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Bernoulli numbers and multiple zeta values
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Abstract: We show an apparently new expression of Bernoulli numbers, simultaneously
we give an expression of multiple zeta values ζ (2m, 2m, . . . , 2m).
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1. Introduction. Bernoulli numbers Bn

(n = 1, 2, 3, . . .) are defined by
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In Gould [1], there are many formulas about those
numbers. For example,
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Gould ended the paper [1] with the following conjec-
ture.

The writer has seen no formula for Bn

which does not require at least two actual
summations. All the formulas we have
quoted here are of this type.

In this paper, we show an expression for Bn which
needs only ‘one’ summation (Corollary 2.2). Simul-
taneously, we consider the Zagier multiple sum [2]
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,
(1.2)

and give an explicit formula for ζ(2m, 2m, . . . , 2m)
(Corollary 2.3).

2. Results. After I had completed my proof
of the following result, Professor Masanobu Kaneko
kindly informed me that the same result is included
in an unpublished paper [3].
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Theorem 2.1. Let l, m and n be positive in-
tegers, x be an indeterminate element. Then
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(2.1)

where

ωl
m = exp(2πil/m) (1 ≤ l ≤ m).

The symbol
∑′ means that all cases of ± are taken,

namely it contains 2m cases. And δ is defined by

δ :=

{
1 if − 1 appears even times
−1 if − 1 appears odd times

.

Proof. Using
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On the other hand, using
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By (2.1) and
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Corollary 2.2. we have
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This formula includes only ‘one’ summation.
Corollary 2.3. Using (2.1), we obtain
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Example 2.4.
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Remark. We can obtain (2.5) by another
method. Note that
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Hence (2.5) follows.
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