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The best constant of Sobolev inequality in an n dimensional

Euclidean space

By Yoshinori Kametaka,∗) Kohtaro Watanabe∗∗) and Atsushi Nagai∗∗∗)

(Communicated by Heisuke Hironaka, m. j. a., March 14, 2005)

Abstract: The best constant of Sobolev inequality in an n dimensional Euclidean space
is found by means of the theory of reproducing kernel and Green function. The concrete form of
the best constant is also found in the case of Sobolev space W 2(Rn) (n = 2, 3).
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1. Introduction. Let H := WM (Rn) be
the Sobolev space of order M satisfying 2M > n,
then the well-known Sobolev’s inequality (Sobolev
embedding) [1, Cor. 9.13] asserts(

sup
y∈Rn

|u(y)|
)2

≤ C‖u‖2
H ,(1.1)

where ‖ · ‖H is the norm of H which is induced by
the certain inner product attached to H . We here
adopt the following generalized inner product.

(1.2)

(u, v)H

:=
∫
Rn

[
[M/2]∑
j=0

pM−2j

(
∆ju(x)

) (
∆jv(x)

)

+
[ M−1

2 ]∑
j=0

pM−2j−1∇
(
∆ju(x)

) · ∇(
∆jv(x)

) ]
dx

= (2π)−n

∫
Rn

(−1)M p(−|ξ|2) û(ξ) v̂(ξ) dξ

(∀u, v ∈ H),

where p(λ) =
∏M−1

j=0 (λ − αj) =
∑M

j=0(−1)j pj λM−j

and {αi}M−1
i=0 are positive numbers satisfying 0 <

α0 < α1 < · · · < αM−1. The purpose of this paper
is to find the best constant of the Sobolev inequality.
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It should be noted that Morosi and Pizzocchero [3]
obtained the best constant in the the degenerated
case (α0 = · · · = αM−1 = 1).

Details of this result are published in [2].
2. Main results. In this section, we present

the main theorems of this paper. Before going to the
main theorems, we start with computing the repro-
ducing kernel of H which is needed for the proof of
the main Theorem 2.3. Let G(α; x) be the Green
function of the differential operator (−1)M p(∆).
Then the following theorem holds:

Theorem 2.1. Assume 2M > n then Green
function K(x, y) = G(α; x − y) is the reproducing
kernel with respect to the Hilbert space H and an
inner product (u, v)H of Eq. (1.2). That is to say,
for any y ∈ Rn K(x, y) belongs to H as a function
of x. For almost all y ∈ Rn we have

(u(x), K(x, y))H = u(y).

Proof of Theorem 2.1. Since

Ĝ(α; ξ) = (−1)Mp(−|ξ|2)−1,(2.1)

K̂(ξ, y) = e−
√−1〈ξ,y〉Ĝ(α; ξ) holds. In order to

show that K(x, y) ∈ H , it is enough to show that
|ξ|M |Ĝ(α; ξ)| ∈ L2(Rn), but this is assured by the
condition n < 2M . By Eq. (1.2) we have

(u(x), K(x, y))H

= (2π)−n

∫
Rn

{
(−1)M p(−|ξ|2) û(ξ)

· e−√−1〈ξ,y〉 Ĝ(α; ξ)
}

dξ

= (2π)−n

∫
Rn

e
√−1〈ξ,y〉 û(ξ) dξ = u(y)

where we have used (2.1). This completes the proof
of Theorem 2.1.
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Using the well-known theory of reproducing ker-
nel, we have the main results of this paper.

Theorem 2.2. Let 2M > n, then for every
u in H there exists a positive constant C which is
independent of u such that the following Sobolev in-
equality holds.(

sup
y∈Rn

∣∣u(y)
∣∣)2

≤ C||u||2H = C(u, u)H .(2.2)

Among these constants C the best constant is

C(n, M) = sup
y∈Rn

K(y, y) = G(α; 0).(2.3)

If we replace C by C(n, M) in the above inequality,
the equality holds for u(x) = K(x, y) for every fixed
y ∈ Rn.

The proof of this theorem is easy so we omit it;
see [4, p. 812]. The best constants are given by the
following main theorem.

Theorem 2.3. (1) For M = 2, 3, 4, . . . , we
assume that an odd number n = 2q + 2 satisfies q −
1/2 = 0, 1, 2, . . . , M − 2. Then we have

C(2q + 2, M)(2.4)

= (−1)M+q−1/2 1
4Γ(q + 1)

(
1
4π

)q M−1∑
j=0

ej αq
j

= (−1)M+q−1/2 1
4Γ(q + 1)

(
1
4π

)q

·

∣∣∣∣∣∣∣
αi

j

αq
j

∣∣∣∣∣∣∣
/ ∣∣∣∣∣ αi

j

∣∣∣∣∣
where the numerator is the determinant of an M ×
M matrix (0 ≤ i ≤ M − 2, 0 ≤ j ≤ M − 1) and
the denominator is the determinant of an M × M

Vandermonde matrix and ej = 1/p′(αj) (0 ≤ j ≤
M − 1).

(2) For M = 2, 3, 4, . . . we assume that an even
number n = 2q + 2 satisfies q = 0, 1, 2, . . . , M − 2.
Then we have

(2.5)

C(2q + 2, M)

= (−1)M+q 1
Γ(q + 1)

(
1
4π

)q+1 M−1∑
j=0

ej αq
j log αj

= (−1)M+q−1/2 1
4Γ(q + 1)

(
1
4π

)q

·

∣∣∣∣∣∣∣
αi

j

αq
j logαj

∣∣∣∣∣∣∣
/ ∣∣∣∣∣ αi

j

∣∣∣∣∣.
Lemma 2.1. The Green function for the dif-

ferential operator (−1)M p(∆) has the following in-
tegral representation:

G(α; x) =
∫ ∞

0

e(α; t)H(x, t) dt,(2.6)

e(α; t) = (−1)M−1
M−1∑
j=0

ej e−αj t,

H(x, t) = (4πt)−n/2 exp(− |x|2/(4t)),

where H(x, t) is the heat kernel.
Proof of Lemma 2.1. Applying the expansion

formula by partial fractions

p(λ)−1 =
M−1∑
j=0

ej (λ − αj)−1

to Eq. (2.1), we have

Ĝ(α; ξ) = (−1)M
M−1∑
j=0

ej (−|ξ|2 − αj)−1

= (−1)M−1

∫ ∞

0

M−1∑
j=0

eje
−(|ξ|2+αj)tdt

=
∫ ∞

0

e(α; t) e−|ξ|2t dt.

Using well known formula Ĥ(ξ, t) = e−|ξ|2t we obtain
(2.6).

Now we state a fundamental lemma concerning
e(α; t).

Lemma 2.2. e(α; t) is an entire function of t

and can be expressed by a Taylor series

e(α; t) = (−1)M−1
∞∑

i=M−1

(
M−1∑
j=0

αi
jej

)
(−1)i

i!
ti.

(2.7)

This follows at once from the well known fact
M−1∑
j=0

αi
j ej = δi,M−1 =

{
0 (0 ≤ i ≤ M − 2),

1 (i = M − 1).
(2.8)

Before going to the proof of Theorem 2.3, we prove
another important fact.

Proposition 2.1. G(α; ·) is positive.
Proof of Proposition 2.1. It is enough to show

that e(α; t) > 0 from (2.6). From (2.6) and (2.8),
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we see that e(α; t) = e(α0, α1, . . . , αM−1; t) is the
solution of the initial value problem:

( d

dt
+ αM−1

)
· · ·

( d

dt
+ α1

)( d

dt
+ α0

)
e(α; t) = 0,

(2.9)

e(j)(α; 0) = 0 (0 ≤ i ≤ M − 2), 1 (i = M − 1).

From this fact, we know that e(α; t) can be expressed
as follows:

e(α; t) = e(α0, α1, . . . , αM−1; t)(2.10)

= (e(α0; ·) ∗ · · · ∗ e(αM−1; ·))(t).
Since e(α0; t) = e−α0t > 0, by induction, e(α; t) is
positive.

Proof of Theorem 2.3. By Theorem 2.2 we
have

C(2q + 2, M) = G(α; 0) =
∫ ∞

0

e(α; t)H(0; t) dt

=
(

1
4π

)q+1 ∫ ∞

0

e(α; t) t−q−1 dt.

We assumed n = 2q + 2 > 2M that is M − q− 1 > 0
so the above integral is convergent due to the Taylor
expansion e(α; t) = tM−1/(M − 1)!+ · · · . At first we
treat the case (1). Integrating the relation[

q−1/2∑
j=0

e(j)(α; t) Γ(q − j) t−(q−j)

]′

=

e(q+1/2)(α; t) Γ(1/2) t−1/2 − e(α; t) Γ(q + 1) t−(q+1)

on the interval 0 < t < ∞ we obtain

0 = Γ(1/2)
∫ ∞

0

e(q+1/2)(α; t) t−1/2 dt

− Γ(q + 1)
∫ ∞

0

e(α; t) t−q−1 dt.

Hence we have∫ ∞

0

e(α; t) t−q−1 dt

= (−1)M+q−1/2 Γ(1/2)2

Γ(q + 1)

M−1∑
j=0

ej αq
j .

This proves case (1).
Next we treat the case (2). Integrating the re-

lation[
q−1∑
j=0

e(j)(α; t) Γ(q − j) t−(q−j)

]′

= e(q)(α; t)t−1 − e(α; t) Γ(q + 1) t−q−1

on the interval 0 < t < ∞ we obtain

0 =

[
q−1∑
j=0

e(j)(α; t) Γ(q − j) t−(q−j)

− e(q)(α; t) log t

] ∣∣∣∣∣
t=∞

t=0

= −Γ(q + 1)
∫ ∞

0

e(α; t) t−q−1 dt

−
∫ ∞

0

e(q+1)(α; t) log t dt.

So we have∫ ∞

0

e(α; t) t−q−1 dt

=
(−1)M+q−1

Γ(q + 1)

M−1∑
j=0

ej αq+1
j

∫ ∞

0

e−αj t log t dt.

Considering that
∫ ∞
0

e−αj t log t dt = −α−1
j (log αj +

γ) where γ = 0.577 · · · is the constant of Euler, we
finally obtain∫ ∞

0

e(α; t) t−q−1 dt =
(−1)M+q

Γ(q + 1)

M−1∑
j=0

ej αq
j log αj.

This completes the proof of case (2).
3. Special case. We here treat the simplest

case M = 2, where the condition n < 2M means that
n = 2, 3. The Sobolev space H = W 2(Rn) consists of
all the functions u(x) ∈ L2(Rn) satisfying ∆u(x) ∈
L2(Rn). The inner product for any u, v in H is given
by

(u, v)H =
∫
Rn

[
(∆u(x)) (∆v(x))

+ p1 (∇u(x)) · (∇v(x)) + p2 u(x) v(x)
]
dx

where p1 = α0 + α1, p2 = α0α1 (0 < α0 < α1). As a
special case of Theorem 2.2 and 2.3 we have

Theorem 3.1. For every u(x) in H =
W 2(Rn) (n = 2, 3) there exists a positive constant C

independent of u(x) such that the following Sobolev
inequality holds.

(
sup

y∈Rn

|u(y)|
)2

(3.1)

≤ C

∫
Rn

(|∆u(x)|2 + p1 |∇u(x)|2 + p2 |u(x)|2) dx.

Among these constants C the best constant is
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C(n, 2) =


1
4π

log α1 − log α0

α1 − α0
(n = 2),

1
4π

1

α
1/2
0 + α

1/2
1

(n = 3).

If we substitute C(n, 2) into C in (3.1), the equality
holds for u(x) = K(x, y) for every fixed y ∈ Rn. The
reproducing kernel K(x, y) is given by the following
formula.

K(x, y) = G(α0, α1; x− y)

(3.2)

=
∫ ∞

0

1
α1 − α0

(e−α0t − e−α1t)H(x − y, t) dt.

H(x, t)

=

{
(4πt)−1 exp

(−(x2
1 + x2

2)/(4t)
)

(n = 2)

(4πt)−3/2 exp
(−(x2

1 + x2
2 + x2

3)/(4t)
)

(n = 3).
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