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Abstract:

We show an apparently new expression of Bernoulli numbers, simultaneously

we give an expression of multiple zeta values ¢ (2m,2m, ..., 2m).
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1. Introduction. Bernoulli numbers B,
(n=1,2,3,...) are defined by

o
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(1.1) et—l_z "nl

n=1

(It] < 2r).

In Gould [1], there are many formulas about those
numbers. For example,

Zn:(_l)j (n + 1> n! i(_l)j—k <j>kn+j
= j+1 (n—l—j)!kzo k
Gould ended the paper [1] with the following conjec-
ture.
The writer has seen no formula for B,
which does mot require at least two actual
summations.  All the formulas we have
quoted here are of this type.
In this paper, we show an expression for B,, which
needs only ‘one’ summation (Corollary 2.2). Simul-
taneously, we consider the Zagier multiple sum [2]

C(ml,mg, .. .,mn)
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- kml km2 . k,mn ’
k1>ko>->kn,>0 1 2 "

and give an explicit formula for {(2m,2m,...,2m)
(Corollary 2.3).
2. Results. After I had completed my proof

of the following result, Professor Masanobu Kaneko
kindly informed me that the same result is included
in an unpublished paper [3].

2000 Mathematics Subject Classification. 11M41.

Bernoulli numbers; multiple zeta values.

Theorem 2.1. Let I, m and n be positive in-
tegers, x be an indeterminate element. Then
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n=1 D
where
wl, = exp(2mil /m) (1<l <m).

The symbol Z' means that all cases of + are taken,
namely it contains 2™ cases. And § is defined by

{1
0=
—1

Proof. Using

if — 1 appears even times

if — 1 appears odd times

. l . l
explrmw. X)) — eXpl—iTw X
sin 7Twl2m$ _ p( 2m, ) 5 p( 2m )

and

m

1 om(m+1)/2 _ .m+41
Hw2m - w2m =1 )
=1

we obtain
ﬁ sinrwh, @ (—1)™T
wh o (2mz)™

=1
/
X Z 8 exp ((Fwam, £ w3, £ -

On the other hand, using
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we have ¢(4,4,...,4)
n
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This formula includes only ‘one’ summation. k1>k2>kd>0
Corollary 2.3. Using (2.1), we obtain 14 24 n¢(4 )t4n
¢(2m,2m,...,2m) n
—_—
n Hence (2.5) follows.
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