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L,-L, maximal regularity and viscous incompressible flows

with free surface

By Yoshihiro SHIBATA® and Senjo SHIMIZU

*k )

(Communicated by Shigefumi MORI, M. J. A., Nov. 14, 2005)

Abstract:

We prove the L,-L, maximal regularity of solutions to the Neumann problem

for the Stokes equations with non-homogeneous boundary condition and divergence condition in a
bounded domain. And as an application, we consider a free boundary problem for the Navier-Stokes
equation. We prove a locally in time unique existence of solutions to this problem for any initial
data and a globally in time unique existence of solutions to this problem for some small initial

data.
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We consider a certain time dependent problem
with free surface for the Navier-Stokes equations
which describes the motion of an isolated finite vol-
ume of viscous incompressible fluid without taking
surface tension into account. The region Q; C R",
n 2 2, occupied by the fluid is given only on the ini-
tial time ¢ = 0, while for ¢ > 0 it is to be determined.
The velocity vector field v(z,t) = (v1,...,v,)* and
the pressure 0(x,t) for xz € Q,; satisfy the Navier-
Stokes equations (cf. [4]):

(1) v+ (w-V)v—DivS(v,0) = f(z,t)

in Q,t>0
diveo =0 inQ,t>0
S(v, v+ 0p(x,t)yy =0 inTy, t>0
vli=0 = Vo on .

Here, M* denotes the transpose of M, I'; denotes the
boundary of ©; and v4(z) is the unit outer normal
to I'y at the point x € Ty, and V = (9, ...,0,) with
0; = 0/0x;. S(v,0) is the stress tensor defined by
the formula:

S(v,0) = D(v) — 61,

where D(v) is the deformation tensor of the velocities
with elements D;;(v) = 0;v; +0;v; and I is the n xn
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identity matrix. Writing S = (.S;;), we have set

Y9 Sn;
j=1

The external force f(x,t) and the pressure 0y(x,t)
are functions defined on the whole space. In what
follows, we shall always assume that 6p(x,t) = 0,
since we can arrive at this case by replacing 6(z,t)

Aside from the dynamical boundary condition,
a further kinematic condition for I'; is satisfied, from
which it follows that I'; consists of points z = x(§, t),
¢ € Ty, where z(,t) is the solution of the Cauchy
problem:

*

Div§S = Z8j51j,..

Jj=1

) Y o),
This expresses the fact that the free surface I'; con-
sists for all ¢ > 0 of the same fluid particles, which
do not leave it nor plunge into ;. It is clear that
Q={z==x(1t)] £ € Q}. Wedenote Qy by Q.
The problem (1) can therefore be written as an
initial boundary value problem in the given region g
if we go over from the Euler coordinates x € €, to the
Lagrange coordinates £ € € connected with by (2).
If a velocity vector field w(&,t) = (ug,...,u,)* is
known as a function of the Lagrange coordinates &,
then this connection can be written in the form:

z=E£ +/O uw(§,7)dr = Xu(&,t).

1'|t:0 =¢.

Passing to the Lagrange coordinate in (1) and setting
Q(Xu (ga t)v t) = 77(5, t), we obtain



152 Y. SHIBATA and S. SHIMIZU

(3)  wuy —Div[S(u,m) + U(u,n)] = f(Xu(§,1),1)

in Q x (0, Tp)
divu + E(u) = divju + E(u)] = 0

in Q x (0,Tp)
[S(u,7) +U(u,m)lv=0 onT x (0,Tp)
=0 = ugp in Q.

Here and hereafter, 2 is a bounded domain in R™,
n > 2, whose boundary I is assumed to be a C%!
compact hypersurface, v is the unit outer normal to
I, U(u,), E(u) and E(u) are nonlinear terms of the
following forms:

Uu,m) = Vi </OtVud7') Vu+ Vs (/OtVudT> .
E(u) = Vs (/OtVudT> Vu
Eu)=V, (/OtVudT>u

with some polynomials Vj( - ) of fot Vudr, j =
1,2,3,4, such as V;(0) = 0. As a linearized prob-
lem of (3), we obtain the following problem:

(4) wu —DivS(u,m) = f in Q x (0,Tp)
divu =g =divg in Q x (0,Tp)

S(u,m)vlr = h, uli=o = uo.

Our purpose of this paper is to state L,-L, max-
imal regularity result for (4) and locally in time for
any initial data and globally in time for small ini-
tial data unique existence theorems for (3). To state
our theorems precisely, we now introduce the func-
tion spaces and some symbols. Let p and ¢ denote
exponents € [1,00], £ and m non-negative integers, I
an interval of R, D a domain in R™ and X a Banach
space with norm || - [[x. Let L,(D) and Wy (D)
denote the usual Lebesgue space and Sobolev space
of order m on D and their norms are denoted by
|- llz,(p) and || - [[wn (), respectively. Let Ly (I, X)
and W,f(] ,X) denote the usual Lebesgue space and
Sobolev space of order m for the X-valued func-
tions defined on I and their norms are denoted by
I llz,,x) and || - HW(f(I,X)> respectively. Set

WD x I) = Ly, (I, WA(D)) N W, (I, Ly(D))
||UHW§;;”'(DXI) = ||“HLP(I,W§(D)) + llullwyr (1.2, 0))

Wpl,o((o7T0)7X)
={ue Wpl((—oo,To),X) lu=0fort<0}.
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Given a € R, we set
(D)*u(t) = F~! [(1 + 52) fu(s)} (t)
HY(R,X) ={u e L,(R, X) | (Dy)*u € Lp(R, X)}

a/2

lull e, x) = (D) ullL, ®,x) + lullL, ®,x),

where F and F~! denote the Fourier transform and
its inverse, respectively. Set
HLY2(D x R) = HY*(R,Ly(D)) N L, (R, W} (D))

el 2 ey

lull g2 g, 1y oy + Lz, (oW ()

Hyy (D x (0,00)

- {u € HLY2(D x (0,00)) | u(t) = 0 for ¢ < o} .
Finally, given 0 < Ty < oo we set

HLY2(D x (0,Tp))

—{u|3ve Hp2(D x R),u=0v on D x (0,Ty)}

ull 72172 (0.1

:inf v 1,1/2
{” HH‘W (PXR) | )y —w on D x (0, Tp)

Vv e Hyp/?(D x R),}

Hyy6' (D x (0,Ty))
e HY2(D x (0, oo)),}

;0
:{u ap

u=wv on D x (0,T))
Felizz 2 2o 070

ant d o] Yo e HyiE(D x (0,00)),
=1n V|| 1y1,1/2 77 .
Hap™(DXRY| ) — 4 on D x (0,Tp)

To state our main results concerning the unique
existence of solutions to (4), we start with the an-
alytic semigroup approach to the initial-boundary
value problem:

(5) wuy —DivS(u,7) =0 in  x (0, 00)
divu =0 in © x (0, 0)
S(u, M)v|lr =0,  ult=o = ug.

First of all we introduce the second Helmholtz de-
composition corresponding to (5). Set

J()

={u=(ug,...,up)* € L,()" | divu =0 in Q},
Gy(Q) ={Vr |7 e W} (Q), n|r =0}.
Then, by Grubb and Solonnikov [2] we know that



No. 9]

Lq(Q)n = Jq(Q) @ Gq(Q)

for 1 < ¢ < oo, where @ denotes the direct sum. Let
P, be the solenoidal projection: L,(2)" — J,(Q)
along G,(€2). To introduce the generalized Stokes
operator with Neumann boundary condition, we con-
sider the resolvent problem corresponding to (5):
(6) Av—=DivS(v,0) =P, f, divve=0 1in Q,
S(v,0)v|p = 0.

Applying the divergence to (6) and multiplying the
boundary condition by v, we have

(7) A0=0 inQ, 0Or=v-[DW)]—divo|p,

where we have used the facts that divu = 0 in © and
v-v=1onT. We know that given v € W2()" (7)
admits a unique solution # € W, (). From this
point of view, let us define the map K: W(IQ(Q) —
W} (Q) by § = K(v) for v € W2(2). By using this
symbol, (6) is rewritten in the form:
(8) v — Div S(v, K(v)) = P, f
S(v, K(v))v|p = 0.

We know that (6) and (8) are equivalent (cf. Grubb
and Solonnikov [2]). We set
Aqgv = —Div S(v, K(v))

D(4,)
={v e J,(Q)NWZ(Q

in Q

)

for v € D(A,)

)" | S(v, K(v))v|r =0} .

A, with domain D(A,) is our generalized Stokes op-
erator with the Neumann boundary condition. From
Grubb and Solonnikov [2] and Shibata and Shimizu
[3] we know the following fact.

Theorem 1. Let1l < q < co. Then, A, gen-
erates an analytic semigroup {e=Adt},5 on J,(Q).

Now, we shall state our maximal regularity re-
sult for (4). The first one is concerned with the lo-
cally in time maximal regularity result for (4).

Theorem 2. Let1 < p,q < oo and Ty > 0.
Set

DQvP(Q) = [JQ(Q)’D(A(])]I—I/pp
where [+, -], denotes the real interpolation functor.
If initial data ug and f,g,g and h for (4) satisfy the
condition:
up € Dgp(), f € Lp((0,Tp), L
9 € Ly ((0,To), W, ()
€ Wp,O((Oa TO)v Lq(Q))

4())"
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he HEY2(Q % (0, Tp))™

q,p,0

then (4) admits a unique solution
(u, ) € W2k (2 x (0,Tp))™ x Ly ((0,Tp), W, ()
which enjoys the estimate:
lullwz:2 @xo,m0)) 17l L, (0.10). w2 ()
< 1+ 1) {woll, , 0 + 1 12,0100 Lo co)
+ ||h||H;;;{02(szx(o,To))
+lgllz, (0.0, w1 ()
+ HQHW,;((O,TO),Lq(Q))} ;
where the constant C' is independent of Ty, u, 7, f, g, 7
and h.
To state the globally in time maximal regularity
result for (4), we have to introduce the rigid space
R4 which is defined by

Rag=1< Az+b
beR"

A: nxn anti-symmetric matrix,}

In fact, we know that wu satisfies the condition:
D(u) = 0 if and only if u € R4 and that if u €
Ra, then divu = 0. Therefore, if u € Ry, then u
satisfies (4) with f =g =§ =h = 0 and ug = .
In order for a solution (u, ) to (4) with To = oo to
be summable in (0,00), we have to eliminate such
solutions in R4. Let p, € Rq, £ = 1,..., M, be the
basis of R4, which are normalized such as

(pesPm)o = Oem, Lim=1,..., M,

where &y, is the Kronecker delta symbol. We have
the following theorem.

Theorem 3. Let 1 < p,q < co. Then, there
exists a o > 0 such that if initial data ug and f,g,g
and h for (4) with Ty = oo satisfy the following con-
ditions:

uoqup( ), €7 fEL (
g € Ly ((0,00), Wy ()

€ Wy0((0, ) q(Q2

e''h e H'2(Q x (0, 00)

q,p,0

(0,00), Le(£2))"
)
)"
)
for some v € [0,v0] and

(w0, pe)o =0

(f(- 1), pe)a + (h(-,

foraet>0andl=1,...,
oo admits a unique solution

t),9e)r =0
M, then (4) with Ty =
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(u,7) € W2 (€2 x (0,00))™ x Ly, ((0,00), W, ()
which satisfies the estimates:
le™ w2t (00,00 T 167 T 1, (0,000 w2 (00)
=C {H“()”Dq,p(m + 1€ Fllz, (0.000.La ()

Yt
el 2172 0 (0,00

+ ||€’Ytg||Lp((0,oo)qu(Q))
+ ||e”t§||W;((o,oo),Lq(Q))}
and the condition:

(u(-,t),pe)a =0

fortZ20andl=1,...,M.

Roughly speaking, we can show our maximal
regularity result as follows: First of all, we show the
L,-L, maximal regularity of solutions to the model
problems in the whole space and in the half-space
by applying the Weis operator valued Fourier mul-
tiplier theorem ([5]) to the exact solution formulas,
and therefore it is the key to show the R bounded-
ness of the family of solution operators to the corre-
sponding resolvent problem on B(L,)—the set of all
bounded linear operators from L, into itself (several
techniques to show the R boundedness can be found
in [1]). After such analysis for the model problems,
using the usual localization procedure and estimat-
ing the perturbation terms by using the estimate:
lle=Aatugllwi ) £ Ct12eug|lL, @) (¢ > 0, ug
being orthogonal to Rq), we obtain the L,-L, max-
imal regularity result for (4) with ¢ = g = h = 0.
By using the solution to the Laplace equation with
the zero Dirichlet boundary condition, we reduce the
non-zero divergence condition to the divergence free
case. Finally, non-homogeneous Neumann condition
case is treated by using the solution to the dual prob-
lem with the homogeneous Neumann condition.

Our method can be applied to any initial bound-
ary value problem for the equation of parabolic type
with suitable boundary condition which generates an
analytic semigroup, for example the Stokes equation
with non-slip, slip or the Robin boundary conditions.

Finally, we shall state two unique existence the-
orems for (3) which can be proved by the contraction
mapping principle based on Theorems 2 and 3.

Theorem 4. Let 2 < p < o0 and n <
. Then, given uy € Dgp(Q) and f €
), Lg(R™))™  which has bounded deriva-

<

q 00
L,((0,00
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tives with respect to x for each t, there exists a
T = To( llullp, @ IflL,000), LoR7):
sup;>o V(- )|l @mn)) > 0 such that (3) admits
a unique solution

(u, ) € Wiy (2% (0,T0))" x Ly ((0,To), Wy ()
which satisfies the estimate:

lullwz tx0,10)) + 17N, (0.10). w2 0)

<C {HUOHD(M)(Q) + Hf||L,,((o,To),Lq(R"))} .

Theorem 5. Let2 <p< oo andn < q < 0.
Then, there exist positive numbers € and vy such that
if uo € Dy p(Q), lluollp, ) = € and (uo,pe)o = 0
for £ =1,...,M, then (3) with Ty = co and f =0
admits a unique solution

(u,) € W;”}}(Q x (0,00))"™ x Ly ((0,00), qu(Q))

which satisfies the estimate:

t t
le™ ullyw21 0 0,000 T 1€ L, (0,000, w2 ()
= Cllwollp, (@)

for some v > 0 and the condition:

(u(-,t),pe)a=0 for £=1,....M and t=0.
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