists of two so
called main theorems; first and second fundamental
theorems. We recall here that the two fundamental
theorems are valid if the values ais are replaced by
ai(z)s, the so called small functions of f which means
each of the ai(z)s satisfying: T (r, ai) = S(r, f). As
an immediate application of the second fundamental
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theorem, Nevanlinna himself established the follow-
ing

Theorem A (Five-value Theorem). If f and
g are two nonconstant meromorphic functions and
a1, a2, . . . , a5 be five distinct values on C such that
f−1(ai) = g−1(ai) IM (ignoring multiplicity), for i =
1, 2, . . . , 5, then f ≡ g.

In 1982, Gross-Yang [3] extended the above re-
sult by studying the preimage sets of a finite number
of sets each consisting of a finite number of distinct
values and the concept of the so called unique range
set; a set S is called unique range set of entire func-
tions or URSE, if whenever f−1(S) = g−1(S) CM
(counting multiplicity) for two nonconstant entire
functions f and g, then f ≡ g, and URSM is de-
infed similarly for meromorphic functions. It’s easily
shown that there does exist such a set S with in-
finitely many elements. Gross [2] asked whether or
not there exists a finite set which is URS? In 1995, Yi
[14] exhibited such sets of entire functions and then,
by Li-Yang [8], of meromorphic functions. As any
finite set of distinct values can be expressed as roots
of a polynomials (or a rational function with only
one simple pole, if S includes ∞). Without loss of
generality, we may always assume S = {z |P (z) =
0, for some polynomial P with simple zeros}. Thus
if two functions f and g share ∞ and S CM, then we
have the functional equation: P (f) = P (g)eα, for
some entire function α. Thus if the corresponding
set S is URS, then one can derive from the equa-
tion, mainly from value distribution theory, that
α is a constant and in fact eα = 1. Then from
the equation: P (f) = P (g), one can conclude that
f ≡ g and no other nonconstant solutions f and
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g. In [12] Yang-Hua exhibits some classes of such
polynomials, including the polynomials of the form:
P (z) = zn + azn−m + b, where a, b are nonzero
constants and m, n are positive integers relatively
prime to each other and n ≥ 5. Such a polynomial is
called unique polynomial of meromorphic functions
or “UPM”, i.e., whenever P (f) = P (g) for two non-
constant meromorphic functions f and g, then f = g.

Thus any unique range set of meromorphic functions
will lead to a corresponding unique polynomial, but
the converse is not true in general. In [8], it has been
shown that any polynomial of degree not exceed 4 is
not an UPM. On the other hand, value distribution
theory has been used to study the Fermat type of
equations of meromorphic functions since 1960s (see
e.g. [1, 11]). And we refer the reader to [4] for some
recent developments of value sharing and more gen-
eral Fermat type of equations of meromorphic func-
tions and to [6] for that of meromorphic mappings.

In the note, we shall extend our previous studies
and results to Diophantine type of equations which
have polynomials or, more generally, meromorphic
functions as the coefficients. An admissible (mero-
morphic) solution f of such an equation means the
condition T (r, ai) = S(r, f) holds for all the coeffi-
cients appeared in the equations. In the sequel, for a
given equation, we shall only consider the existence
or non-existence of its admissible (meromorphic) so-
lutions. Essentially, based on the techniques devel-
oped by us and peers, particularly those in [8], we
are able to establish the following results.

Theorem 1. Let ai, bi, (i = 1, 2) and c be
meromorphic functions none of them is identically
zero; Let n, m (≥ 2) be positive integers and rela-
tively prime to each other, and n > 2m + 3. Then
the following equation:

(1) fn + a1f
n−m + b1 = c

(
gn + a2g

n−m + b2

)
has a pair of admissible solution (f, g), iff c = b1/b2

and f = hg, where h is meromorphic function satis-
fying hn = c and hm = a1/a2.

Corollary 1. Given integers, m and n with
n > 2m + 3 (m ≥ 2), relatively prime to each other,
and rational functions a1, a2, a3 and a4 (�≡ 0), the
following functional equation:

(2) fn + a1f
n−m + a2g

n + a3g
n−m + a4 = 0

has no transcendental meromorphic solution f and
g.

Theorem 2. Let a1, a2, a3 be meromorphic
functions and a1 �≡ 0 or a3 �≡ 0. If the positive in-
teger triple (n, m, k) satisfies k > 1, m < n, and
n > k(m + 2)/(k − 1) or n < k(m − 2), then the
following equation:

(3) fn + a1f
n−m + a2g

k = a3

has no pair of admissible meromorphic solution
(f, g).

Theorem 3. Suppose that a is a nonconstant
meromorphic function, and P (z) a polynomial of de-
gree n of the form

(4) P (z) = c0+c1(z−z1)m1(z−z2)m2 · · · (z−zk)mk ,

where c0, c1 (c0c1 �= 0) and zj (j = 1, . . . , k) (zi �=
zj, whenever i �= j) are complex numbers, and n >

2k + 1. Then there exist no meromorphic functions
f and g with a being their small function, and

(5) P (f) = aP (g).

Remark. The condition n > 2k + 1 in Theo-
rem 3 is necessary. For example, if P (z) = −1 + z2,

then the functions

f =
e2z − 2aez + a

a − e2z
, g =

e2z − 2ez + a

e2z − a

satisfy equation (5) for any nonconstant rational
function a. In fact, we have the following

Theorem 4. Suppose, in (5), that a(z) is a
nonconstant meromorphic function, P (z) a polyno-
mial of degree n of the form

(6) P (z) = (z − z1)n−1(z − z2),

where z1 and z2 are distinct complex numbers, then
any pair of solution of equation (5) can be expressed
as

f = z1 +
(z2 − z1)h(a − hn−1)

a − hn
,

g = z1 +
(z2 − z1)(a − hn−1)

a − hn
,

where h is arbitrary meromorphic function such that
a(z) is small function of h.

If the small function a(z) in (5) is replaced by
aeα, then we have the following

Theorem 5. Suppose that a(z) is a noncon-
stant meromorphic function, P (z) a polynomial of
degree n with expression of (4). If k > 1 and
n > 4k + 2 then for any entire function α, the equa-
tion
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(7) P (f) = aeαP (g).

has no admissible meromorphic solutions f and g

such that a is a small function with respect to f and
g.

We refer the reader to [9] which is to be pub-
lished elsewhere, for the detailed proofs of the re-
sults. However, as an illustration of the arguments
or proofs of these theorems, we, in this note, shall
only present a detailed proof of Theorem 1.

2. Proof of Theorem 1. First of all, we
prove the following

Lemma 1. Suppose that f is a nonconstant
meromorphic function and n, m are positive integers
relatively prime to each other. Suppose that a �≡ 0,

b �≡ 0 are small functions with respect to f. If fn−a
fm−b is

reducible, or if N (r, fn = a, fm = b) �= S(r, f), then
there exists a small function α with respect to f such
that a = αn and b = αm, where N(r, f = a, g = b)
denote the reduced counting function of all common
zeros of f − a and g − b.

Proof . If fn−a
fm−b is reducible, then there exists a

small function α with respect to f such that fn−a =
(f −α)P (f) and fm = (f −α)Q(f), where P (f) and
Q(f) are polynomials in f of degree n−1 and m−1,

respectively. Let

P (f) = cn−1f
n−1 + cn−2f

n−2 + · · · + c1f + c0,

where ci (i = 0, . . . , n − 1) are small functions of f.

Then by comparing the coefficients of two side of the
equation fn − a = (f − α)P (f) yields

cn−1 = 1, cj = αn−1−j , j = 0, 1, . . . , n − 2,

and a = αc0. Hence a = αn. Similarly, we can get
b = αm.

Suppose that N (r, fn = a, fm = b) �= S(r, f).
Let z is a common zero of fn − a and fm − b, i.e.,
fn(z) − a(z) = fm(z) − b(z) = 0. Thus z is a zero
of am − bn. Hence am − bn ≡ 0. Since n, m are
relatively prime, there exist integers s and t such that
sn + tm = 1. Let α = asbt. Then we have a = αn

and b = αm.

Now we prove Theorem 1.
From (1), we have T (r, f) = T (r, g) + S(r, f).

Let S(r) = S(r, f) = S(r, g). Equation (1) can be
rewritten as

(8) f1 + f2 = cb2 − b1,

where f1 = fn−m(fm + a1), f2 = −cgn−m(gm + a2).
If cb2 − b2 �≡ 0, then by Nevanlinn’s second fun-
damental theorem, we have T (r, f1) ≤ N(r, f1) +

N(r, 1/f1) + N(r, 1/f2) + S(r, f1). Therefore,

nT (r, f) ≤ N(r, f) + N

(
r,

1
f

)
+ N

(
r,

1
fm + a1

)

+ N

(
r,

1
g

)
+ N

(
r,

1
gm + a2

)
+ S(r).(9)

It follows that

(10) nT (r, f) ≤ (2m + 3)T (r, f) + S(r),

which contradicts to n > 2m + 3. Hence c = b1/b2.

And thus (1) becomes

(11) gm(hn − c) = −(a1h
n−m − ca2),

where h = f/g.

If hn �≡ c, then

(12) gm =
−(a1h

n−m − ca2)
hn − c

.

If the rational function in h in the above equation
is irreducible, then by Lemma 1 we have N(r, hn =
c, hn−m = ca2/a1) = S(r). Therefore, “almost all”
zeros of hn − c have multiplicities at least m. The
above equation shows that T (r, g) = n

mT (r, h)+S(r).
Thus c is a small function of h. By Nevanlinns’s sec-
ond fundamental theorem, we get

nT (r, h) ≤ N(r, h) + N

�
r,

1

h

�
+ N

�
r,

1

hn − c

�
+ S(r)

≤ 2T (r, h) +
1

m
N

�
r,

1

hn − c

�
+ S(r)

≤
�
2 +

n

m

�
T (r, h) + S(r)

which leads to n(m − 1) ≤ 2m, a contradiction to
the condition n > 2m + 3.

If the rational function in h in (12) is reducible,
then there exists a small function α with respect to
h such that c = αn and ca2

a1
= αn−m. Thus (12) can

be written as

(13) gm = − a1

αm

hn−m
1 − 1
hn

1 − 1
,

where h1 = h/α. Since n, m are relatively prime,
equations zn−m−1 = 0 and zn−1 = 0 have different
roots except for z = 1. Let rj , j = 1, . . . , 2n−m− 2
be all the roots of them. Then each of the rj points
of h1 has a multiplicity at least m. Therefore, by the
deficiency relation of h1, we have

(14)
(

1 − 1
m

)
(2n − m − 2) ≤ 2,

i.e., n ≤ m2+3m−2
2(m−1) , which contradicts n > 2m + 3

when m ≥ 2. Hence hn ≡ c. It follows from (11) that
hn−m = ca2

a1
. Thus hm = a1/a2. This also completes

the proof of Theorem 1.
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