On the structure of Jackson integrals of $B C_{n}$ type and holonomic q-difference equations

By Kazuhiko Аомото*) and Masahiko Ito**)
(Communicated by Heisuke Hironaka, m. J. a., Nov. 14, 2005)

Abstract

Finiteness of non-symmetric and symmetric cohomologies associated with Jackson integrals of type $B C_{n}$ is studied. Explicit bases of the cohomologies are also stated. It is shown that the integrals using these bases satisfy holonomic systems of linear q-difference equations with respect to the parameters.

Key words: Jackson integrals of type $B C_{n} ; q$-de Rham cohomology of type $B C_{n}$.

The aim of this note is to explain finite dimensionality and to find bases of non-symmetric and symmetric cohomologies associated with Jackson integrals of type $B C_{n}$. More explicitly they are indicated by

$$
\begin{aligned}
& \operatorname{dim} H^{n}\left(X, \Phi, \nabla_{q}\right)=\{m+2(n-1) l\}^{n} \\
& \operatorname{dim} H_{\mathrm{sym}}^{n}\left(X, \Phi, \nabla_{q}\right)=\binom{s+(n-1) l}{n}
\end{aligned}
$$

using terminology in $\S 1.2$ of this note. As a consequence, they lead us to the fact that the integrals using these bases satisfy linear holonomic q-difference equations with respect to the parameters. In a generic case, finite dimensionality was proved in full generality in $[1,7,17]$. But here under the condition being a little more restrictive, we show it by constructing a concrete basis (see Theorems 6-9).

Throughout this note, q is a real number such that $0<q<1$ and we use the notation $(a)_{i}=$ $(a)_{\infty} /\left(a q^{i}\right)_{\infty}, i \in \mathbf{Z}$ where $(a)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right)$. We also use the notations $\tilde{\kappa}:=\{m+2(n-1) l\}^{n}$ and $\kappa:=\binom{s+(n-1) l}{n}$.

1. Finiteness of cohomologies of type $\boldsymbol{B} \boldsymbol{C}_{\boldsymbol{n}}$. In order to explain the main theorems we first state the concepts of the Jackson integrals and their cohomologies.
1.1. Jackson integrals. Let m be an even positive integer $m=2 s+2, s=-1,0,1,2,3, \ldots$ and $a_{1}, a_{2}, \ldots, a_{m}, t_{1}, t_{2}, \ldots, t_{l}$ be arbitrary constants in

[^0]\mathbf{C}^{*}. We denote by $\Phi(z)=\Phi\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ the multiplicative function of B_{n} type
\[

$$
\begin{aligned}
& \prod_{r=1}^{n}\left(z_{r}^{m / 2-\delta+(n-r)(l-2 \tau)} \prod_{k=1}^{m} \frac{\left(q a_{k}^{-1} z_{r} ; q\right)_{\infty}}{\left(a_{k} z_{r} ; q\right)_{\infty}}\right) \\
& \quad \times \prod_{k=1}^{l} \prod_{1 \leq i<j \leq n} \frac{\left(q t_{k}^{-1} z_{i} / z_{j} ; q\right)_{\infty}\left(q t_{k}^{-1} z_{i} z_{j} ; q\right)_{\infty}}{\left(t_{k} z_{i} / z_{j} ; q\right)_{\infty}\left(t_{k} z_{i} z_{j} ; q\right)_{\infty}}
\end{aligned}
$$
\]

defined on $X=\left(\mathbf{C}^{*}\right)^{n}$, where we put

$$
q^{\delta}=a_{1} a_{2} \cdots a_{m}, \quad q^{\tau}=t_{1} t_{2} \cdots t_{l}
$$

We denote by $\Delta(z)$ the function

$$
\prod_{i=1}^{n} \frac{1-z_{i}^{2}}{z_{i}} \prod_{1 \leq j<k \leq n} \frac{\left(1-z_{j} / z_{k}\right)\left(1-z_{j} z_{k}\right)}{z_{j}}
$$

which is called Weyl's denominator of type C_{n}. For an arbitrary $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in X$, we define the q-shift $z \rightarrow z q^{\nu}$ by the lattice point $\nu=$ $\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right) \in \mathbf{Z}^{n}$ as

$$
z q^{\nu}:=\left(z_{1} q^{\nu_{1}}, z_{2} q^{\nu_{2}}, \ldots, z_{n} q^{\nu_{n}}\right) \in X
$$

The set $\Lambda_{z}:=\left\{z q^{\nu} \in X ; \nu \in \mathbf{Z}^{n}\right\}$ forms an orbit of a lattice subgroup of X.

Definition 1. For a function $\varphi(z)$ on X and an arbitrary point $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in X$, the Jackson integral over the lattice Λ_{ξ} is defined as the pairing of difference n-forms and lattices

$$
\begin{align*}
& \int_{\Lambda_{\xi}} \Phi(z) \varphi(z) \frac{d_{q} z_{1}}{z_{1}} \wedge \cdots \wedge \frac{d_{q} z_{n}}{z_{n}} \tag{1}\\
& :=(1-q)^{n} \sum_{\nu \in \mathbf{Z}^{n}} \Phi\left(\xi q^{\nu}\right) \varphi\left(\xi q^{\nu}\right)
\end{align*}
$$

if it is summable. The LHS of (1) will simply be denoted by $\langle\varphi, \xi\rangle$. Moreover we set

$$
\begin{equation*}
\langle\varphi, \xi\rangle_{\Delta}:=\langle\varphi \Delta, \xi\rangle \tag{2}
\end{equation*}
$$

where $\varphi \Delta(z)=\varphi(z) \Delta(z)$.
The Weyl group W of type C_{n} is generated by the reflections

$$
\begin{aligned}
& \sigma_{i}: z_{i} \longleftrightarrow z_{i+1} \quad(1 \leq i \leq n-1), \\
& \sigma_{n}: z_{n} \longleftrightarrow z_{n}^{-1}
\end{aligned}
$$

The group W acts on a space of functions on X by the rule $\sigma f(z):=f\left(\sigma^{-1} z\right), \sigma \in W$.

Let $\Theta(z)$ be the functions on X defined by

$$
\begin{aligned}
& \prod_{r=1}^{n}\left(z_{r}^{m / 2-\delta+(n-r)(l-2 \tau)} \prod_{h=1}^{m} \frac{1}{\theta\left(a_{h} z_{r}\right)}\right) \\
& \quad \times \prod_{k=1}^{l} \prod_{1 \leq i<j \leq n} \frac{1}{\theta\left(t_{k} z_{i} / z_{j}\right) \theta\left(t_{k} z_{i} z_{j}\right)}
\end{aligned}
$$

where $\theta(z):=(z)_{\infty}(q / z)_{\infty}$. Since the function $\theta(z)$ has the property $\theta(q z)=-\theta(z) / z$, if we put

$$
\begin{equation*}
U_{\sigma}(z):=\frac{\sigma \Theta(z)}{\Theta(z)} \quad \text { for } \quad \sigma \in W \tag{3}
\end{equation*}
$$

then $U_{\sigma}(z)$ are the cocycle of pseudo-constants, i.e., constants with respect to the q-shifts $z \rightarrow z q^{\nu}, \nu \in$ \mathbf{Z}^{n}. More precisely, by definition of $\Phi(z)$, it follows that the function $\sigma \Phi(z)$ is equal to $\Phi(z)$ up to the pseudo-constant $U_{\sigma}(z)$ as follows:

$$
\begin{equation*}
\sigma \Phi(z)=\Phi(z) U_{\sigma}(z) \tag{4}
\end{equation*}
$$

In this sense, we regard the function $\Phi(z)$ as symmetric with respect to W, and both of $\Phi(z)$ and $\sigma \Phi(z)$ satisfy the same q-difference equations with respect to $z \rightarrow z q^{\nu}, \nu \in \mathbf{Z}^{n}$.

From (1) and (4) and $\sigma \Delta(z)=\operatorname{sgn}(\sigma) \Delta(z)$ we have the following lemma immediately:

Lemma 2. If $\sigma \in W$, then

$$
\sigma\langle\varphi, \xi\rangle=U_{\sigma}(\xi)\langle\sigma \varphi, \xi\rangle
$$

In particular, if $\varphi(z)$ is symmetric under the action of W, i.e., $\sigma \varphi(z)=\varphi(z)$, then

$$
\sigma\langle\varphi, \xi\rangle_{\Delta}=\operatorname{sgn}(\sigma) U_{\sigma}(\xi)\langle\varphi, \xi\rangle_{\Delta}
$$

1.2. Rational de Rham cohomology of type $\boldsymbol{B} \boldsymbol{C}_{\boldsymbol{n}}$. We denote by L the ring of Laurent polynomials $\mathbf{C}\left[z_{1}, \ldots, z_{n}, z_{1}^{-1}, \ldots, z_{n}^{-1}\right]$ in z over \mathbf{C}. Let R be the L-module generated by the following set of rational functions of z :

$$
\begin{aligned}
& \bigcup_{h \geq 0}\left\{\prod_{k=1}^{m} \prod_{j=1}^{n} \frac{\left(a_{k} z_{j} ; q\right)_{-h}}{\left(q a_{k}^{-1} z_{j} ; q\right)_{h}}\right. \\
& \left.\quad \times \prod_{k=1}^{l} \prod_{1 \leq i<j \leq n} \frac{\left(t_{k} z_{i} / z_{j} ; q\right)_{-h}\left(t_{k} z_{i} z_{j} ; q\right)_{-h}}{\left(q t_{k}^{-1} z_{i} / z_{j} ; q\right)_{h}\left(q t_{k}^{-1} z_{i} z_{j} ; q\right)_{h}}\right\}
\end{aligned}
$$

and $R_{\text {sym }}$ and $R_{\text {alt }}$ be the parts of R consisting of the elements which are symmetric and skew-symmetric under the action of W respectively, i.e.,

$$
\begin{aligned}
& R_{\mathrm{sym}}:=\{\varphi(z) \in R ; \sigma \varphi(z)=\varphi(z), \sigma \in W\} \\
& R_{\mathrm{alt}}:=\{\varphi(z) \in R ; \sigma \varphi(z)=\operatorname{sgn}(\sigma) \varphi(z), \sigma \in W\} .
\end{aligned}
$$

This implies

$$
R_{\mathrm{alt}}=R_{\mathrm{sym}} \Delta(z):=\left\{\varphi(z) \Delta(z) ; \varphi(z) \in R_{\mathrm{sym}}\right\} .
$$

Lemma 3. For $\varphi(z) \in R$ and $\xi \in X$, the Jackson integral $\langle\varphi, \xi\rangle$ is described as

$$
\langle\varphi, \xi\rangle=f_{\varphi}(\xi) \Theta(\xi)
$$

where $f_{\varphi}(z)$ is a holomorphic function on X. Moreover, if $\varphi(z) \in R_{\mathrm{sym}}$, then there exists a holomorphic function $g_{\varphi}(z)$ on X such that

$$
\langle\varphi, \xi\rangle_{\Delta}=g_{\varphi}(\xi) \Theta_{\Delta}(\xi)
$$

where $\Theta_{\Delta}(z):=\Theta(z) \theta_{\Delta}(z)$ and

$$
\theta_{\Delta}(z):=\prod_{r=1}^{n} \frac{\theta\left(z_{r}^{2}\right)}{z_{r}} \prod_{1 \leq i<j \leq n} \frac{\theta\left(z_{i} / z_{j}\right) \theta\left(z_{i} z_{j}\right)}{z_{i}}
$$

See [11] for details. Note that the function $\theta_{\Delta}(z)$ is obviously skew-symmetric, i.e., $\sigma \theta_{\Delta}(z)=\operatorname{sgn}(\sigma) \theta_{\Delta}(z)$, so that we have $\sigma \Theta_{\Delta}(z)=$ $\operatorname{sgn}(\sigma) U_{\sigma}(z) \Theta_{\Delta}(z)$.

Let $\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right\}$ be the standard basis of \mathbf{R}^{n}. The cocycle function associated with $\Phi(z)$ is defined by $b_{\nu}(z):=\Phi\left(z q^{\nu}\right) / \Phi(z)$ for $\nu \in \mathbf{Z}^{n}$, which is the so-called b-function. In particular, if $\nu=\varepsilon_{r}, r=$ $1,2, \ldots, n$, we have

$$
\begin{aligned}
b_{\varepsilon_{r}}(z)= & q^{m / 2-\delta+(n-r)(l-2 \tau)} \prod_{k=1}^{m} \frac{1-a_{k} z_{r}}{1-q a_{k}^{-1} z_{r}} \\
\times & \prod_{k=1}^{l}\left(\prod_{j=1}^{r-1} \frac{\left(1-t_{k}^{-1} z_{j} / z_{r}\right)\left(1-t_{k} z_{j} z_{r}\right)}{\left(1-q^{-1} t_{k} z_{j} / z_{r}\right)\left(1-q t_{k}^{-1} z_{j} z_{r}\right)}\right. \\
& \left.\quad \times \prod_{j=r+1}^{n} \frac{\left(1-t_{k} z_{r} / z_{j}\right)\left(1-t_{k} z_{j} z_{r}\right)}{\left(1-q t_{k}^{-1} z_{r} / z_{j}\right)\left(1-q t_{k}^{-1} z_{j} z_{r}\right)}\right)
\end{aligned}
$$

which will simply be denoted by $b_{r}(z)$.
Let $\nabla_{q}: R^{n} \rightarrow R$ be the n-dimensional covariant q-differenciation defined by

$$
\nabla_{q}:\left(\psi_{1}(z), \psi_{2}(z), \ldots, \psi_{n}(z)\right) \mapsto \sum_{j=1}^{n} \nabla_{q, j} \psi_{j}(z)
$$

where $\nabla_{q, j} \psi(z):=\psi(z)-b_{j}(z) T_{z_{j}} \psi(z)$. We denote by $\mathcal{A}: R \rightarrow R_{\text {alt }}$ the alternation

$$
\mathcal{A}: f(z) \mapsto \sum_{\sigma \in W} \operatorname{sgn}(\sigma) \sigma f(z)
$$

for a function $f(z)$ on X. Then we have

$$
\begin{aligned}
& R_{\mathrm{alt}}=\mathcal{A} R, \\
& \mathcal{A} \nabla_{q}\left(R^{n}\right)=\nabla_{q}\left(R^{n}\right) \cap R_{\mathrm{alt}}
\end{aligned}
$$

Definition 4. The quotient $H=R / \nabla_{q}\left(R^{n}\right)$ and $H_{\text {sym }}=R_{\text {alt }} / \mathcal{A} \nabla_{q}\left(R^{n}\right)$ define the n-dimensional non-symmetric and symmetric rational de Rham cohomologies $H^{n}\left(X, \Phi, \nabla_{q}\right)$ and $H_{\text {sym }}^{n}\left(X, \Phi, \nabla_{q}\right)$ associated with the Jackson integrals (1) respectively, because they are isomorphic to each other (see also [3, 7] for the definitions of these cohomologies).

Remark 4.1. Because of symmetry, it follows that

$$
\mathcal{A} \nabla_{q}\left(R^{n}\right) \subset \nabla_{q}\left(R^{n}\right)
$$

and that all $\mathcal{A} \nabla_{q, r}$ are the same for $r=1,2, \ldots, n$, so that we have

$$
\mathcal{A} \nabla_{q}\left(R^{n}\right)=\mathcal{A} \nabla_{q, r} R
$$

This implies that $H_{\text {sym }}$ is identified with the linear subspace of H consisting of the elements which are skew-symmetric under the Weyl group W.

Lemma 5. Suppose $\varphi(z) \in \nabla_{q}\left(R^{n}\right)$. Then

$$
\langle\varphi, \xi\rangle=0 \quad \text { and } \quad\langle\mathcal{A} \varphi, \xi\rangle=0
$$

if it is summable.
This lemma shows that the integral $\langle\varphi, \xi\rangle$ for $\varphi(z) \in R$ and that for $\varphi(z) \in R_{\text {alt }}$ depend only on the quotients H and $H_{\text {sym }}$ respectively.

1.3. Regularization of Jackson integrals.

We denote by \mathcal{H} the linear space of holomorphic functions $f(z)$ on X satisfying

$$
T_{z_{i}} f(z)=\left(q z_{i}^{2}\right)^{-m / 2-(n-1) l} f(z)
$$

for $i=1,2, \ldots, n$. The space \mathcal{H} has the dimension $\tilde{\kappa}$. Let $\mathcal{H}_{\text {sym }}$ be the linear space of holomorphic functions $f(z)$ on X satisfying $\sigma f(z)=f(z)$ and

$$
T_{z_{i}} f(z)=\left(q z_{i}^{2}\right)^{-m / 2-(n-1) l+n+1} f(z)
$$

for $i=1,2, \ldots, n$. The space $\mathcal{H}_{\text {sym }}$ has the dimension κ. By definition, the Jackson integrals $\langle\varphi, z\rangle$ and $\langle\varphi, z\rangle_{\Delta}$ are meromorhic as functions on X. For
$\langle\varphi, z\rangle$ and $\langle\varphi, z\rangle_{\Delta}$ we define the regularized Jackson integrals as follows respectively:

$$
\begin{aligned}
& \langle\langle\varphi, z\rangle\rangle:=\langle\varphi, z\rangle / \Theta(z) \\
& \langle\langle\varphi, z\rangle\rangle_{\Delta}:=\langle\varphi, z\rangle_{\Delta} / \Theta_{\Delta}(z)
\end{aligned}
$$

Lemma 3 implies that $\langle\langle\varphi, z\rangle\rangle \in \mathcal{H}$ and that $\langle\langle\varphi, z\rangle\rangle_{\Delta}$ $\in \mathcal{H}_{\text {sym }}$ if $\varphi \in R_{\text {sym }}$, so that they are holomorphic functions on X.
1.4. Symplectic Schur functions. For a sequence of integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbf{Z}^{n}$ we set $z^{\lambda}:=z_{1}^{\lambda_{1}} z_{2}^{\lambda_{2}} \cdots z_{n}^{\lambda_{n}}$. Let Q be the set defined by

$$
\left\{\lambda \in \mathbf{Z}^{n} ; \begin{array}{l}
-s-1-(n-1) l \leq \lambda_{i} \leq s+(n-1) l \\
\text { for } i=1,2, \ldots, n
\end{array}\right\}
$$

which consists of $\tilde{\kappa}$ elements. We denote the skewsymmetric Laurent polynomials in z

$$
\mathcal{A} z^{\lambda}:=\sum_{\sigma \in W} \operatorname{sgn}(\sigma) \sigma\left(z^{\lambda}\right) .
$$

The Weyl denominator formula says that

$$
\mathcal{A} z^{\rho}=(-1)^{n} \Delta(z)
$$

where $\rho=(n, n-1, \ldots, 2,1) \in \mathbf{Z}^{n}$. Let P be the set of all partitions defined by $\left\{\lambda \in \mathbf{Z}^{n} ; s-1+(n-1)(l-\right.$ 1) $\left.\geq \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right\}$, which consists of κ elements. We define the symplectic Schur function

$$
\chi_{\lambda}(z):=\frac{\mathcal{A} z^{\lambda+\rho}}{\mathcal{A} z^{\rho}}
$$

which occurs in the Weyl character formula.
1.5. Main results. In the sequel we assume that
(\mathcal{C}) all the parameters $a_{1}, a_{2}, \ldots, a_{m}$ and t_{1},
t_{2}, \ldots, t_{l} are generic.
The following four theorems are the main results of this note:

Theorem 6. Under the condition (\mathcal{C}), $H^{n}\left(X, \Phi, \nabla_{q}\right)$ has dimension $\tilde{\kappa}=\{m+2(n-1) l\}^{n}$ and is spanned by the basis $\left\{z^{\lambda} ; \lambda \in Q\right\}$.

Theorem 7. Under the condition (C), $H_{\text {sym }}^{n}\left(X, \Phi, \nabla_{q}\right)$ has dimension $\kappa=\binom{s+(n-1) l}{n}$ and is spanned by the basis $\left\{\chi_{\lambda}(z) \Delta(z) ; \lambda \in P\right\}$.

We denote by T_{u} the shift operator on a parameter $u \rightarrow u q$. From Theorems 6 and 7 we have the holonomic q-difference equations for $\left\langle z^{\lambda}, \xi\right\rangle$ and $\left\langle\chi_{\lambda}, \xi\right\rangle_{\Delta}$ respectively, with respect to the q-shift of the parameters $a_{1}, a_{2}, \ldots, a_{m}, t_{1}, t_{2}, \ldots, t_{l}$ as follows:

Theorem 8. There exist invertible matrices $\mathcal{Y}_{a_{k}}, \mathcal{Y}_{t_{j}}$ whose components $\eta_{\lambda, \nu}^{\left(a_{k}\right)}, \eta_{\lambda, \nu}^{\left(t_{j}\right)}$ are rational
functions of $a_{1}, \ldots, a_{m}, t_{1}, \ldots, t_{l}$ respectively, such that

$$
\begin{aligned}
T_{a_{k}}\left\langle z^{\lambda}, \xi\right\rangle & =\sum_{\nu \in Q} \eta_{\lambda, \nu}^{\left(a_{k}\right)}\left\langle z^{\nu}, \xi\right\rangle, \\
T_{t_{j}}\left\langle z^{\lambda}, \xi\right\rangle & =\sum_{\nu \in Q} \eta_{\lambda, \nu}^{\left(t_{j}\right)}\left\langle z^{\nu}, \xi\right\rangle
\end{aligned}
$$

where λ runs over the set Q.
Theorem 9. There exist invertible matrices $Y_{a_{k}}, Y_{t_{j}}$ whose components $y_{\lambda, \nu}^{\left(a_{k}\right)}, y_{\lambda, \nu}^{\left(t_{j}\right)}$ are rational functions of $a_{1}, \ldots, a_{m}, t_{1}, \ldots, t_{l}$ respectively, such that

$$
\begin{align*}
T_{a_{k}}\left\langle\chi_{\lambda}, \xi\right\rangle_{\Delta} & =\sum_{\nu \in P} y_{\lambda, \nu}^{\left(a_{k}\right)}\left\langle\chi_{\nu}, \xi\right\rangle_{\Delta} \tag{5}\\
T_{t_{j}}\left\langle\chi_{\lambda}, \xi\right\rangle_{\Delta} & =\sum_{\nu \in P} y_{\lambda, \nu}^{\left(t_{j}\right)}\left\langle\chi_{\nu}, \xi\right\rangle_{\Delta} \tag{6}
\end{align*}
$$

where λ runs over the set P.
Remark 9.1. When $(m, l)=(2 n+2,0)$ or $(4,1)$ in Theorem 7 the number κ equals 1 and hence the matrices $Y_{a_{k}}$ and $Y_{t_{1}}$ in Theorem 9 reduce to scalars which are explicitly expressible as ratios of products of q-gamma functions. These coincide with some of the results in $[8-10,12-15$, etc.]. See also Theorems 10 and 11 in the next section.

The proofs of Theorems 6-9 are given in [5] by indicating the isomorphisms

$$
H \xrightarrow[\rightarrow]{\sim} \mathcal{H}, \quad H_{\mathrm{sym}} \xrightarrow{\sim} \mathcal{H}_{\mathrm{sym}}
$$

which are based on the results in $[2,7]$.
2. Special symmetric cases. We consider the map

$$
\begin{aligned}
& \mathcal{M}_{\mathrm{sym}}: R_{\mathrm{sym}} \Delta(z) \\
& \varphi(z) \Delta(z) \mapsto\left\langle\left\langle\varphi, \mathcal{H}_{\text {sym }}\right.\right. \\
&\varphi(z\rangle\rangle_{\Delta}
\end{aligned}
$$

which is well-defined from Eq.(3), Lemmas 2 and 3. Since we see in [5] that $\operatorname{Ker} \mathcal{M}_{\text {sym }}=\mathcal{A} \nabla_{q}\left(R^{n}\right)$, the map $\mathcal{M}_{\text {sym }}$ naturally induces the isomorphism $H_{\text {sym }} \xrightarrow{\sim} \mathcal{H}_{\text {sym }}$.

Using the map $\mathcal{M}_{\text {sym }}$, Eqs.(5) and (6) in Theorem 9 are rewritten as the equations in $\mathcal{H}_{\text {sym }}$ as follows:

$$
\begin{aligned}
T_{a_{k}}\left\langle\left\langle\chi_{\lambda}, \xi\right\rangle\right\rangle_{\Delta} & =\sum_{\nu \in P} \bar{y}_{\lambda, \nu}^{\left(a_{k}\right)}\left\langle\left\langle\chi_{\nu}, \xi\right\rangle\right\rangle_{\Delta}, \\
T_{t_{j}}\left\langle\left\langle\chi_{\lambda}, \xi\right\rangle\right\rangle_{\Delta} & =\sum_{\nu \in P} \bar{y}_{\lambda, \nu}^{\left(t_{j}\right)}\left\langle\left\langle\chi_{\nu}, \xi\right\rangle\right\rangle_{\Delta},
\end{aligned}
$$

and $\bar{Y}_{a_{k}}:=\left(\bar{y}_{\lambda, \nu}^{\left(a_{k}\right)}\right), \bar{Y}_{t_{j}}:=\left(\bar{y}_{\lambda, \nu}^{\left(t_{j}\right)}\right)$ denote square matrices of degree $\kappa=\binom{s+(n-1) l}{n}$ whose components
are rational functions of $a_{1}, a_{2}, \ldots, a_{m}, t_{1}, t_{2}, \ldots, t_{l}$ respectively.

The following two facts are essential for proving the isomorphism $H_{\text {sym }} \xrightarrow{\sim} \mathcal{H}_{\text {sym }}$ in [5]. One is that $\bar{Y}_{a_{k}}, \bar{Y}_{t_{j}}$ are invertible, i.e., $\operatorname{det} \bar{Y}_{a_{k}}$, $\operatorname{det} \bar{Y}_{t_{j}}$ do not vanish identically. The other is that the map $\mathcal{M}_{\text {sym }}$ does not degenerate, i.e., the functions $\left\langle\left\langle\chi_{\lambda}, z\right\rangle\right\rangle_{\Delta}, \lambda \in$ P are linearly independent in $\mathcal{H}_{\text {sym }}$. This is equivalent to the fact $\operatorname{det}\left(\left\langle\left\langle\chi_{\lambda}, \zeta_{(\mu)}\right\rangle\right\rangle_{\Delta}\right)_{\lambda, \mu}$ does not vanish identically for some κ points $\zeta_{(\mu)}$ in X.

In this section, we mention more concrete results about them when $l=0$ and 1 .
2.1. Symmetric case where $l=0$. In this case, $H_{\text {sym }}^{n}\left(X, \Phi, \nabla_{q}\right)$ has dimension $\kappa=\binom{s}{n}$. According to the following theorem, we see directly that $\operatorname{det} \bar{Y}_{a_{k}}$ and $\operatorname{det}\left(\left\langle\left\langle\chi_{\lambda}, \zeta_{(\mu)}\right\rangle\right\rangle_{\Delta}\right)_{\lambda, \mu}$ do not vanish identically:

Theorem 10. The explicit form of $\operatorname{det} \bar{Y}_{a_{k}}$ is given by
$\operatorname{det} \bar{Y}_{a_{k}}=\left(\frac{\prod_{i=1}^{2 s+2}\left(1-a_{k}^{-1} a_{i}^{-1}\right)}{\left(1-a_{k}^{-2}\right)\left(1-a_{1}^{-1} a_{2}^{-1} \ldots a_{2 s+2}^{-1}\right)}\right)^{\binom{s-1}{n-1}}$.
Moreover, the $\kappa \times \kappa$ determinant with (λ, μ) entry $\left\langle\left\langle\chi_{\lambda}, \zeta_{(\mu)}\right\rangle_{\Delta}\right.$ is evaluated as

$$
\begin{aligned}
& \left\{(1-q)(q)_{\infty}\right\}^{n\binom{s}{n}} \\
& \times\left(\frac{\prod_{1 \leq i<j \leq 2 s+2}\left(q a_{i}^{-1} a_{j}^{-1}\right)_{\infty}}{\left(q a_{1}^{-1} a_{2}^{-1} \cdots a_{2 s+2}^{-1}\right)_{\infty}}\right)^{\binom{s-1}{n-1}} \\
& \times\left(\prod_{1 \leq i<j \leq s} \frac{\theta\left(a_{i} / a_{j}\right) \theta\left(a_{i} a_{j}\right)}{a_{i}}\right)^{\binom{s-2}{n-1}}
\end{aligned}
$$

where $\zeta_{(\mu)}:=\left(a_{\mu_{1}+n}, a_{\mu_{2}+n-1}, \ldots, a_{\mu_{n}+1}\right) \in X$ for $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) \in P$.

Proof. See [4].
Remark 10.1. When $m=2 n+2$, i.e., $s=$ n, the above determinant, whose matrix size $\binom{s}{n}$ equals 1 , becomes nothing but the formula investigated by Gustafson [10]. See also [15].
2.2. Symmetric case where $l=1$. We shall simply write t in place of t_{1}. In this case, $H_{\text {sym }}^{n}\left(X, \Phi, \nabla_{q}\right)$ has dimension $\kappa=\binom{s+n-1}{n}$. The following implies that $\operatorname{det} \bar{Y}_{a_{k}}$ does not vanish identically:

Theorem 11. The explicit form of $\operatorname{det} \bar{Y}_{a_{k}}$ is given by
$\prod_{j=1}^{n}\left(\frac{\prod_{i=1}^{2 s+2}\left(1-t^{j-n} a_{k}^{-1} a_{i}^{-1}\right)}{\left(1-t^{j-n} a_{k}^{-2}\right)\left(1-t^{2-n-j} a_{1}^{-1} a_{2}^{-1} \cdots a_{2 s+2}^{-1}\right)}\right)^{\binom{s+j-2}{j-1}}$.

Proof. See [6].

Next we show the explicit form of the determinant $\operatorname{det}\left(\left\langle\left\langle\chi_{\lambda}, \zeta_{(\mu)}\right\rangle\right\rangle_{\Delta}\right)_{\lambda, \mu}$ for some κ points $\zeta_{(\mu)}$ in X. In order to explain it, we choose special critical points $\zeta_{(\mu)}$ for the Jackson integrals (2) in the following manner.

Let Z be the set of all s-tuples defined by

$$
\left\{\left(\mu_{1}, \mu_{2}, \ldots, \mu_{s}\right) \in \mathbf{Z}^{s} ; \begin{array}{l}
\mu_{1}+\cdots+\mu_{s}=n \\
\mu_{1} \geq 0, \ldots, \mu_{s} \geq 0
\end{array}\right\}
$$

which consists of κ elements. For s-tuples $\mu=$ $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{s}\right)$ and $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{s}\right) \in Z$, we define the ordering $\mu \prec_{Z} \nu$ on Z if there exists i such that $\mu_{1}=\nu_{1}, \mu_{2}=\nu_{2}, \ldots, \mu_{i-1}=\nu_{i-1}, \mu_{i}<\nu_{i}$. Corresponding to the s-tuple $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{s}\right) \in$ Z, we take the point $\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right) \in X$ satisfying

$$
\zeta_{i}=\left\{\begin{array}{cc}
a_{1} t^{\mu_{1}-i} & \text { if } 1 \leq i \leq \mu_{1} \\
a_{2} t^{\mu_{1}+\mu_{2}-i} & \text { if } \mu_{1}+1 \leq i \leq \mu_{1}+\mu_{2} \\
\vdots & \vdots \\
a_{s} t^{n-i} & \text { if } \sum_{k=1}^{s-1} \mu_{k}+1 \leq i \leq n
\end{array}\right.
$$

We denote by $\zeta_{(\mu)}=\left(\zeta_{(\mu) 1}, \zeta_{(\mu) 2}, \ldots, \zeta_{(\mu) n}\right) \in X$ such a point.

For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right) \in$ P, we also define the reverse lexicographic ordering $\lambda \prec \nu$ on P if $\lambda_{1}=\nu_{1}, \lambda_{2}=\nu_{2}, \ldots, \lambda_{i-1}=\nu_{i-1}$, $\lambda_{i}<\nu_{i}$ for some $i \in\{1,2, \ldots, n\}$.

Theorem 12. The $\kappa \times \kappa$ determinant with (λ, μ) entry $\left\langle\left\langle\chi_{\lambda}, \zeta_{(\mu)}\right\rangle_{\Delta}\right.$ is evaluated as
$\left\{(1-q)(q)_{\infty}\right\}^{n\binom{s+n-1}{n}}$ $\times \prod_{k=1}^{n}\left(\frac{\left(q t^{-(n-k+1)}\right)_{\infty}^{s}}{\left(q t^{-1}\right)_{\infty}^{s}}\right.$
$\left.\times \frac{\prod_{1 \leq i<j \leq 2 s+2}\left(q t^{-(n-k)} a_{i}^{-1} a_{j}^{-1}\right)_{\infty}}{\left(q t^{-(n+k-2)} a_{1}^{-1} a_{2}^{-1} \cdots a_{2 s+2}^{-1}\right)_{\infty}}\right)^{\binom{s+k-2}{k-1}}$
$\times \prod_{k=1}^{n}\left(\prod_{r=0}^{n-k} \prod_{1 \leq i<j \leq s} \frac{\theta\left(t^{2 r-(n-k)} a_{i} a_{j}^{-1}\right)}{t^{r} a_{i}}\right.$

$$
\left.\times \theta\left(t^{n-k} a_{i} a_{j}\right)\right)^{\binom{s+k-3}{k-1}}
$$

where the rows $\lambda \in P$ and the columns $\mu \in Z$ of the matrix $\operatorname{det}\left(\left\langle\left\langle\chi_{\lambda}, \zeta_{(\mu)}\right\rangle_{\Delta}\right)_{\lambda, \mu}\right.$ are arranged in the decreasing orders of \prec and \prec_{Z} respectively.

Proof. See [6].
As a corollary, we see $\operatorname{det}\left(\left\langle\left\langle\chi_{\lambda}, \zeta_{(\mu)}\right\rangle\right\rangle_{\Delta}\right)_{\lambda, \mu}$ does not vanish identically.

Remark 12.1. In the special case where $(m, l)=(4,1)$, i.e., $(s, l)=(1,1), \kappa$ is equal to 1 , and the determinant reduces to Jackson integral itself which is explicitly evaluated by van Diejen [9]. See also $[8,13,14$, etc.].

Acknowldgement. This work was supported in part by Grants-in-Aid for Scientific Research (C) no. 17540037 of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] K. Aomoto, q-analogue of de Rham cohomology associated with Jackson integrals I, II, Proc. Japan Acad. 66A (1990), 161-164; 240-244.
[2] K. Aomoto, Connection formulas in the q-analog de Rham cohomology, in Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993), 1-12, Progr. Math., 131, Birkhäuser Boston, Boston, MA, 1995.
[3] K. Aomoto, q-difference de Rham complex and Čech cohomology (an essay on basic hypergeometric functions), Sugaku Expositions, Sugaku Expositions 13 (2000), no. 2, 125-142.
[4] K. Aomoto and M. Ito, $B C_{n}$ type Jackson integral generalized from Gustafson's C_{n} type sum, (2004). (Preprint).
[5] K. Aomoto and M. Ito, On the Structure of Jackson Integrals of $B C_{n}$ type, (2005). (Preprint).
[6] K. Aomoto and M. Ito, A determinant formula for a holonomic q-difference system of $B C_{n}$ type Jackson integrals, (In preparation).
[7] K. Aomoto and Y. Kato, A q-analogue of de Rham cohomology associated with Jackson integrals, in Special functions (Okayama, 1990), 3062, Springer, Tokyo.
[8] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319.
[9] J.F. van Diejen, On certain multiple Bailey, Rogers and Dougall type summation formulas, Publ. Res. Inst. Math. Sci. 33 (1997), 483-508.
[10] R.A. Gustafson, Some q-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras, Trans. Amer. Math. Soc. 341 (1994), 69-119.
[11] M. Ito, Symmetry classification for Jackson integrals associated with irreducible reduced root systems, Compositio Math. 129 (2001), 325-340.
[12] M. Ito, Symmetry classification for Jackson integrals associated with the root system $B C_{n}$, Compositio Math. 136 (2003), 209-216.
[13] M. Ito, Askey-Wilson type integrals associated with root systems, Ramanujan J. (To appear).
[14] M. Ito, q-difference shift for a $B C_{n}$ type Jackson integral arising from 'elementary' symmetric polynomials, Adv. Math. (To appear).
[15] M. Ito, Another proof of Gustafson's C_{n}-type summation formula via 'elementary' symmetric polynomials, Publ. Res. Inst. Math. Sci. (To appear).
[16] K.W.J. Kadell, A proof of the q-Macdonald-Morris conjecture for $B C_{n}$, Mem. Amer. Math. Soc. 180 (1994), no. 516.
[17] C. Sabbah, Systèmes holonomes d'équations aux q-différences, in D-modules and microlocal geometry (Lisbon, 1990), 125-147, de Gruyter, Berlin, 1993.

[^0]: 2000 Mathematics Subject Classification. Primary 33D67; Secondary 39A12.
 *) 5-1307 Hara, Tenpaku-ku, Nagoya 468-0015.
 **) Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara-shi, Kanagawa 229-8558.

