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A remark on continuous, nowhere differentiable functions
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Abstract: We consider a parameterized family of continuous functions, which contains
as its members Bourbaki’s and Perkins’s nowhere differentiable functions as well as the Cantor-
Lebesgue singular functions.
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1. Introduction. Many examples are
known of continuous, nowhere differentiable func-
tions (see, for instance, [6, 10, 12]), notably
Weierstrass’s function and Takagi’s function and
their generalizations [4]. Of a different kind are a
function by Bourbaki [1] and one by Perkins [9],
which we would like to generalize in what follows.
Although there have been written many papers
on continuous, nowhere differentiable functions,
our construction below seems to be one of the
simplest and, at the same time, it discloses in a
very elementary way a connection between nowhere
differentiable functions and the Cantor-Lebesgue
singular functions. In this respect, it seems to the
author that the fact in the present paper may be
worthy of notice.

We first fix a parameter a ∈ (0, 1). Then we
define piecewise affine functions {fn}∞n=0 on the unit
interval [0, 1] as follows. We start with f0(x) = x.
Suppose that fn has been so defined that it is contin-
uous on [0, 1], and is affine in each subinterval k/3n ≤
x ≤ (k + 1)/3n, where k = 0, 1, . . . , 3n − 1. fn+1 is
then defined by requiring: (1) fn+1 is continuous on
[0, 1]; (2) fn+1 is affine in each interval k/3n+1 ≤ x ≤
(k + 1)/3n+1, where k = 0, 1, . . . , 3n+1 − 1; and (3)
the following conditions hold true:
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for k = 0, 1, . . . , 3n − 1. The operation from fn to
fn+1 is visualized in Fig. 1. We now define

Fa(x) = lim
n→∞ fn(x).

As we will prove in the next section, Fa is continuous
on [0, 1].

Fig. 1. The operation from fn to fn+1. Before the
operation (top). After the operation (bottom).

This operation is performed in each subinterval
[k/3n, (k + 1)/3n].
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Fa becomes some known functions when a takes
particular values. If a = 5/6, Fa is nothing but
the function defined by Perkins [9]. This is a con-
tinuous, nowhere differentiable function (see Fig. 2,
top). If a = 2/3, then it is the function defined
by Bourbaki[1]. Both functions have some similar-
ity with the function defined by Bolzano in 1830’s
(see [8]), but Bourbaki refers only to Bolzano and
not to Perkins; Perkins refers only to the examples
of Weierstrass, Faber, etc., but these examples are
of nature different from F5/6. Presumably Perkins
came up with his function by himself with few hints
from literatures.

If a = 1/2, then Fa becomes the Cantor-
Lebesgue singular function, which is nondecreasing
but has zero derivative almost everywhere. The value
a = 0 can also be considered, in which case Fa be-
comes the Heaviside function:

F0(x) =




0 (0 ≤ x < 1/2)
1/2 (x = 1/2)
1 (1/2 < x ≤ 1).

But this is discontinuous. Also, we see easily that F1

is discontinuous, too. By these observations, we re-
strict ourselves to the case where 0 < a < 1. Finally,
we obviously have F1/3(x) ≡ x.

Fig. 2. The graph of Perkins’s function (top)
and that of Bourbaki’s (bottom).

2. Properties of Fa.
Proposition 1. For all 0 < a < 1, Fa is well-

defined and continuous everywhere on [0, 1].
Proof. Note first that Fa(x) = fn(x) if x =

k/3n for n = 1, 2, . . .; k = 0, 1, . . . , 3n. Let A =
max{a, |2a− 1|}. Clearly 0 < A < 1. Note then that
for any n ≥ 1, the derivative of fn satisfies

|f ′
n(x)| ≤ (3A)n

at all the points where f ′
n exists. Note also that

min{fn(k/3n), fn((k + 1)/3n)}
≤ fn+p(x) ≤ max{fn(k/3n), fn((k + 1)/3n)}

for all p = 1, 2, . . . and k/3n ≤ x ≤ (k + 1)/3n. Now,
for any x ∈ [0, 1] and any ε > 0, take n and k such
that An < ε and k/3n ≤ x < (k + 1)/3n. Then

|fn+p(x) − fn+q(x)| ≤ An < ε

for all p, q ≥ 0. Since n is chosen independently
of x, {fn(x)} converges uniformly. This proves our
proposition.

As for differentiability, the following is easy to
prove:

Theorem 1. If a ≤ 1/2, then the function Fa

is nondecreasing. In particular, it is differentiable
almost everywhere.

As is often used effectively in the differentiabil-
ity test, the following lemma will be used in what
follows:

Lemma 1. If f is differentiable at x, then

lim
h↓0, k↓0

f(x + k) − f(x − h)
k + h

= f ′(x).

(What is claimed is that the left hand side exists and
is equal to the right hand side.)

We now prove the following
Theorem 2. If 2/3 ≤ a < 1, then Fa is con-

tinuous on [0, 1], but is nowhere differentiable.
Proof. The proof by Perkins [9], where the case

of a = 5/6 was considered, can be used with a minor
change in the case where 2/3 < a < 1. (The case of
a = 2/3 will be considered later.) Note that A = a

in the present case. Then we easily see that

(3(2a − 1))n ≤ |f ′
n(x)| ≤ (3a)n

wherever f ′
n(x) exists. Since 2/3 < a, |f ′

n| tends
to infinity uniformly in x. Now let x ∈ [0, 1] be
arbitrarily chosen. For an arbitrary large n, we may
choose an integer k such that k/3n ≤ x < (k+1)/3n.
It then holds that
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∣∣∣∣Fa((k + 1)/3n) − Fa(k/3n)
1/3n

∣∣∣∣
=

∣∣∣∣fn((k + 1)/3n) − fn(k/3n)
1/3n

∣∣∣∣ ≥ (3(2a − 1))n
,

which tends to infinity. This shows, with the aid of
Lemma 1, the nondifferentiability at x.

If a = 2/3, the above argument must be modi-
fied slightly. In this case, |f ′

n(x)| can remain bounded
at some points, say for instance at x = 1/2. But even
on such points where f ′

n(x) are bounded, we see that
|f ′

n(x)| ≥ 1 and that {f ′
n(x)} changes sign infinitely

often. Therefore,

fn((k + 1)/3n) − fn(k/3n)
1/3n

cannot converge to a definite value.
Theorem 3. If 1/2 < a < 2/3, Fa is differ-

entiable at infinite number of points. Also, it has no
finite derivative at another set of infinite points.

Proof. Let x = k/3n, where n is a positive inte-
ger and k = 0, 1, . . . , 3n. We prove that Fa is nondif-
ferentiable at such x’s. We may assume without loss
of generality that k is not a multiple of 3. If k = 1
modulo 3, then, by an elementary inspection as in the
proof of the previous theorem, we have D−Fa(x) =
+∞, where D−Fa denotes the left derivative. (Here
a > 1/3 is enough.) If k = 2 modulo 3, then
D+Fa(x) = +∞, where D+Fa denotes the right
derivative. Also, D+Fa(0) = +∞, D−Fa(1) = +∞.

Differentiability of Fa at other x’s depends on
the number theoretic property of x. Let x be a num-
ber not of the form k/3n, and we consider the ternary
expansion of x:

(1) x =
ξ1

3
+

ξ2

32
+

ξ3

33
+ · · · ,

where ξj = 0, 1, or 2. Let i(n) denote the number
of those ξi (i = 1, 2, . . . , n) such that ξi = 1. Then
f ′

n(x) = (3b)i(n)(3a)n−i(n), where b = 1 − 2a. If
(3b)i(n)(3a)n−i(n) converge as n tends to infinity, the
function Fa is differentiable at x. Otherwise, it is
not.

If ξj = 1 occur only for a finite number of j’s,
|f ′

n(x)| obviously tends to infinity. If ξj = 1 occur in-
finitely often, then (since b < 0) the sequence f ′

n(x)
changes its sign infinitely often. It therefore con-
verges if and only if it converges to zero.

Let γ ∈ [0, 1] be defined by

(2) lim inf
n→∞

i(n)
n

= γ.

Then, (3b)i(n)(3a)n−i(n) → 0 if |3bγa1−γ | < 1. Con-
sequently, F ′

a(x) = 0, if

(3) γ >
− log(3a)

log(2a − 1) − log a
.

In particuler, if ξj = 1 for all j except for a finite
number, we then have γ = 1 and accordingly F ′

a(x) =
0. Thus F ′

a(x) = 0 if x is the mid-point of k/3n and
(k + 1)/3n.

On the other hand, if γ < − log(3a)/[log(2a −
1) − log a], then (3b)i(n)(3a)n−i(n) diverges.

The graph of φ(a) = − log(3a)/[log(2a − 1) −
loga] is shown in Fig. 3. It decreases monotonically
from 1 to zero, as a decreases from 2/3 to 1/2.

φ

Fig. 3. The graph of φ(a).

Remark 1. Suppose now that 0 < a < 1/3.
In this case F ′

a vanishes at x = k/3n and F ′
a(k/3n +

1/(2 ·3n)) = +∞. Also, the function has zero deriva-
tive if

γ <
− log(3a)

log(1 − 2a) − log a
.

Since 0 < 3b < 1 < 3a, there exists infinity of x,
at which (3b)i(n)(3a)n−i(n) converges to a nonzero
limit. The author, however, does not know a simple
characterization of them.

We finally consider the following question. Let
the set of all the points at which Fa is nondifferen-
tiable be denoted by Sa. Then |Sa|, the Lebesgue
measure of Sa, is zero for a ≤ 1/2, and is one for a ≥
2/3. What can we say about |Sa| for 1/2 < a < 2/3?

The (incomplete) answer is as follows:
Theorem 4. Let a0 be the unique root of

54a3 − 27a2 = 1 in 1/2 < a < 2/3. Then |Sa| =
0 if a < a0, and |Sa| = 1 if a > a0.

Proof. Note first that a0 is the root of

− log(3a)
log(2a − 1) − loga

=
1
3
.
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Since it is elementary, we omit the proof of the fact
that this equation has a unique root in 1/2 < a <

2/3.
Suppose now that a < a0. We can take a γ0 such

that − log(3a)
log(2a−1)−loga < γ0 < 1/3. We then consider

the set of all the real numbers for which

lim inf
n→∞

i(n)
n

≥ γ0.

We see that the set is included in Sa. Therefore the
proof of the first half is complete if we have shown
that the measure of the set is equal to one. The
measure is actually equal to

lim
n→∞

n∑
k=[γ0n]

(
n

k

)(
1
3

)k (
2
3

)n−k

,

where [γ0n] denotes the largest integer not exceeding
γ0n. This is equal, by the central limit theorem, to

lim
n→∞

1√
2π

∫ ∞

θn

exp(−z2)dz,

where

θn =
(

[γ0n] − n

3
+

1
2

)/ (√
n

2
9

)
.

Since γ0 < 1/3, the limit is equal to one. By quite
an analogous way we can prove the latter half.

A numerical computation shows that a0 ≈
0.5592. The author does not know about |Sa0 |.

3. Concluding remarks. If we introduce
another parameter a′ in such a way that a piecewise
affine function, obtained by joining (0, 0)–(1/3, a)–
(2/3, a′)–(1, 1), then we obtain new functions of more
variety. Further, 1/3 and2/3 may be replaced by
other numbers. The simplicity, however, seems to be
best seen in our present construction.

Prof. J. Kigami pointed out that the construc-
tion of functions by de Rham [3] has a similarity to
ours. The similarity is indeed striking. But none of
his functions belongs to our class, and none of ours
is his. He also pointed out that our construction
with a = 1 has a similarity to Moore [7], which con-
structed a continuous nowhere differentiable function
by our operation with a = 1 and an additional con-
struction.

Although we cannot see a direct connection, it
may be helpful if we refer some non-differentiable
functions expressed by binary and multi-nary expan-

sions. Kawamura [5] generalized the results of [3, 4],
and obtained, among others, a new class of contin-
uous, nowhere differentiable functions by means of
certain functional equations. Bush [2] constructed
continuous, nowhere differentiable functions by us-
ing m-nary expansions of the independent variable,
where m is any positive integer > 2. Swift [11] de-
fined a one by means of the ternary expansion of the
independent variable.

Acknowledgment. Prof. Kigami kindly gave
useful comments; This is highly appreciated. Prof.
Y. Morita let the author know the reference [5]. The
author thanks for his kindness.

This work was partly supported by the Grant-in-
Aid for Scientific Research from JSPS No. 14204007.

References

[ 1 ] N. Bourbaki, Functions of a real variable, Trans-
lated from the 1976 French original by Philip
Spain, Springer, Berlin, 2004, p.35, Problem 1–2.

[ 2 ] K. A. Bush, Continuous functions without deriva-
tives, Amer. Math. Monthly 59 (1952), 222–225.

[ 3 ] G. de Rham, Sur quelques courbes definies par des
equations fonctionnelles, Univ. e Politec. Torino.
Rend. Sem. Mat. 16 (1956/1957), 101–113.

[ 4 ] M. Hata and M. Yamaguti, The Takagi function
and its generalization, Japan J. Appl. Math. 1
(1984), no. 1, 183–199.

[ 5 ] K. Kawamura, On the classification of self-similar
sets determined by two contractions on the plane,
J. Math. Kyoto Univ. 42 (2002), no. 2, 255–286.

[ 6 ] A. B. Kharazishvili, Strange functions in real anal-
ysis, Dekker, New York, 2000.

[ 7 ] E. H. Moore, On certain crinkly curves, Trans.
Amer. Math. Soc. 1 (1900), no. 1, 72–90.

[ 8 ] S. Russ, Bolzano’s analytic programme, Math. In-
telligencer 14 (1992), no. 3, 45–53.

[ 9 ] F. W. Perkins, An elementary example of a contin-
uous non-differentiable functions, Amer. Math.
Monthly 34 (1927), 476–478.

[ 10 ] A. N. Singh, The theory and construction of non-
differentiable functions, in Squaring the Circle
and Other Monographs, Chelsea, New York, 1953.

[ 11 ] W. C. Swift, Simple constructions of nondifferen-
tiable functions and space-filling curves, Amer.
Math. Month. 68 (1961), 653–655.

[ 12 ] M. Yamaguti, M. Hata and J. Kigami, Mathemat-
ics of fractals, Translated from the 1993 Japanese
original by Kiki Hudson, Amer. Math. Soc., Prov-
idence, RI, 1997.


