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Riemannian submersions, minimal immersions and cohomology class
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Abstract: We prove a simple optimal relationship between Riemannian submersions and
minimal immersions; namely, if a Riemannian manifold admits a non-trivial Riemannian submer-
sion with totally geodesic fibers, then it cannot be isometrically immersed in any Riemannian
manifold of non-positive sectional curvature as a minimal manifold. Some related results are also
presented. In the last section, we introduce a cohomology class for Riemannian submersions and
provide an application.
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1. Introduction. Let M and B be Rieman-
nian manifolds with n = dimM > dimB = b > 0.
A Riemannian submersion π : M → B is a mapping
of M onto B satisfying the following two axioms:
(S1) π has maximal rank ;
(S2) the differential π∗ preserves lengths of horizon-

tal vectors.
The mappings between Riemannian mani-

folds satisfying these two axioms were studied by
T. Nagano in [10] in terms of fibred Riemannian
manifolds. In particular, he derived the fundamen-
tal equations analogous to Weingarten’s formulas for
Riemannian submanifolds. B. O’Neill further stud-
ied such mappings in [11] and called them Rieman-
nian submersions.

For each p ∈ B, π−1(p) is an (n−b)-dimensional
submanifold of M . The submanifolds π−1(p), p ∈ B,
are called fibers. A vector field onM is called vertical
if it is always tangent to fibers; and horizontal if it
is always orthogonal to fibers. We use corresponding
terminology for individual tangent vectors as well.
A vector field on M is called basic if X is horizontal
and π-related to a vector field X∗ on B.

Let H and V denote the projections of tangent
spaces of M onto the subspaces of horizontal and
vertical vectors, respectively. We use the same letters
to denote the horizontal and vertical distributions.

The simplest type of Riemannian submersions
is the projection of a Riemannian product manifold
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on one of its factors. For such Riemannian submer-
sions, both horizontal and vertical distributions are
totally geodesic distributions, i.e., both distributions
are completely integrable and their leaves are totally
geodesic submanifolds.

In this article, a Riemannian manifold M is
said to admit a non-trivial Riemannian submersion
if there exists a Riemannian submersion π : M → B

from M onto another Riemannian manifold B such
that the horizontal and vertical distributions of the
submersion are not both totally geodesic distribu-
tion.

Clearly, if a Riemannian submersion has totally
geodesic fibers, the submersion is non-trivial if and
only if the horizontal distribution H is not a totally
geodesic distribution.

By applying an idea from [3, 4] we prove the fol-
lowing sharp relationship between Riemannian sub-
mersions and minimal immersions.

Theorem 1. If a Riemannian manifold ad-
mits a non-trivial Riemannian submersion with to-
tally geodesic fibers, then it cannot be isometri-
cally immersed in any Riemannian manifold of non-
positive sectional curvature as a minimal submani-
fold.

If φF : F → Em1 and φB : B → Em2 are min-
imal isometric immersions of Riemannian manifolds
F and B into Euclidean spaces, then the product
immersion of φF and φB is the immersion:

(1.1) (φF , φB) : F ×B → Em1 ⊕Em2

which carries (q, p) ∈ F × B to (φF (q), φB(b)). The



No. 10] Riemannian submersions, minimal immersions and cohomology class 163

product immersion (φF , φB) is also a minimal iso-
metric immersion.

Theorem 2. Let π : M → B be a Riemannian
submersion with totally geodesic fibers. If M admits
a minimal isometric immersion φ into a Euclidean
space, then locally M is the Riemannian product of
a fiber F and the base manifold B and φ is the prod-
uct immersion (φF , φB) of some minimal isometric
immersions φF : F → Em1 and φB : B → Em2 into
some Euclidean spaces.

2. Proof of Theorem 1. Let M be an n-
dimensional Riemannian manifold. Denote by R,K
and τ the Riemann curvature tensor, the sectional
curvature function and the scalar curvature of M ,
respectively.

Given an orthonormal basis e1, . . . , en of the
tangent space TpM, p ∈ M , the scalar curvature τ
of M at p is defined to be

(2.1) τ(p) =
∑
i<j

K(ei ∧ ej).

Assume that M admits a Riemannian immer-
sion: π : M → B with dimM > dimB > 0. Then
there exists a (1, 2)-tensor A, called the integrability
tensor, on M defined by

AEF = V∇HE(HF ) +H∇HE(VF ),

for vector fields E,F tangent to M . In particular, for
any horizontal vector field X and any vertical vector
field V , we have

(2.2) AXV = H∇XV.

Now, assume that the Riemannian submersion
π : M → B has totally geodesic fibers. Then the
sectional curvature K(x ∧ v) on M associated with
the plane section spanned by a unit horizontal vector
x and a unit vertical vector v is given by (cf. [11,
p. 465])

(2.3) K(x ∧ v) = ‖Axv‖2.

Let us assume that M admits an isometric im-
mersion φ : M → M̃m into a Riemannianm-manifold
M̃m. Denote by R̃ and K̃ the Riemann curvature
tensor and the sectional curvature function of M̃ ,
respectively.

It follows from the equation of Gauss that the
scalar curvature τ and the squared mean curvature
H2 of M in M̃m satisfy (see, for instance, [1])

2τ(p) = n2H2 − ‖h‖2 + 2τ̃(TpM),(2.4)

where ‖h‖2 denotes the squared norm of the second
fundamental form h of M in M̃m and τ̃(TpM) is
defined as

τ̃(TpM) =
∑

1≤i<j≤n

K̃(ei, ej).

Let us put

(2.5) δ = 2τ − n2

2
H2 − 2τ̃(TpM).

Then (2.4) becomes

(2.6) n2H2 = 2δ + 2‖h‖2.

If we choose a local orthonormal frame:

e1, . . . , eb, eb+1, . . . , en, en+1, . . . , em

such that e1, . . . , eb are horizontal vector fields,
eb+1, . . . , en are vertical vector fields of M , and that
en+1 is a unit normal vector field parallel to the mean
curvature vector field of M , then (2.6) becomes

(
n∑

i=1

hn+1
ii

)2

= 2

δ +
n∑

i=1

(
hn+1

ii

)2
+
∑
i 6=j

(
hn+1

ij

)2
(2.7)

+
m∑

r=n+2

n∑
i,j=1

(
hr

ij

)2 ,
where hr

ij = 〈h(ei, ej), er〉, n+ 1 ≤ r ≤ m; 1 ≤ i, j ≤
n, are the coefficients of the second fundamental form
and 〈 , 〉 is the inner product on M̃m.

Equation (2.7) is equivalent to

(ā1 + ā2 + ā3)2

= 2

δ + ā2
1 + ā2

2 + ā2
3 + 2

∑
1≤i<j≤n

(
hn+1

ij

)2
+

m∑
r=n+2

n∑
i,j=1

(
hr

ij

)2 − 2
∑

2≤j<k≤b

hn+1
jj hn+1

kk

− 2
∑

b+1≤s<t≤n

hn+1
ss hn+1

tt

 ,

(2.8)

where

ā1 = hn+1
11 ,(2.9)

ā2 = hn+1
22 + · · ·+ hn+1

bb ,

ā3 = hn+1
b+1b+1 + · · ·+ hn+1

nn .

By applying Lemma 3.1 of [2] to (2.8) we obtain
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∑
1≤j<k≤b

hn+1
jj hn+1

kk +
∑

b+1≤s<t≤n

hn+1
ss hn+1

tt(2.10)

≥ δ

2
+

∑
1≤s<t≤n

(
hn+1

st

)2
+

1
2

m∑
r=n+2

n∑
s,t=1

(hr
st)

2
,

with equality holding if and only if we have

(2.11)
b∑

i=1

hn+1
ii =

n∑
s=b+1

hn+1
ss .

From the equation of Gauss and (2.3), we obtain

Ăπ = τ −
∑

1≤j<k≤b

K(ej ∧ ek)(2.12)

−
∑

b+1≤s<t≤n

K(es ∧ et)

= τ −
∑

1≤i<j≤b

K̃(ei ∧ ej)

−
m∑

r=n+1

∑
1≤j<k≤b

(
hr

jjh
r
kk −

(
hr

jk

)2)
−

∑
b+1≤s<t≤n

K̃(es ∧ et)

−
m∑

r=n+1

∑
b+1≤s<t<n

(
hr

ssh
r
tt − (hr

st)
2
)
,

where Ăπ is the submersion invariant defined by

(2.13) Ăπ =
b∑

i=1

n∑
s=b+1

‖Aei
es‖2.

Therefore, after applying (2.5), (2.10) and (2.12), we
find

Ăπ≤τ−τ̃(TpM)−δ
2

(2.14)

+
b∑

i=1

n∑
s=b+1

K̃(ei∧es)−
n∑

j=1

n∑
t=b+1

(
hn+1

jt

)2
+

m∑
r=n+2

 ∑
1≤j<k≤b

((
hr

jk

)2−hr
jjh

r
kk

)
+

∑
b+1≤s<t<n

(
(hr

st)
2−hr

ssh
r
tt

)

−1
2

n∑
α,β=1

(hr
αβ)2



=τ−τ̃(TpM)+
b∑

i=1

n∑
s=b+1

K̃(ei∧es)

−δ
2
−

m∑
r=n+1

b∑
j=1

n∑
t=b+1

(hr
jt)

2

−1
2

m∑
r=n+2


 b∑

j=1

hr
jj

2

+

(
n∑

t=b+1

hr
tt

)2


≤τ−τ̃(TpM)+
b∑

i=1

n∑
s=b+1

K̃(ei∧es)−
δ

2

=
n2

4
H2+

b∑
i=1

n∑
s=b+1

K̃(ei∧es).

Hence we obtain

(2.15) Ăπ ≤
n2

4
H2 + b(n− b) max K̃,

where max K̃(p) denotes the maximum value of the
sectional curvature function of M̃m restricted to
plane sections in TpM .

Now, suppose that the isometric immersion φ

of M in M̃m is minimal and M̃m has non-positive
sectional curvature, then from (2.13) and (2.15) we
obtain that AXV = 0 for any horizontal vector field
X and any vertical vector field V in M . Hence, we
know from (2.2) that ∇XV is always vertical. There-
fore, for any horizontal vector fields X,Y , the covari-
ant derivative ∇XY is always horizontal. From this
we conclude that the horizontal distribution is also
integral and its leaves are totally geodesic submani-
folds in M . Consequently, if M admits a non-trivial
submersion with totally geodesic fibers, it cannot be
isometrically immersed into any Riemannian mani-
fold of non-positive sectional curvature as a minimal
submanifold.

3. Proof of Theorem 2. Let π : M → B

be a Riemannian submersion with totally geodesic
fibers. Assume that φ : M → Em is an isometric
minimal immersion ofM into the Euclideanm-space.
Then from (2.15) we know that Ă vanishes identi-
cally on M and the inequality (2.15) is actually an
equality. Thus, we have AXV = 0 for any horizontal
vector field X and any vertical vector field V in M .
As we already know from the proof of Theorem 1
that this implies that the horizontal distribution H
is an integral distribution and its leaves are totally
geodesic. Therefore, M is locally the Riemannian
product F × B of a (totally geodesic) fiber F and
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the base manifold B.
On the other hand, since the inequality (2.15)

is an equality, all of the inequalities in (2.10) and
(2.14) become equalities. Hence, the second funda-
mental form h of M in Em satisfies the following two
conditions:

b∑
i=1

h(ei, ei) =
n∑

s=b+1

h(es, es),(3.1)

h(X,V ) = 0, ∀X ∈ H, ∀V ∈ V,(3.2)

where e1, . . . , eb and eb+1, . . . , en are orthonormal
horizontal and vertical frames, respectively.

Now, it follows from (3.2) and Moore’s lemma
[9] that φ : F × B → Em is locally the product im-
mersion of two isometric immersions φF : F → Em1

and φB : B → Em2 . Since φ is assumed to be a mini-
mal isometric immersion, condition (3.1) implies that
both φF and φB are minimal isometric immersions
as well.

4. Applications. If the target manifold in
Theorem 1 is of constant sectional curvature, then
we have.

Corollary 1. Let π : M → B be a Rieman-
nian submersion with totally geodesic fibers. Then,
for any isometric immersion of M into a Rieman-
nian m-manifold Rm(ε) of constant sectional curva-
ture ε, the submersion invariant Ăπ on M satisfies

(4.1) Ăπ ≤
n2

4
H2 + b(n− b)ε.

If the target manifold is negatively curved, we
obtain.

Corollary 2. If a Riemannian manifold ad-
mits a Riemannian submersion with totally geodesic
fibers, then it cannot be isometrically immersed in
any Riemannian manifold of negative sectional cur-
vature as a minimal submanifold.

Corollary 3. Every Riemannian manifold
which admits a non-trivial Riemannian submersion
with totally geodesic fibers cannot be isometrically
immersed in any Hermitian symmetric space of
non-compact type as a minimal submanifold.

These three corollaries follows easily from (2.15).
Remark 1. When the Riemannian manifold

M is a Riemannian product and the target manifold
M̃ is of constant negative curvature, Corollary 2 is
due to N. Ejiri [7].

Remark 2. The results obtained above can be
applied to various very large families of Riemannian

manifolds, since Riemannian submersions with to-
tally geodesic fibers occur widely in geometry.

For examples, we have:
(i) The well-known Hopf fibrations:

π : S2n+1 → CPn(4) and π : S4n+3 → HPn(4)

are Riemannian submersions with totally
geodesic fibers.

(ii) Let π : M → B be a Riemannian submersion
with totally geodesic fibers. If B′ is a submani-
fold of B, then the restriction of π to π−1(B′):

π : π−1(B′) → B′

is a Riemannian submersion with totally
geodesic fibers.

For instance, for any submanifold N of
the complex projective n-space CPn(4) of
constant holomorphic sectional curvature 4,
π : π−1(N) → N is a Riemannian submersion
with totally geodesic fibers. For this submer-
sion, the invariant Ăπ is given by

(4.2) Ăπ = ‖P‖2,

where P : H → H is the endomorphism such
that PX is the projection of φX ontoH, φ being
the (1, 1)-tensor of the natural Sasakian struc-
ture on S2n+1.

(iii) If G is a Lie group equipped with a bi-invariant
Riemannian metric and H is a closed subgroup,
then the usual Riemannian structure on the ho-
mogeneous space G/H is characterized by the
fact that the natural mapping π : G → G/H is
a Riemannian submersion.

The fibers of such a submersion are the left
cosets of G (mod H) which are totally geodesic.
The invariant Ăπ is given by

Ăπ =
1
4

b∑
i,j=1

n∑
b+1

〈[ei, ej ], es〉2, b = dimH,

(4.3)

where e1, . . . , eb are orthonormal left-invariant
horizontal vector fields and eb+1, . . . , en an or-
thonormal basis of the vertical distribution V.

(iv) The frame bundle F (B) of a b-dimensional Rie-
mannian manifoldB is a principal bundle overB
with structure group O(b). There exists a natu-
ral Riemannian structure on F (B) such that the
projection: π : F (B) → B is a Riemannian sub-
mersion with totally geodesic fibers (see [11]).
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(v) If (M,J, g) is an almost Hermitian manifold, its
tangent bundle T (M) is also an almost Hermi-
tian manifold with almost Hermitian structure
(JH , gs), where JH is the horizontal lift of J and
gs is the Sasaki metric given by:

gs(XH , Y H) = gs(XV , Y V ) = (g(X,Y ))V

and gs(XH , Y V ) = 0, where XH and Y V de-
note the horizontal and vertical lifts of X and
Y , respectively (cf. [12]). The projection:

π : (T (M), JH , gs) → (M,J, g)

is an almost Hermitian submersion with totally
geodesic fibers.

(vi) On an oriented Riemannian 4-manifold N , there
exists an S2-bundle Z, called the twistor space
of N , whose fiber over any point x ∈ N consists
of all almost complex structures on TxN that are
compatible with the metric and the orientation.
It is known that there is one-parameter family
of metrics gt on Z, making the projection Z →
N into a Riemannian submersion with totally
geodesic fibers.
Remark 3. For a Kaehler submanifold N of

CPm(4), the pre-image π−1(N) via the Hopf fibra-
tion is a minimal submanifold of S2m+1 satisfying
the equality case of (4.1) with n = 1 + dimRN and
ε = 1. Thus, the equality case of (4.1) is achieved by
many examples. For the classification of Riemannian
submersions satisfying the equality case, see [5].

5. A remark on Theorem 1. Theorem 1
is sharp. This can be seen as follows:
(a) The product immersion of the two minimal iso-

metric immersions in Euclidean spaces given in
(1.1) shows that the “non-triviality condition
imposed on the Riemannian submersions can-
not be omitted from Theorem 1.

(b) The condition “non-positive sectional curva-
ture” imposed on the target manifold also can-
not be omitted. For instance, the Hopf fibration:
π : S2n+1 → CPn(4) is a non-trivial Rieman-
nian submersion with totally geodesic fibers.
Clearly, S2n+1 can be imbedded as a totally
geodesic hypersurface in S2n+2.

(c) The condition “Riemannian submersion has to-
tally geodesic fibers” cannot be omitted from
Theorem 1 as well, since there exist Euclidean
minimal submanifolds which admit non-trivial
Riemannian submersions. The simplest such ex-
amples are the catenoid C and the helicoids Ha,

a > 0, in E3.
The catenoid C is defined by

(5.1) (coshu cos v, coshu sin v, u).

The catenoid is a minimal surface which admits
a non-trivial submersion π : C → B such that
the manifold B is the profile curve and the pro-
jection π : C → B is the mapping which carries
(coshu cos v, coshu sin v, u) ∈ C to (coshu, u) ∈ B.
Fibers of this submersion are the circles of latitude.

For each positive number a, the helicoid Ha is
defined by (t cos s, t sin s, as) for t > 0. The heli-
coid is a minimal surface which admits a non-trivial
submersion π : Ha → L+, where L+ is the half line
{t : t > 0} and the projection π : Ha → L+ carries
(t cos s, t sin s, as) ∈ Ha to t ∈ L+. Fibers of this
submersion are helices.

6. A cohomology class. Now, we define
a cohomology class, denoted by cπ(M), associated
with each Riemannian submersion π : M → B with
orientable base manifold B as follows:

Let b = dimB, n = dimM , and let e1, . . . , en

be a local orthonormal frame on M which satisfies
the following two conditions:
(i) eb+1, . . . , en are vertical vector fields and
(ii) e1, . . . , eb are basic horizontal vector fields such

that (e1)∗, . . . , (eb)∗ gives rise to the positive ori-
entation of B.
Let ω1, . . . , ωn be the dual frame of e1, . . . , en.

Consider the b-form ω on M defined by

(6.1) ω = ω1 ∧ · · · ∧ ωb.

Then we have dω = 0, since ω is the pull back of
the volume form of B. Thus ω defines a cohomology
class cπ(M) = [ω] ∈ Hb(M ;R).

Theorem 3. Let b = dimB and π : M → B

be a Riemannian submersion with minimal fibers and
orientable base manifold B. If M is a closed manifold
with Hb(M ;R) = 0, then the horizontal distribution
H of the Riemannian submersion is never integrable.
Thus the submersion is always non-trivial.

Since each nonzero harmonic form represents a
non-trivial cohomology class, Theorem 3 follows from
the following

Theorem 4. Let π : M → B be a Riemannian
submersion from a closed manifold M onto an ori-
entable base manifold B. Then the pull back of the
volume element of B is harmonic if and only if the
horizontal distribution H is integrable and fibers are
minimal.
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Proof . Let e1, . . . , en and ω1, . . . , ωn be defined
as above. Then we have

(6.2) ωj(es) = 0, ωi(ej) = δij

for 1 ≤ i, j ≤ b; b+ 1 ≤ s ≤ n.
Let us put

ω⊥ = ωb+1 ∧ · · · ∧ ωn.(6.3)

The we have

(6.4) dω⊥ =
n∑

i=b+1

(−1)iωb+1∧· · ·∧dωb+i∧· · ·∧ωn.

It follows from (6.2) and (6.4) that dω⊥ = 0
holds if and only if the following two conditions hold:

(6.5) dω⊥(X,Y, V1, . . . , Vn−b−1) = 0

for horizontal vector fields X,Y and vertical vector
fields V1, . . . , Vn−b−1; and for s = 1, . . . , b we have

dω⊥(es, eb+1, . . . , en) = 0.(6.6)

From (6.4) and (6.3) we find

dω⊥(X,Y, V1, . . . , Vn−b−1)(6.7)

= ω⊥([X,Y ], V1, . . . , Vn−b−1).

It is easy to see from (6.7) that condition (6.5) holds
if and only if the horizontal distribution H of the
Riemannian submersion is integrable.

From (6.2) and (6.3) we also have

dω⊥(es, eb+1, . . . , en)

=
n−b∑
i=1

(−1)1+iω⊥([es, eb+i], eb+1, . . . , êb+i, . . . , en)

=
n−b∑
i=1

{
ωb+i(∇es

eb+i)− ωb+i(∇eb+i
es)
}

= −
n−b∑
i=1

〈∇eb+i
es, eb+i〉

=
n−b∑
i=1

〈Aeb+i
eb+i, es〉

for each s ∈ {1, . . . , b}. Hence, condition (6.6) holds
if and only if fibers of the Riemannian submersion are
minimal. Consequently, the pull back of the volume
element of B is co-closed (or equivalently, dω⊥ = 0
holds) if and only if the horizontal distribution H of
the Riemannian submersion is integrable and fibers
are minimal.

Remark 4. A cohomology class similar to
cπ(M) for CR submanifolds of a Kaehler manifold
has been introduced earlier in [2]. The proof of The-
orem 4 bases on the same idea as that in [2].

Remark 5. It is known that the minimality
of fibers is equivalent to the harmonicity of the sub-
mersion [6]. The condition for the integrability of the
horizontal distribution and the minimality of fibers
for a Riemannian submersion π : M → B were stud-
ied in [8] in view of the commutativity of the Lapla-
cian acting on p-forms on B and the Laplacian acting
on p-forms on M with b ≥ p ≥ 1.
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