On the structure of Jackson integrals of BC_n type and holonomic q-difference equations

By Kazuhiko AOMOTO^{*)} and Masahiko ITO^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., Nov. 14, 2005)

Abstract: Finiteness of non-symmetric and symmetric cohomologies associated with Jackson integrals of type BC_n is studied. Explicit bases of the cohomologies are also stated. It is shown that the integrals using these bases satisfy holonomic systems of linear q-difference equations with respect to the parameters.

Key words: Jackson integrals of type BC_n ; q-de Rham cohomology of type BC_n .

The aim of this note is to explain finite dimensionality and to find bases of non-symmetric and symmetric cohomologies associated with Jackson integrals of type BC_n . More explicitly they are indicated by

$$\dim H^n(X, \Phi, \nabla_q) = \{m + 2(n-1)l\}^n,$$
$$\dim H^n_{\text{sym}}(X, \Phi, \nabla_q) = \binom{s + (n-1)l}{n}$$

using terminology in §1.2 of this note. As a consequence, they lead us to the fact that the integrals using these bases satisfy linear holonomic q-difference equations with respect to the parameters. In a generic case, finite dimensionality was proved in full generality in [1, 7, 17]. But here under the condition being a little more restrictive, we show it by constructing a concrete basis (see Theorems 6–9).

Throughout this note, q is a real number such that 0 < q < 1 and we use the notation $(a)_i = (a)_{\infty}/(aq^i)_{\infty}, i \in \mathbb{Z}$ where $(a)_{\infty} = \prod_{i=0}^{\infty} (1 - aq^i)$. We also use the notations $\tilde{\kappa} := \{m + 2(n-1)l\}^n$ and $\kappa := \binom{s+(n-1)l}{n}$.

1. Finiteness of cohomologies of type BC_n . In order to explain the main theorems we first state the concepts of the Jackson integrals and their cohomologies.

1.1. Jackson integrals. Let m be an even positive integer m = 2s + 2, s = -1, 0, 1, 2, 3, ... and $a_1, a_2, ..., a_m, t_1, t_2, ..., t_l$ be arbitrary constants in

 \mathbf{C}^* . We denote by $\Phi(z) = \Phi(z_1, z_2, \dots, z_n)$ the multiplicative function of B_n type

$$\prod_{r=1}^{n} \left(z_{r}^{m/2-\delta+(n-r)(l-2\tau)} \prod_{k=1}^{m} \frac{(qa_{k}^{-1}z_{r};q)_{\infty}}{(a_{k}z_{r};q)_{\infty}} \right) \\ \times \prod_{k=1}^{l} \prod_{1 \leq i < j \leq n} \frac{(qt_{k}^{-1}z_{i}/z_{j};q)_{\infty}(qt_{k}^{-1}z_{i}z_{j};q)_{\infty}}{(t_{k}z_{i}/z_{j};q)_{\infty}(t_{k}z_{i}z_{j};q)_{\infty}} \right)$$

defined on $X = (\mathbf{C}^*)^n$, where we put

$$q^{\circ} = a_1 a_2 \cdots a_m, \quad q^{\tau} = t_1 t_2 \cdots t_l.$$

We denote by $\Delta(z)$ the function

$$\prod_{i=1}^{n} \frac{1-z_i^2}{z_i} \prod_{1 \le j < k \le n} \frac{(1-z_j/z_k)(1-z_j z_k)}{z_j}$$

which is called Weyl's denominator of type C_n . For an arbitrary $z = (z_1, z_2, ..., z_n) \in X$, we define the q-shift $z \to zq^{\nu}$ by the lattice point $\nu = (\nu_1, \nu_2, ..., \nu_n) \in \mathbf{Z}^n$ as

$$zq^{\nu} := (z_1q^{\nu_1}, z_2q^{\nu_2}, \dots, z_nq^{\nu_n}) \in X.$$

The set $\Lambda_z := \{zq^{\nu} \in X ; \nu \in \mathbf{Z}^n\}$ forms an orbit of a lattice subgroup of X.

Definition 1. For a function $\varphi(z)$ on X and an arbitrary point $\xi = (\xi_1, \xi_2, \dots, \xi_n) \in X$, the Jackson integral over the lattice Λ_{ξ} is defined as the pairing of difference *n*-forms and lattices

(1)
$$\int_{\Lambda_{\xi}} \Phi(z)\varphi(z)\frac{d_{q}z_{1}}{z_{1}}\wedge\cdots\wedge\frac{d_{q}z_{n}}{z_{n}}$$
$$:=(1-q)^{n}\sum_{\nu\in\mathbf{Z}^{n}}\Phi(\xi q^{\nu})\varphi(\xi q^{\nu})$$

if it is summable. The LHS of (1) will simply be denoted by $\langle \varphi, \xi \rangle$. Moreover we set

(2)
$$\langle \varphi, \xi \rangle_{\Delta} := \langle \varphi \Delta, \xi \rangle$$

(

²⁰⁰⁰ Mathematics Subject Classification. Primary 33D67; Secondary 39A12.

^{*)} 5-1307 Hara, Tenpaku-ku, Nagoya 468-0015.

^{**)} Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara-shi, Kanagawa 229-8558.

where $\varphi \Delta(z) = \varphi(z) \Delta(z)$.

The Weyl group W of type C_n is generated by the reflections

$$\sigma_i \colon z_i \longleftrightarrow z_{i+1} \quad (1 \le i \le n-1),$$

$$\sigma_n \colon z_n \longleftrightarrow z_n^{-1}.$$

The group W acts on a space of functions on X by the rule $\sigma f(z) := f(\sigma^{-1}z), \sigma \in W$.

Let $\Theta(z)$ be the functions on X defined by

$$\prod_{r=1}^{n} \left(z_r^{m/2-\delta+(n-r)(l-2\tau)} \prod_{h=1}^{m} \frac{1}{\theta(a_h z_r)} \right) \\ \times \prod_{k=1}^{l} \prod_{1 \le i < j \le n} \frac{1}{\theta(t_k z_i/z_j)\theta(t_k z_i z_j)}$$

where $\theta(z) := (z)_{\infty}(q/z)_{\infty}$. Since the function $\theta(z)$ has the property $\theta(qz) = -\theta(z)/z$, if we put

(3)
$$U_{\sigma}(z) := \frac{\sigma \Theta(z)}{\Theta(z)} \text{ for } \sigma \in W,$$

then $U_{\sigma}(z)$ are the cocycle of pseudo-constants, i.e., constants with respect to the q-shifts $z \to zq^{\nu}, \nu \in \mathbb{Z}^n$. More precisely, by definition of $\Phi(z)$, it follows that the function $\sigma \Phi(z)$ is equal to $\Phi(z)$ up to the pseudo-constant $U_{\sigma}(z)$ as follows:

(4)
$$\sigma\Phi(z) = \Phi(z)U_{\sigma}(z).$$

In this sense, we regard the function $\Phi(z)$ as symmetric with respect to W, and both of $\Phi(z)$ and $\sigma\Phi(z)$ satisfy the same q-difference equations with respect to $z \to zq^{\nu}, \nu \in \mathbb{Z}^n$.

From (1) and (4) and $\sigma \Delta(z) = \operatorname{sgn}(\sigma)\Delta(z)$ we have the following lemma immediately:

Lemma 2. If $\sigma \in W$, then

$$\sigma\langle\varphi,\xi\rangle = U_{\sigma}(\xi)\langle\sigma\varphi,\xi\rangle.$$

In particular, if $\varphi(z)$ is symmetric under the action of W, i.e., $\sigma\varphi(z) = \varphi(z)$, then

$$\sigma \langle \varphi, \xi \rangle_{\Delta} = \operatorname{sgn}(\sigma) U_{\sigma}(\xi) \langle \varphi, \xi \rangle_{\Delta}.$$

1.2. Rational de Rham cohomology of type BC_n . We denote by L the ring of Laurent polynomials $\mathbf{C}[z_1, \ldots, z_n, z_1^{-1}, \ldots, z_n^{-1}]$ in z over \mathbf{C} . Let R be the L-module generated by the following set of rational functions of z:

$$\bigcup_{h\geq 0} \left\{ \prod_{k=1}^{m} \prod_{j=1}^{n} \frac{(a_{k}z_{j};q)_{-h}}{(qa_{k}^{-1}z_{j};q)_{h}} \times \prod_{k=1}^{l} \prod_{1\leq i\leq j\leq n} \frac{(t_{k}z_{i}/z_{j};q)_{-h}(t_{k}z_{i}z_{j};q)_{-h}}{(qt_{k}^{-1}z_{i}/z_{j};q)_{h}(qt_{k}^{-1}z_{i}z_{j};q)_{h}} \right\}$$

and R_{sym} and R_{alt} be the parts of R consisting of the elements which are symmetric and skew-symmetric under the action of W respectively, i.e.,

$$\begin{split} R_{\rm sym} &:= \{\varphi(z) \in R \, ; \, \sigma\varphi(z) = \varphi(z), \sigma \in W \}, \\ R_{\rm alt} &:= \{\varphi(z) \in R \, ; \, \sigma\varphi(z) = {\rm sgn}(\sigma)\varphi(z), \sigma \in W \}. \end{split}$$

This implies

$$R_{\rm alt} = R_{\rm sym} \Delta(z) := \{\varphi(z)\Delta(z)\,;\,\varphi(z)\in R_{\rm sym}\}.$$

Lemma 3. For $\varphi(z) \in R$ and $\xi \in X$, the Jackson integral $\langle \varphi, \xi \rangle$ is described as

$$\langle \varphi, \xi \rangle = f_{\varphi}(\xi) \Theta(\xi)$$

where $f_{\varphi}(z)$ is a holomorphic function on X. Moreover, if $\varphi(z) \in R_{sym}$, then there exists a holomorphic function $g_{\varphi}(z)$ on X such that

$$\langle \varphi, \xi \rangle_{\Delta} = g_{\varphi}(\xi) \Theta_{\Delta}(\xi)$$

where $\Theta_{\Delta}(z) := \Theta(z)\theta_{\Delta}(z)$ and

$$\theta_{\Delta}(z) := \prod_{r=1}^{n} \frac{\theta(z_r^2)}{z_r} \prod_{1 \le i < j \le n} \frac{\theta(z_i/z_j)\theta(z_iz_j)}{z_i}.$$

See [11] for details. Note that the function $\theta_{\Delta}(z)$ is obviously skew-symmetric, i.e., $\sigma \theta_{\Delta}(z) = \operatorname{sgn}(\sigma) \theta_{\Delta}(z)$, so that we have $\sigma \Theta_{\Delta}(z) = \operatorname{sgn}(\sigma) U_{\sigma}(z) \Theta_{\Delta}(z)$.

Let $\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$ be the standard basis of \mathbf{R}^n . The cocycle function associated with $\Phi(z)$ is defined by $b_{\nu}(z) := \Phi(zq^{\nu})/\Phi(z)$ for $\nu \in \mathbf{Z}^n$, which is the so-called *b*-function. In particular, if $\nu = \varepsilon_r$, r = $1, 2, \ldots, n$, we have

$$b_{\varepsilon_r}(z) = q^{m/2 - \delta + (n-r)(l-2\tau)} \prod_{k=1}^m \frac{1 - a_k z_r}{1 - q a_k^{-1} z_r} \\ \times \prod_{k=1}^l \left(\prod_{j=1}^{r-1} \frac{(1 - t_k^{-1} z_j/z_r)(1 - t_k z_j z_r)}{(1 - q^{-1} t_k z_j/z_r)(1 - q t_k^{-1} z_j z_r)} \\ \times \prod_{j=r+1}^n \frac{(1 - t_k z_r/z_j)(1 - t_k z_j z_r)}{(1 - q t_k^{-1} z_r/z_j)(1 - q t_k^{-1} z_j z_r)} \right),$$

which will simply be denoted by $b_r(z)$.

Let $\nabla_q \colon \mathbb{R}^n \to \mathbb{R}$ be the *n*-dimensional covariant *q*-differenciation defined by

 $\nabla_q \colon (\psi_1(z), \psi_2(z), \dots, \psi_n(z)) \mapsto \sum_{i=1}^n \nabla_{q,i} \psi_i(z)$

where $\nabla_{q,j}\psi(z) := \psi(z) - b_j(z)T_{z_j}\psi(z)$. We denote by $\mathcal{A}: R \to R_{\text{alt}}$ the alternation

$$\mathcal{A} \colon f(z) \mapsto \sum_{\sigma \in W} \operatorname{sgn}(\sigma) \sigma f(z)$$

for a function f(z) on X. Then we have

$$R_{\text{alt}} = \mathcal{A}R,$$

 $\mathcal{A} \nabla_q(R^n) = \nabla_q(R^n) \cap R_{\text{alt}}$

Definition 4. The quotient $H = R/\nabla_q(R^n)$ and $H_{\text{sym}} = R_{\text{alt}}/\mathcal{A}\nabla_q(R^n)$ define the *n*-dimensional non-symmetric and symmetric rational de Rham cohomologies $H^n(X, \Phi, \nabla_q)$ and $H^n_{\text{sym}}(X, \Phi, \nabla_q)$ associated with the Jackson integrals (1) respectively, because they are isomorphic to each other (see also [3, 7] for the definitions of these cohomologies).

Remark 4.1. Because of symmetry, it follows that

$$\mathcal{A}\nabla_q(R^n) \subset \nabla_q(R^n)$$

and that all $\mathcal{A}\nabla_{q,r}$ are the same for $r = 1, 2, \ldots, n$, so that we have

$$\mathcal{A}\nabla_q(R^n) = \mathcal{A}\nabla_{q,r}R.$$

This implies that H_{sym} is identified with the linear subspace of H consisting of the elements which are skew-symmetric under the Weyl group W.

Lemma 5. Suppose $\varphi(z) \in \nabla_q(\mathbb{R}^n)$. Then

$$\langle \varphi, \xi \rangle = 0$$
 and $\langle \mathcal{A}\varphi, \xi \rangle = 0$

if it is summable.

This lemma shows that the integral $\langle \varphi, \xi \rangle$ for $\varphi(z) \in R$ and that for $\varphi(z) \in R_{\text{alt}}$ depend only on the quotients H and H_{sym} respectively.

1.3. Regularization of Jackson integrals. We denote by \mathcal{H} the linear space of holomorphic functions f(z) on X satisfying

$$T_{z_i}f(z) = \left(qz_i^2\right)^{-m/2 - (n-1)l} f(z)$$

for i = 1, 2, ..., n. The space \mathcal{H} has the dimension $\tilde{\kappa}$. Let \mathcal{H}_{sym} be the linear space of holomorphic functions f(z) on X satisfying $\sigma f(z) = f(z)$ and

$$T_{z_i}f(z) = \left(qz_i^2\right)^{-m/2 - (n-1)l + n+1} f(z)$$

for i = 1, 2, ..., n. The space \mathcal{H}_{sym} has the dimension κ . By definition, the Jackson integrals $\langle \varphi, z \rangle$ and $\langle \varphi, z \rangle_{\Delta}$ are meromorphic as functions on X. For $\langle \varphi, z \rangle$ and $\langle \varphi, z \rangle_{\Delta}$ we define the *regularized Jackson integrals* as follows respectively:

$$\begin{split} &\langle\!\langle \varphi, z \rangle\!\rangle := \langle \varphi, z \rangle / \Theta(z), \\ &\langle\!\langle \varphi, z \rangle\!\rangle_\Delta := \langle \varphi, z \rangle_\Delta / \Theta_\Delta(z) \end{split}$$

Lemma 3 implies that $\langle\!\langle \varphi, z \rangle\!\rangle \in \mathcal{H}$ and that $\langle\!\langle \varphi, z \rangle\!\rangle_{\Delta} \in \mathcal{H}_{sym}$ if $\varphi \in R_{sym}$, so that they are holomorphic functions on X.

1.4. Symplectic Schur functions. For a sequence of integers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbf{Z}^n$ we set $z^{\lambda} := z_1^{\lambda_1} z_2^{\lambda_2} \cdots z_n^{\lambda_n}$. Let Q be the set defined by

$$\left\{\lambda \in \mathbf{Z}^{n}; \begin{array}{c} -s-1-(n-1)l \leq \lambda_{i} \leq s+(n-1)l \\ \text{for} \quad i=1,2,\dots,n \end{array}\right\},\$$

which consists of $\tilde{\kappa}$ elements. We denote the skewsymmetric Laurent polynomials in z

$$Az^{\lambda} := \sum_{\sigma \in W} \operatorname{sgn}(\sigma)\sigma(z^{\lambda}).$$

The Weyl denominator formula says that

$$\mathcal{A}z^{\rho} = (-1)^n \Delta(z)$$

where $\rho = (n, n-1, ..., 2, 1) \in \mathbb{Z}^n$. Let *P* be the set of all partitions defined by $\{\lambda \in \mathbb{Z}^n ; s-1+(n-1)(l-1) \geq \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0\}$, which consists of κ elements. We define the symplectic Schur function

$$\chi_{\lambda}(z) := \frac{\mathcal{A} z^{\lambda+\rho}}{\mathcal{A} z^{\rho}}$$

which occurs in the Weyl character formula.

1.5. Main results. In the sequel we assume that

(C) all the parameters
$$a_1, a_2, \ldots, a_m$$
 and t_1, t_2, \ldots, t_l are generic.

The following four theorems are the main results of this note:

Theorem 6. Under the condition (C), $H^n(X, \Phi, \nabla_q)$ has dimension $\tilde{\kappa} = \{m + 2(n-1)l\}^n$ and is spanned by the basis $\{z^{\lambda}; \lambda \in Q\}$.

Theorem 7. Under the condition (\mathcal{C}) , $H^n_{\text{sym}}(X, \Phi, \nabla_q)$ has dimension $\kappa = \binom{s+(n-1)l}{n}$ and is spanned by the basis $\{\chi_\lambda(z)\Delta(z); \lambda \in P\}.$

We denote by T_u the shift operator on a parameter $u \to uq$. From Theorems 6 and 7 we have the holonomic q-difference equations for $\langle z^{\lambda}, \xi \rangle$ and $\langle \chi_{\lambda}, \xi \rangle_{\Delta}$ respectively, with respect to the q-shift of the parameters $a_1, a_2, \ldots, a_m, t_1, t_2, \ldots, t_l$ as follows:

Theorem 8. There exist invertible matrices $\mathcal{Y}_{a_k}, \mathcal{Y}_{t_j}$ whose components $\eta_{\lambda,\nu}^{(a_k)}, \eta_{\lambda,\nu}^{(t_j)}$ are rational

No. 9]

functions of $a_1, \ldots, a_m, t_1, \ldots, t_l$ respectively, such that

$$T_{a_k} \langle z^{\lambda}, \xi \rangle = \sum_{\nu \in Q} \eta_{\lambda,\nu}^{(a_k)} \langle z^{\nu}, \xi \rangle$$
$$T_{t_j} \langle z^{\lambda}, \xi \rangle = \sum_{\nu \in Q} \eta_{\lambda,\nu}^{(t_j)} \langle z^{\nu}, \xi \rangle$$

where λ runs over the set Q.

Theorem 9. There exist invertible matrices Y_{a_k}, Y_{t_j} whose components $y_{\lambda,\nu}^{(a_k)}, y_{\lambda,\nu}^{(t_j)}$ are rational functions of $a_1, \ldots, a_m, t_1, \ldots, t_l$ respectively, such that

(5)
$$T_{a_k} \langle \chi_{\lambda}, \xi \rangle_{\Delta} = \sum_{\nu \in P} y_{\lambda,\nu}^{(a_k)} \langle \chi_{\nu}, \xi \rangle_{\Delta},$$

(6)
$$T_{t_j} \langle \chi_{\lambda}, \xi \rangle_{\Delta} = \sum_{\nu \in P} y_{\lambda,\nu}^{(t_j)} \langle \chi_{\nu}, \xi \rangle_{\Delta}$$

where λ runs over the set P.

Remark 9.1. When (m, l) = (2n + 2, 0) or (4, 1) in Theorem 7 the number κ equals 1 and hence the matrices Y_{a_k} and Y_{t_1} in Theorem 9 reduce to scalars which are explicitly expressible as ratios of products of q-gamma functions. These coincide with some of the results in [8–10, 12–15, etc.]. See also Theorems 10 and 11 in the next section.

The proofs of Theorems 6–9 are given in [5] by indicating the isomorphisms

$$H \xrightarrow{\sim} \mathcal{H}, \quad H_{\text{sym}} \xrightarrow{\sim} \mathcal{H}_{\text{sym}},$$

which are based on the results in [2, 7].

2. Special symmetric cases. We consider the map

$$\mathcal{M}_{\text{sym}} \colon \begin{array}{c} R_{\text{sym}} \Delta(z) \to \mathcal{H}_{\text{sym}} \\ \varphi(z) \Delta(z) \mapsto \langle\!\langle \varphi, z \rangle\!\rangle_{\Delta}, \end{array}$$

which is well-defined from Eq.(3), Lemmas 2 and 3. Since we see in [5] that Ker $\mathcal{M}_{sym} = \mathcal{A}\nabla_q(\mathbb{R}^n)$, the map \mathcal{M}_{sym} naturally induces the isomorphism $H_{sym} \xrightarrow{\sim} \mathcal{H}_{sym}$.

Using the map \mathcal{M}_{sym} , Eqs.(5) and (6) in Theorem 9 are rewritten as the equations in \mathcal{H}_{sym} as follows:

$$T_{a_k} \langle\!\langle \chi_{\lambda}, \xi \rangle\!\rangle_{\Delta} = \sum_{\nu \in P} \bar{y}_{\lambda,\nu}^{(a_k)} \langle\!\langle \chi_{\nu}, \xi \rangle\!\rangle_{\Delta},$$
$$T_{t_j} \langle\!\langle \chi_{\lambda}, \xi \rangle\!\rangle_{\Delta} = \sum_{\nu \in P} \bar{y}_{\lambda,\nu}^{(t_j)} \langle\!\langle \chi_{\nu}, \xi \rangle\!\rangle_{\Delta},$$

and $\overline{Y}_{a_k} := \left(\overline{y}_{\lambda,\nu}^{(a_k)}\right), \overline{Y}_{t_j} := \left(\overline{y}_{\lambda,\nu}^{(t_j)}\right)$ denote square matrices of degree $\kappa = \binom{s+(n-1)l}{n}$ whose components

are rational functions of $a_1, a_2, \ldots, a_m, t_1, t_2, \ldots, t_l$ respectively.

The following two facts are essential for proving the isomorphism $H_{\text{sym}} \xrightarrow{\sim} \mathcal{H}_{\text{sym}}$ in [5]. One is that $\overline{Y}_{a_k}, \overline{Y}_{t_j}$ are invertible, i.e., det \overline{Y}_{a_k} , det \overline{Y}_{t_j} do not vanish identically. The other is that the map \mathcal{M}_{sym} does not degenerate, i.e., the functions $\langle\!\langle \chi_{\lambda}, z \rangle\!\rangle_{\Delta}, \lambda \in$ P are linearly independent in \mathcal{H}_{sym} . This is equivalent to the fact det $(\langle\!\langle \chi_{\lambda}, \zeta_{(\mu)} \rangle\!\rangle_{\Delta})_{\lambda,\mu}$ does not vanish identically for some κ points $\zeta_{(\mu)}$ in X.

In this section, we mention more concrete results about them when l = 0 and 1.

2.1. Symmetric case where l = 0. In this case, $H^n_{\text{sym}}(X, \Phi, \nabla_q)$ has dimension $\kappa = {s \choose n}$. According to the following theorem, we see directly that $\det \overline{Y}_{a_k}$ and $\det (\langle \chi_{\lambda}, \zeta_{(\mu)} \rangle \rangle_{\Delta})_{\lambda,\mu}$ do not vanish identically:

Theorem 10. The explicit form of det \overline{Y}_{a_k} is given by

$$\det \overline{Y}_{a_k} = \left(\frac{\prod_{i=1}^{2s+2} \left(1 - a_k^{-1} a_i^{-1}\right)}{\left(1 - a_k^{-2}\right) \left(1 - a_1^{-1} a_2^{-1} \dots a_{2s+2}^{-1}\right)}\right)^{\binom{s-1}{n-1}}.$$

Moreover, the $\kappa \times \kappa$ determinant with (λ, μ) entry $\langle \langle \chi_{\lambda}, \zeta_{(\mu)} \rangle \rangle_{\Delta}$ is evaluated as

$$\{ (1-q)(q)_{\infty} \}^{n\binom{s}{n}} \\ \times \left(\frac{\prod_{1 \le i < j \le 2s+2} \left(qa_i^{-1}a_j^{-1} \right)_{\infty}}{\left(qa_1^{-1}a_2^{-1} \cdots a_{2s+2}^{-1} \right)_{\infty}} \right)^{\binom{s-1}{n-1}} \\ \times \left(\prod_{1 \le i < j \le s} \frac{\theta(a_i/a_j)\theta(a_ia_j)}{a_i} \right)^{\binom{s-2}{n-1}}$$

where $\zeta_{(\mu)} := (a_{\mu_1+n}, a_{\mu_2+n-1}, \dots, a_{\mu_n+1}) \in X$ for $\mu = (\mu_1, \mu_2, \dots, \mu_n) \in P.$

Proof. See [4].
$$\Box$$

Remark 10.1. When m = 2n + 2, i.e., s = n, the above determinant, whose matrix size $\binom{s}{n}$ equals 1, becomes nothing but the formula investigated by Gustafson [10]. See also [15].

2.2. Symmetric case where l = 1. We shall simply write t in place of t_1 . In this case, $H^n_{\text{sym}}(X, \Phi, \nabla_q)$ has dimension $\kappa = \binom{s+n-1}{n}$. The following implies that det \overline{Y}_{a_k} does not vanish identically:

Theorem 11. The explicit form of det \overline{Y}_{a_k} is given by

$$\prod_{j=1}^{n} \left(\frac{\prod_{i=1}^{2s+2} \left(1 - t^{j-n} a_k^{-1} a_i^{-1} \right)}{\left(1 - t^{j-n} a_k^{-2} \right) \left(1 - t^{2-n-j} a_1^{-1} a_2^{-1} \cdots a_{2s+2}^{-1} \right)} \right)^{\binom{s+j-2}{j-1}}.$$
Proof. See [6].

Next we show the explicit form of the determinant det $(\langle\!\langle \chi_{\lambda}, \zeta_{(\mu)} \rangle\!\rangle_{\Delta})_{\lambda,\mu}$ for some κ points $\zeta_{(\mu)}$ in X. In order to explain it, we choose special critical points $\zeta_{(\mu)}$ for the Jackson integrals (2) in the following manner.

Let Z be the set of all s-tuples defined by

$$\left\{ (\mu_1, \mu_2, \dots, \mu_s) \in \mathbf{Z}^s; \begin{array}{l} \mu_1 + \dots + \mu_s = n, \\ \mu_1 \ge 0, \dots, \mu_s \ge 0 \end{array} \right\},\$$

which consists of κ elements. For s-tuples $\mu = (\mu_1, \mu_2, \dots, \mu_s)$ and $\nu = (\nu_1, \nu_2, \dots, \nu_s) \in Z$, we define the ordering $\mu \prec_Z \nu$ on Z if there exists i such that $\mu_1 = \nu_1, \mu_2 = \nu_2, \dots, \mu_{i-1} = \nu_{i-1}, \mu_i < \nu_i$. Corresponding to the s-tuple $\mu = (\mu_1, \mu_2, \dots, \mu_s) \in Z$, we take the point $(\zeta_1, \zeta_2, \dots, \zeta_n) \in X$ satisfying

$$\zeta_{i} = \begin{cases} a_{1}t^{\mu_{1}-i} & \text{if } 1 \leq i \leq \mu_{1}, \\ a_{2}t^{\mu_{1}+\mu_{2}-i} & \text{if } \mu_{1}+1 \leq i \leq \mu_{1}+\mu_{2}, \\ \vdots & \vdots \\ a_{s}t^{n-i} & \text{if } \sum_{k=1}^{s-1}\mu_{k}+1 \leq i \leq n. \end{cases}$$

We denote by $\zeta_{(\mu)} = (\zeta_{(\mu)1}, \zeta_{(\mu)2}, \dots, \zeta_{(\mu)n}) \in X$ such a point.

For $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n), \nu = (\nu_1, \nu_2, \dots, \nu_n) \in P$, we also define the reverse lexicographic ordering $\lambda \prec \nu$ on P if $\lambda_1 = \nu_1, \lambda_2 = \nu_2, \dots, \lambda_{i-1} = \nu_{i-1}, \lambda_i < \nu_i$ for some $i \in \{1, 2, \dots, n\}$.

Theorem 12. The $\kappa \times \kappa$ determinant with (λ, μ) entry $\langle\!\langle \chi_{\lambda}, \zeta_{(\mu)} \rangle\!\rangle_{\Delta}$ is evaluated as

$$\begin{split} \{(1-q)(q)_{\infty}\}^{n\binom{s+n-1}{n}} \\ \times \prod_{k=1}^{n} \left(\frac{(qt^{-(n-k+1)})_{\infty}^{s}}{(qt^{-1})_{\infty}^{s}} \right. \\ & \times \frac{\prod_{1 \le i < j \le 2s+2} (qt^{-(n-k)}a_{i}^{-1}a_{j}^{-1})_{\infty}}{(qt^{-(n+k-2)}a_{1}^{-1}a_{2}^{-1}\cdots a_{2s+2}^{-1})_{\infty}} \right)^{\binom{s+k-2}{k-1}} \\ & \times \prod_{k=1}^{n} \left(\prod_{r=0}^{n-k} \prod_{1 \le i < j \le s} \frac{\theta\left(t^{2r-(n-k)}a_{i}a_{j}^{-1}\right)}{t^{r}a_{i}} \right. \\ & \times \left. \theta\left(t^{n-k}a_{i}a_{j}\right) \right)^{\binom{s+k-3}{k-1}}, \end{split}$$

where the rows $\lambda \in P$ and the columns $\mu \in Z$ of the matrix det $(\langle \langle \chi_{\lambda}, \zeta_{(\mu)} \rangle \rangle_{\Delta})_{\lambda,\mu}$ are arranged in the decreasing orders of \prec and \prec_Z respectively.

Proof. See [6].
$$\Box$$

As a corollary, we see det $(\langle \chi_{\lambda}, \zeta_{(\mu)} \rangle \rangle_{\lambda,\mu}$ does not vanish identically.

Remark 12.1. In the special case where (m, l) = (4, 1), i.e., (s, l) = (1, 1), κ is equal to 1, and the determinant reduces to Jackson integral itself which is explicitly evaluated by van Diejen [9]. See also [8, 13, 14, etc.].

Acknowldgement. This work was supported in part by Grants-in-Aid for Scientific Research (C) no. 17540037 of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- K. Aomoto, q-analogue of de Rham cohomology associated with Jackson integrals I, II, Proc. Japan Acad. 66A (1990), 161–164; 240–244.
- [2] K. Aomoto, Connection formulas in the q-analog de Rham cohomology, in Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993), 1–12, Progr. Math., 131, Birkhäuser Boston, Boston, MA, 1995.
- [3] K. Aomoto, q-difference de Rham complex and Čech cohomology (an essay on basic hypergeometric functions), Sugaku Expositions, Sugaku Expositions 13 (2000), no. 2, 125–142.
- $\begin{bmatrix} 4 \end{bmatrix}$ K. Aomoto and M. Ito, BC_n type Jackson integral generalized from Gustafson's C_n type sum, (2004). (Preprint).
- [5] K. Aomoto and M. Ito, On the Structure of Jackson Integrals of BC_n type, (2005). (Preprint).
- $\begin{bmatrix} 6 \end{bmatrix}$ K. Aomoto and M. Ito, A determinant formula for a holonomic q-difference system of BC_n type Jackson integrals, (In preparation).
- K. Aomoto and Y. Kato, A q-analogue of de Rham cohomology associated with Jackson integrals, in *Special functions (Okayama*, 1990), 30– 62, Springer, Tokyo.
- [8] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319.
- J.F. van Diejen, On certain multiple Bailey, Rogers and Dougall type summation formulas, Publ. Res. Inst. Math. Sci. 33 (1997), 483–508.
- [10] R.A. Gustafson, Some q-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras, Trans. Amer. Math. Soc. **341** (1994), 69–119.

No. 9]

- [11] M. Ito, Symmetry classification for Jackson integrals associated with irreducible reduced root systems, Compositio Math. **129** (2001), 325–340.
- [12] M. Ito, Symmetry classification for Jackson integrals associated with the root system BC_n , Compositio Math. **136** (2003), 209–216.
- [13] M. Ito, Askey-Wilson type integrals associated with root systems, Ramanujan J. (To appear).
- [14] M. Ito, q-difference shift for a BC_n type Jackson integral arising from 'elementary' symmetric polynomials, Adv. Math. (To appear).
- [15] M. Ito, Another proof of Gustafson's C_n -type summation formula via 'elementary' symmetric polynomials, Publ. Res. Inst. Math. Sci. (To appear).
- [16] K.W.J. Kadell, A proof of the q-Macdonald-Morris conjecture for BC_n , Mem. Amer. Math. Soc. **180** (1994), no. 516.
- [17] C. Sabbah, Systèmes holonomes d'équations aux q-différences, in *D-modules and microlocal geometry* (*Lisbon*, 1990), 125–147, de Gruyter, Berlin, 1993.