$L_{p}-L_{q}$ maximal regularity and viscous incompressible flows with free surface

By Yoshihiro Shibata*) and Senjo Shimizu**)
(Communicated by Shigefumi Mori, m. J. A., Nov. 14, 2005)

Abstract

We prove the $L_{p}-L_{q}$ maximal regularity of solutions to the Neumann problem for the Stokes equations with non-homogeneous boundary condition and divergence condition in a bounded domain. And as an application, we consider a free boundary problem for the Navier-Stokes equation. We prove a locally in time unique existence of solutions to this problem for any initial data and a globally in time unique existence of solutions to this problem for some small initial data.

Key words: Stokes equations; Neumann boundary condition; maximal regularity; NavierStokes equations; free boundary problem.

We consider a certain time dependent problem with free surface for the Navier-Stokes equations which describes the motion of an isolated finite volume of viscous incompressible fluid without taking surface tension into account. The region $\Omega_{t} \subset \mathbf{R}^{n}$, $n \geqq 2$, occupied by the fluid is given only on the initial time $t=0$, while for $t>0$ it is to be determined. The velocity vector field $v(x, t)=\left(v_{1}, \ldots, v_{n}\right)^{*}$ and the pressure $\theta(x, t)$ for $x \in \Omega_{t}$ satisfy the NavierStokes equations (cf. [4]):

$$
\begin{array}{ll}
v_{t}+(v \cdot \nabla) v-\operatorname{Div} S(v, \theta) & =f(x, t) \tag{1}\\
& \text { in } \Omega_{t}, t>0 \\
\operatorname{div} v=0 & \text { in } \Omega_{t}, t>0 \\
S(v, \theta) \nu_{t}+\theta_{0}(x, t) \nu_{t}=0 & \text { in } \Gamma_{t}, t>0 \\
\left.v\right|_{t=0}=v_{0} & \text { on } \Omega .
\end{array}
$$

Here, M^{*} denotes the transpose of M, Γ_{t} denotes the boundary of Ω_{t} and $\nu_{t}(x)$ is the unit outer normal to Γ_{t} at the point $x \in \Gamma_{t}$, and $\nabla=\left(\partial_{1}, \ldots, \partial_{n}\right)$ with $\partial_{i}=\partial / \partial x_{i} . S(v, \theta)$ is the stress tensor defined by the formula:

$$
S(v, \theta)=D(v)-\theta I
$$

where $D(v)$ is the deformation tensor of the velocities with elements $D_{i j}(v)=\partial_{i} v_{j}+\partial_{j} v_{i}$ and I is the $n \times n$

[^0]identity matrix. Writing $S=\left(S_{i j}\right)$, we have set
$$
\operatorname{Div} S=\left(\sum_{j=1}^{n} \partial_{j} S_{1 j}, \ldots, \sum_{j=1}^{n} \partial_{j} S_{n j}\right)^{*}
$$

The external force $f(x, t)$ and the pressure $\theta_{0}(x, t)$ are functions defined on the whole space. In what follows, we shall always assume that $\theta_{0}(x, t)=0$, since we can arrive at this case by replacing $\theta(x, t)$ by $\theta+\theta_{0}$.

Aside from the dynamical boundary condition, a further kinematic condition for Γ_{t} is satisfied, from which it follows that Γ_{t} consists of points $x=x(\xi, t)$, $\xi \in \Gamma_{0}$, where $x(\xi, t)$ is the solution of the Cauchy problem:

$$
\begin{equation*}
\frac{d x}{d t}=v(x, t),\left.\quad x\right|_{t=0}=\xi \tag{2}
\end{equation*}
$$

This expresses the fact that the free surface Γ_{t} consists for all $t>0$ of the same fluid particles, which do not leave it nor plunge into Ω_{t}. It is clear that $\Omega_{t}=\left\{x=x(\xi, t) \mid \xi \in \Omega_{0}\right\}$. We denote Ω_{0} by Ω.

The problem (1) can therefore be written as an initial boundary value problem in the given region Ω_{0} if we go over from the Euler coordinates $x \in \Omega_{t}$ to the Lagrange coordinates $\xi \in \Omega$ connected with x by (2). If a velocity vector field $u(\xi, t)=\left(u_{1}, \ldots, u_{n}\right)^{*}$ is known as a function of the Lagrange coordinates ξ, then this connection can be written in the form:

$$
x=\xi+\int_{0}^{t} u(\xi, \tau) d \tau \equiv X_{u}(\xi, t)
$$

Passing to the Lagrange coordinate in (1) and setting $\theta\left(X_{u}(\xi, t), t\right)=\pi(\xi, t)$, we obtain

$$
\begin{array}{ll}
u_{t}-\operatorname{Div}[S(u, \pi)+U(u, \pi)] & =f\left(X_{u}(\xi, t), t\right) \tag{3}\\
& \text { in } \Omega \times\left(0, T_{0}\right) \\
\operatorname{div} u+E(u)=\operatorname{div}[u+\tilde{E}(u)]=0 \\
& \text { in } \Omega \times\left(0, T_{0}\right) \\
{[S(u, \pi)+U(u, \pi)] \nu=0} & \text { on } \Gamma \times\left(0, T_{0}\right) \\
\left.u\right|_{t=0}=u_{0} & \text { in } \Omega .
\end{array}
$$

Here and hereafter, Ω is a bounded domain in \mathbf{R}^{n}, $n \geqq 2$, whose boundary Γ is assumed to be a $C^{2,1}$ compact hypersurface, ν is the unit outer normal to $\Gamma, U(u, \pi), E(u)$ and $\tilde{E}(u)$ are nonlinear terms of the following forms:

$$
\begin{gathered}
U(u, \pi)=V_{1}\left(\int_{0}^{t} \nabla u d \tau\right) \nabla u+V_{2}\left(\int_{0}^{t} \nabla u d \tau\right) \pi \\
E(u)=V_{3}\left(\int_{0}^{t} \nabla u d \tau\right) \nabla u \\
\tilde{E}(u)=V_{4}\left(\int_{0}^{t} \nabla u d \tau\right) u
\end{gathered}
$$

with some polynomials $V_{j}(\cdot)$ of $\int_{0}^{t} \nabla u d \tau, j=$ $1,2,3,4$, such as $V_{j}(0)=0$. As a linearized problem of (3), we obtain the following problem:
(4) $u_{t}-\operatorname{Div} S(u, \pi)=f$

$$
\text { in } \Omega \times\left(0, T_{0}\right)
$$

$$
\operatorname{div} u=g=\operatorname{div} \tilde{g}
$$

$$
\text { in } \Omega \times\left(0, T_{0}\right)
$$

$$
\left.S(u, \pi) \nu\right|_{\Gamma}=h,\left.\quad u\right|_{t=0}=u_{0}
$$

Our purpose of this paper is to state $L_{p}-L_{q}$ maximal regularity result for (4) and locally in time for any initial data and globally in time for small initial data unique existence theorems for (3). To state our theorems precisely, we now introduce the function spaces and some symbols. Let p and q denote exponents $\in[1, \infty], \ell$ and m non-negative integers, I an interval of \mathbf{R}, D a domain in \mathbf{R}^{n} and X a Banach space with norm $\|\cdot\|_{X}$. Let $L_{q}(D)$ and $W_{q}^{m}(D)$ denote the usual Lebesgue space and Sobolev space of order m on D and their norms are denoted by $\|\cdot\|_{L_{q}(D)}$ and $\|\cdot\|_{W_{q}^{m}(D)}$, respectively. Let $L_{p}(I, X)$ and $W_{q}^{\ell}(I, X)$ denote the usual Lebesgue space and Sobolev space of order m for the X-valued functions defined on I and their norms are denoted by $\|\cdot\|_{L_{p}(I, X)}$ and $\|\cdot\|_{W_{q}^{\ell}(I, X)}$, respectively. Set

$$
\begin{aligned}
& W_{q, p}^{\ell, m}(D \times I)=L_{p}\left(I, W_{q}^{\ell}(D)\right) \cap W_{p}^{m}\left(I, L_{q}(D)\right) \\
& \|u\|_{W_{q, p}^{\ell, m}(D \times I)}=\|u\|_{L_{p}\left(I, W_{q}^{\ell}(D)\right)}+\|u\|_{W_{p}^{m}\left(I, L_{q}(D)\right)} \\
& W_{p, 0}^{1}\left(\left(0, T_{0}\right), X\right) \\
& =\left\{u \in W_{p}^{1}\left(\left(-\infty, T_{0}\right), X\right) \mid u=0 \text { for } t<0\right\}
\end{aligned}
$$

Given $\alpha \in \mathbf{R}$, we set

$$
\begin{aligned}
& \left\langle D_{t}\right\rangle^{\alpha} u(t)=\mathcal{F}^{-1}\left[\left(1+s^{2}\right)^{\alpha / 2} \mathcal{F} u(s)\right](t) \\
& H_{p}^{\alpha}(\mathbf{R}, X)=\left\{u \in L_{p}(\mathbf{R}, X) \mid\left\langle D_{t}\right\rangle^{\alpha} u \in L_{p}(\mathbf{R}, X)\right\} \\
& \|u\|_{H_{p}^{\alpha}(\mathbf{R}, X)}=\left\|\left\langle D_{t}\right\rangle^{\alpha} u\right\|_{L_{p}(\mathbf{R}, X)}+\|u\|_{L_{p}(\mathbf{R}, X)}
\end{aligned}
$$

where \mathcal{F} and \mathcal{F}^{-1} denote the Fourier transform and its inverse, respectively. Set
$H_{q, p}^{1,1 / 2}(D \times \mathbf{R})=H_{p}^{1 / 2}\left(\mathbf{R}, L_{q}(D)\right) \cap L_{p}\left(\mathbf{R}, W_{q}^{1}(D)\right)$
$\|u\|_{H_{q, p}^{1,1 / 2}(D \times \mathbf{R})}$
$=\|u\|_{H_{p}^{1 / 2}\left(\mathbf{R}, L_{q}(D)\right)}+\|u\|_{L_{p}\left(\mathbf{R}, W_{q}^{1}(D)\right)}$
$H_{q, p, 0}^{1,1 / 2}(D \times(0, \infty))$
$=\left\{u \in H_{q, p}^{1,1 / 2}(D \times(0, \infty)) \mid u(t)=0\right.$ for $\left.t<0\right\}$.
Finally, given $0<T_{0} \leqq \infty$ we set
$H_{q, p}^{1,1 / 2}\left(D \times\left(0, T_{0}\right)\right)$
$=\left\{u \mid \exists v \in H_{q, p}^{1,1 / 2}(D \times \mathbf{R}), u=v\right.$ on $\left.D \times\left(0, T_{0}\right)\right\}$
$\|u\|_{H_{q, p}^{1,1 / 2}\left(D \times\left(0, T_{0}\right)\right)}$
$=\inf \left\{\begin{array}{l|l}\|v\|_{H_{q, p}^{1,1 / 2}(D \times \mathbf{R})} & \begin{array}{l}\forall v \in H_{q, p}^{1,1 / 2}(D \times \mathbf{R}), \\ v=u \text { on } D \times\left(0, T_{0}\right)\end{array}\end{array}\right\}$
$H_{q, p, 0}^{1,1 / 2}\left(D \times\left(0, T_{0}\right)\right)$
$=\left\{\begin{array}{l|l}u & \begin{array}{l}\exists v \in H_{q, p, 0}^{1,1 / 2}(D \times(0, \infty)), \\ u=v \text { on } D \times\left(0, T_{0}\right)\end{array}\end{array}\right\}$
$\|u\|_{H_{q, p, 0}^{1,1 / 2}\left(D \times\left(0, T_{0}\right)\right)}$
$=\inf \left\{\begin{array}{l|l}\|v\|_{H_{q, p}^{1,1 / 2}(D \times \mathbf{R})} & \begin{array}{l}\forall v \in H_{q, p, 0}^{1,1 / 2}(D \times(0, \infty)), \\ v=u \text { on } D \times\left(0, T_{0}\right)\end{array}\end{array}\right\}$.
To state our main results concerning the unique existence of solutions to (4), we start with the analytic semigroup approach to the initial-boundary value problem:

$$
\begin{array}{ll}
\text { (5) } \quad u_{t}-\operatorname{Div} S(u, \pi)=0 & \text { in } \Omega \times(0, \infty) \\
\operatorname{div} u=0 & \text { in } \Omega \times(0, \infty) \\
\left.S(u, \pi) \nu\right|_{\Gamma}=0,\left.\quad u\right|_{t=0}=u_{0} . &
\end{array}
$$

First of all we introduce the second Helmholtz decomposition corresponding to (5). Set

$$
\begin{aligned}
& J_{q}(\Omega) \\
& =\left\{u=\left(u_{1}, \ldots, u_{n}\right)^{*} \in L_{q}(\Omega)^{n} \mid \operatorname{div} u=0 \quad \text { in } \Omega\right\} \\
& G_{q}(\Omega)=\left\{\nabla \pi\left|\pi \in W_{q}^{1}(\Omega), \pi\right|_{\Gamma}=0\right\}
\end{aligned}
$$

Then, by Grubb and Solonnikov [2] we know that

$$
L_{q}(\Omega)^{n}=J_{q}(\Omega) \oplus G_{q}(\Omega)
$$

for $1<q<\infty$, where \oplus denotes the direct sum. Let P_{q} be the solenoidal projection: $L_{q}(\Omega)^{n} \rightarrow J_{q}(\Omega)$ along $G_{q}(\Omega)$. To introduce the generalized Stokes operator with Neumann boundary condition, we consider the resolvent problem corresponding to (5):
(6) $\quad \lambda v-\operatorname{Div} S(v, \theta)=P_{q} f, \operatorname{div} v=0 \quad$ in Ω,

$$
\left.S(v, \theta) \nu\right|_{\Gamma}=0 .
$$

Applying the divergence to (6) and multiplying the boundary condition by ν, we have
(7) $\quad \Delta \theta=0 \quad$ in $\Omega,\left.\quad \theta\right|_{\Gamma}=\nu \cdot[D(v) \nu]-\left.\operatorname{div} v\right|_{\Gamma}$,
where we have used the facts that $\operatorname{div} u=0$ in Ω and $\nu \cdot \nu=1$ on Γ. We know that given $v \in W_{q}^{2}(\Omega)^{n}(7)$ admits a unique solution $\theta \in W_{q}^{1}(\Omega)$. From this point of view, let us define the map $K: W_{q}^{2}(\Omega) \rightarrow$ $W_{q}^{1}(\Omega)$ by $\theta=K(v)$ for $v \in W_{q}^{2}(\Omega)$. By using this symbol, (6) is rewritten in the form:

$$
\begin{align*}
& \lambda v-\operatorname{Div} S(v, K(v))=P_{q} f \quad \text { in } \Omega \tag{8}\\
& \left.S(v, K(v)) \nu\right|_{\Gamma}=0 .
\end{align*}
$$

We know that (6) and (8) are equivalent (cf. Grubb and Solonnikov [2]). We set

$$
\begin{aligned}
& A_{q} v=-\operatorname{Div} S(v, K(v)) \quad \text { for } v \in \mathcal{D}\left(A_{q}\right) \\
& \mathcal{D}\left(A_{q}\right) \\
& =\left\{v \in J_{q}(\Omega) \cap W_{q}^{2}(\Omega)^{n}|S(v, K(v)) \nu|_{\Gamma}=0\right\} .
\end{aligned}
$$

A_{q} with domain $\mathcal{D}\left(A_{q}\right)$ is our generalized Stokes operator with the Neumann boundary condition. From Grubb and Solonnikov [2] and Shibata and Shimizu [3] we know the following fact.

Theorem 1. Let $1<q<\infty$. Then, A_{q} generates an analytic semigroup $\left\{e^{-A_{q} t}\right\}_{t \geqq 0}$ on $J_{q}(\Omega)$.

Now, we shall state our maximal regularity result for (4). The first one is concerned with the locally in time maximal regularity result for (4).

Theorem 2. Let $1<p, q<\infty$ and $T_{0}>0$. Set

$$
\mathcal{D}_{q, p}(\Omega)=\left[J_{q}(\Omega), \mathcal{D}\left(A_{q}\right)\right]_{1-1 / p, p}
$$

where $[\cdot, \cdot]_{\theta, p}$ denotes the real interpolation functor. If initial data u_{0} and f, g, \tilde{g} and h for (4) satisfy the condition:

$$
\begin{aligned}
& u_{0} \in \mathcal{D}_{q, p}(\Omega), f \in L_{p}\left(\left(0, T_{0}\right), L_{q}(\Omega)\right)^{n} \\
& g \in L_{p}\left(\left(0, T_{0}\right), W_{q}^{1}(\Omega)\right) \\
& \tilde{g} \in W_{p, 0}^{1}\left(\left(0, T_{0}\right), L_{q}(\Omega)\right)^{n}
\end{aligned}
$$

$$
h \in H_{q, p, 0}^{1,1 / 2}\left(\Omega \times\left(0, T_{0}\right)\right)^{n}
$$

then (4) admits a unique solution

$$
(u, \pi) \in W_{q, p}^{2,1}\left(\Omega \times\left(0, T_{0}\right)\right)^{n} \times L_{p}\left(\left(0, T_{0}\right), W_{q}^{1}(\Omega)\right)
$$

which enjoys the estimate:

$$
\begin{aligned}
& \|u\|_{W_{q, p}^{2,1}\left(\Omega \times\left(0, T_{0}\right)\right)}+\|\pi\|_{L_{p}\left(\left(0, T_{0}\right), W_{q}^{1}(\Omega)\right)} \\
& \leqq C\left(1+T_{0}\right)\left\{\left\|u_{0}\right\|_{\mathcal{D}_{q, p}(\Omega)}+\|f\|_{L_{p}\left(\left(0, T_{0}\right), L_{q}(\Omega)\right)}\right. \\
& \\
& \quad+\|h\|_{H_{q, p, 0}^{1,1 / 2}\left(\Omega \times\left(0, T_{0}\right)\right)} \\
& \\
& \quad+\|g\|_{L_{p}\left(\left(0, T_{0}\right), W_{q}^{1}(\Omega)\right)} \\
& \\
& \left.\quad+\|\tilde{g}\|_{W_{p}^{1}\left(\left(0, T_{0}\right), L_{q}(\Omega)\right)}\right\},
\end{aligned}
$$

where the constant C is independent of $T_{0}, u, \pi, f, g, \tilde{g}$ and h.

To state the globally in time maximal regularity result for (4), we have to introduce the rigid space \mathcal{R}_{d} which is defined by
$\mathcal{R}_{d}=\left\{\begin{array}{l|l}A x+b & \begin{array}{l}A: n \times n \text { anti-symmetric matrix, } \\ b \in \mathbf{R}^{n}\end{array}\end{array}\right\}$.
In fact, we know that u satisfies the condition: $D(u)=0$ if and only if $u \in \mathcal{R}_{d}$ and that if $u \in$ \mathcal{R}_{d}, then $\operatorname{div} u=0$. Therefore, if $u \in \mathcal{R}_{d}$, then u satisfies (4) with $f=g=\tilde{g}=h=0$ and $u_{0}=u$. In order for a solution (u, π) to (4) with $T_{0}=\infty$ to be summable in $(0, \infty)$, we have to eliminate such solutions in \mathcal{R}_{d}. Let $p_{\ell} \in \mathcal{R}_{d}, \ell=1, \ldots, M$, be the basis of \mathcal{R}_{d}, which are normalized such as

$$
\left(p_{\ell}, p_{m}\right)_{\Omega}=\delta_{\ell m}, \quad \ell, m=1, \ldots, M
$$

where $\delta_{\ell m}$ is the Kronecker delta symbol. We have the following theorem.

Theorem 3. Let $1<p, q<\infty$. Then, there exists a $\gamma_{0}>0$ such that if initial data u_{0} and f, g, \tilde{g} and h for (4) with $T_{0}=\infty$ satisfy the following conditions:

$$
\begin{aligned}
& u_{0} \in \mathcal{D}_{q, p}(\Omega), e^{\gamma t} f \in L_{p}\left((0, \infty), L_{q}(\Omega)\right)^{n} \\
& e^{\gamma t} g \in L_{p}\left((0, \infty), W_{q}^{1}(\Omega)\right) \\
& e^{\gamma t} \tilde{g} \in W_{p, 0}^{1}\left((0, \infty), L_{q}(\Omega)\right)^{n} \\
& e^{\gamma t} h \in H_{q, p, 0}^{1,1 / 2}(\Omega \times(0, \infty))^{n}
\end{aligned}
$$

for some $\gamma \in\left[0, \gamma_{0}\right]$ and

$$
\begin{aligned}
& \left(u_{0}, p_{\ell}\right)_{\Omega}=0 \\
& \left(f(\cdot, t), p_{\ell}\right)_{\Omega}+\left(h(\cdot, t), g_{\ell}\right)_{\Gamma}=0
\end{aligned}
$$

for a.e. $t>0$ and $\ell=1, \ldots, M$, then (4) with $T_{0}=$ ∞ admits a unique solution

$$
(u, \pi) \in W_{q, p}^{2,1}(\Omega \times(0, \infty))^{n} \times L_{p}\left((0, \infty), W_{q}^{1}(\Omega)\right)
$$

which satisfies the estimates:

$$
\begin{aligned}
& \left\|e^{\gamma t} u\right\|_{W_{q, p}^{2,1}(\Omega \times(0, \infty))}+\left\|e^{\gamma t} \pi\right\|_{L_{p}\left((0, \infty), W_{q}^{1}(\Omega)\right)} \\
& \leqq C\{ \\
& \quad \begin{array}{ll}
& \left\|u_{0}\right\|_{\mathcal{D}_{q, p}(\Omega)}+\left\|e^{\gamma t} f\right\|_{L_{p}\left((0, \infty), L_{q}(\Omega)\right)} \\
\quad+\left\|e^{\gamma t} h\right\|_{H_{q, p, 0}^{1,1 / 2}(\Omega \times(0, \infty))} \\
\quad+\left\|e^{\gamma t} g\right\|_{L_{p}\left((0, \infty) W_{q}^{1}(\Omega)\right)} \\
\left.\quad+\left\|e^{\gamma t} \tilde{g}\right\|_{W_{p}^{1}\left((0, \infty), L_{q}(\Omega)\right)}\right\}
\end{array}
\end{aligned}
$$

and the condition:

$$
\left(u(\cdot, t), p_{\ell}\right)_{\Omega}=0
$$

for $t \geqq 0$ and $\ell=1, \ldots, M$.
Roughly speaking, we can show our maximal regularity result as follows: First of all, we show the $L_{p}-L_{q}$ maximal regularity of solutions to the model problems in the whole space and in the half-space by applying the Weis operator valued Fourier multiplier theorem ([5]) to the exact solution formulas, and therefore it is the key to show the \mathcal{R} boundedness of the family of solution operators to the corresponding resolvent problem on $\mathcal{B}\left(L_{q}\right)$-the set of all bounded linear operators from L_{q} into itself (several techniques to show the \mathcal{R} boundedness can be found in [1]). After such analysis for the model problems, using the usual localization procedure and estimating the perturbation terms by using the estimate: $\left\|e^{-A_{q} t} u_{0}\right\|_{W_{q}^{1}(\Omega)} \leqq C t^{-1 / 2} e^{-c t}\left\|u_{0}\right\|_{L_{q}(\Omega)}\left(c>0, u_{0}\right.$ being orthogonal to \mathcal{R}_{d}), we obtain the $L_{p}-L_{q}$ maximal regularity result for (4) with $g=\tilde{g}=h=0$. By using the solution to the Laplace equation with the zero Dirichlet boundary condition, we reduce the non-zero divergence condition to the divergence free case. Finally, non-homogeneous Neumann condition case is treated by using the solution to the dual problem with the homogeneous Neumann condition.

Our method can be applied to any initial boundary value problem for the equation of parabolic type with suitable boundary condition which generates an analytic semigroup, for example the Stokes equation with non-slip, slip or the Robin boundary conditions.

Finally, we shall state two unique existence theorems for (3) which can be proved by the contraction mapping principle based on Theorems 2 and 3.

Theorem 4. Let $2<p<\infty$ and $n<$ $q<\infty$. Then, given $u_{0} \in \mathcal{D}_{q, p}(\Omega)$ and $f \in$ $L_{p}\left((0, \infty), L_{q}\left(\mathbf{R}^{n}\right)\right)^{n} \quad$ which has bounded deriva-
tives with respect to x for each t, there exists a $T_{0}=T_{0}\left(\left\|u_{0}\right\|_{\mathcal{D}_{q, p}(\Omega)}, \quad\|f\|_{L_{p}\left((0, \infty), L_{q}\left(\mathbf{R}^{n}\right)\right)}\right.$, $\left.\sup _{t \geqq 0}\|\nabla f(\cdot, t)\|_{L_{\infty}\left(\mathbf{R}^{n}\right)}\right)>0$ such that (3) admits a unique solution

$$
(u, \pi) \in W_{q, p}^{2,1}\left(\Omega \times\left(0, T_{0}\right)\right)^{n} \times L_{p}\left(\left(0, T_{0}\right), W_{q}^{1}(\Omega)\right)
$$

which satisfies the estimate:

$$
\begin{aligned}
& \|u\|_{W_{q, p}^{2,1}\left(\Omega \times\left(0, T_{0}\right)\right)}+\|\pi\|_{L_{p}\left(\left(0, T_{0}\right), W_{q}^{1}(\Omega)\right)} \\
& \leqq C\left\{\left\|u_{0}\right\|_{\mathcal{D}_{q, p}(\Omega)}+\|f\|_{L_{p}\left(\left(0, T_{0}\right), L_{q}\left(\mathbf{R}^{n}\right)\right)}\right\} .
\end{aligned}
$$

Theorem 5. Let $2<p<\infty$ and $n<q<\infty$. Then, there exist positive numbers ϵ and γ such that if $u_{0} \in \mathcal{D}_{q, p}(\Omega),\left\|u_{0}\right\|_{\mathcal{D}_{q, p}(\Omega)} \leqq \epsilon$ and $\left(u_{0}, p_{\ell}\right)_{\Omega}=0$ for $\ell=1, \ldots, M$, then (3) with $T_{0}=\infty$ and $f=0$ admits a unique solution

$$
(u, \pi) \in W_{q, p}^{2,1}(\Omega \times(0, \infty))^{n} \times L_{p}\left((0, \infty), W_{q}^{1}(\Omega)\right)
$$

which satisfies the estimate:

$$
\begin{aligned}
& \left\|e^{\gamma t} u\right\|_{W_{q, p}^{2,1}(\Omega \times(0, \infty))}+\left\|e^{\gamma t} \pi\right\|_{L_{p}\left((0, \infty), W_{q}^{1}(\Omega)\right)} \\
& \leqq C\left\|u_{0}\right\|_{\mathcal{D}_{q, p}(\Omega)}
\end{aligned}
$$

for some $\gamma>0$ and the condition:

$$
\left(u(\cdot, t), p_{\ell}\right)_{\Omega}=0 \quad \text { for } \quad \ell=1, \ldots, M \quad \text { and } \quad t \geqq 0
$$

Acknowldgements. Prof. Shibata is partly supported by Grants-in-Aid for Scientific Research (B)-15340204, the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Prof. Shimizu is partly supported by Grants-inAid for Scientific Research (C)-17540156, the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] R. Denk, M. Hieber and J. Prüss, \mathcal{R}-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (2003), no. 788.
[2] G. Grubb and V.A. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential method, Math. Scand. 69 (1991), no. 2, 217-290 (1992).
[3] Y. Shibata and S. Shimizu, On a resolvent estimate for the Stokes system with Neumann boundary condition, Differential Integral Equations, 16 (2003), no. 4, 385-426.
[4] V.A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid, Izv. Akad. Nauk SSSR ser. Math 51 (1987), no. 5, 1065-1087, 1118; translation in math. USSR-Izv. 31 (1988), no. 2, 381-405.
[5] L. Weis, Operator-valued Fourier multiplier theorems and maximal L_{p}-regularity, Math. Ann., 319 (2001), no. 4, 735-758.

[^0]: 2000 Mathematics Subject Classification. Primary 35Q30, 76D05.
 *) Department of Mathematical Sciences, School of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555.
 **) Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561.

