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Holomorphic curves with an infinite number of deficiencies
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Abstract: For each positive integer p, there exists a holomorphic curve of order p mean
type with an infinite number of deficiencies, the sum of which to the a power is divergent, where
0 < a < 1/3.
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1. Introduction. Let f = [f1, . . . , fn+1] be
a holomorphic curve from C into the n-dimensional
complex projective space Pn(C) with a reduced rep-
resentation (f1, . . . , fn+1) : C → Cn+1 − {0}, where
n is a positive integer. We use the following nota-
tions:

‖f(z)‖ = (|f1(z)|2 + · · · + |fn+1(z)|2)1/2

and for a vector a = (a1, . . . , an+1) ∈ Cn+1 − {0}
||a|| = (|a1|2 + · · · + |an+1|2)1/2,

(a, f) = a1f1 + · · · + an+1fn+1,

(a, f(z)) = a1f1(z) + · · · + an+1fn+1(z).

The characteristic function of f is defined as fol-
lows (see [8]):

(1) T (r, f) =
1

2π

∫ 2π

0

log ||f(reiθ)||dθ−log ||f(0)||.

We suppose throughout the paper that f is tran-
scendental; that is to say, limr→∞ T (r, f)/ log r =
∞ and f is linearly non-degenerate over C; namely,
f1, . . . , fn+1 are linearly independent over C.

For meromorphic functions in the complex plane
we use the standard notation of Nevanlinna theory
of meromorphic functions ([4, 5]).

For a ∈ Cn+1 − {0}, we write

m(r,a, f) =
1

2π

∫ 2π

0

log
||a||||f(reiθ)||
|(a, f(reiθ))| dθ,

N(r,a, f) = N(r, 1/(a, f)).

We then have the first fundamental theorem:
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(2) T (r, f) = m(r,a, f) +N(r,a, f) +O(1)

([8], p. 76). We call the quantity

δ(a, f) = 1 − lim sup
r→∞

N(r,a, f)
T (r, f)

= lim inf
r→∞

m(r,a, f)
T (r, f)

the deficiency (or defect) of a with respect to f . We
have 0 ≤ δ(a, f) ≤ 1 by (2).

LetX be a subset of Cn+1−{0} inN -subgeneral
position; that is to say, #X ≥ N + 1 and any N + 1
elements of X generate Cn+1, where N is an inte-
ger satisfying N ≥ n. We say that X is in general
position when X is in n-subgeneral position.

Cartan ([1], N = n) and Nochka ([6], N > n)
gave the following:

Theorem A (Defect relation). For any q ele-
ments aj (j = 1, . . . , q) of X,∑q

j=1
δ(aj , f) ≤ 2N − n+ 1,

where 2N − n+ 1 ≤ q ≤ ∞ (see also [2] or [3]).
Let Y be the set of a ∈ X satisfying δ(a, f) >

0. Then, as is well-known, Y is at most countable.
When n ≥ 2, it is not difficult to give holomorphic
curves for which Y is finite, but it is not so easy
to give those for which Y is infinite. It is of some
interest to construct examples of holomorphic curves
with an infinite number of deficiencies when n ≥ 2.

The purpose of this paper is to prove the fol-
lowing theorem when n ≥ 2 by applying the method
given in Section 4.3 of [4].

Theorem. For any positive integer p, there
exists a holomorphic curve of order p mean type with
an infinite number of deficiencies.

2. Preliminary lemmas. In this section we
prepare some lemmas for later use. Main idea of this
section is given in Section 4.3 of [4]. Let {ην} be a
decreasing sequence satisfying
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(3) ην > 0 and
∑∞

ν=1
ην = 1, η0 = η1

and put

(4) θ0 = 0, θk = π
∑k−1

ν=0
ην (k = 1, 2, 3, . . .).

Then, {θk} is strictly increasing and it tends to

π
∑∞

ν=0
ην = πη0 + π

∑∞
ν=1

ην ≤ 2π

as k → ∞.
Lemma 1 ([4], p. 99). For k ≥ 1 if

(5) θk − 1
3
πηk < θ ≤ θk +

1
3
πηk

and z = reiθ, then
(a) cos(θν − θ) ≤ cos

(
2
3πηk

)
(ν �= k);

(b) | exp{ze−iθν}| ≤ exp
{
r cos 2

3πηk

}
(ν �= k).

Proof. (a) This inequality is given in [4], p. 99.
(b) From (a) we have the inequality

| exp{ze−iθν}| = | exp{rei(θ−θν)}|
= exp{r cos(θ − θν)}
≤ exp

{
r cos

2
3
πηk

}
(ν �= k).

Let m be any positive integer, {ak} an arbitrary
sequence of complex numbers such that at least two
of {ak}k≥m are not equal to zero and are distinct,
{bk} a sequence of positive numbers satisfying

s1 =
∑∞

k=1
bk|ak| <∞, s2 =

∑∞
k=1

bk <∞,

and we put

u(z) =
∑∞

k=1
bkak exp{ze−iθk},

vm(z) =
∑∞

k=m
bk exp{ze−iθk}

and w0(z) ≡ 0,

wm−1(z) =
∑m−1

k=1
αk exp{ze−iθk} (m ≥ 2)

for any complex numbers αk. Further we put

A0 ≡ 0, Am−1 =
∑m−1

k=1
|αk| (m ≥ 2).

Proposition 1. For z = reiθ,
1) |u(z)| ≤ s1e

r; 2) |vm(z)| ≤ s2e
r;

3) |u(z) + wm−1(z)| ≤ (s1 +Am−1)er;
4) |vm(z) + wm−1(z)| ≤ (s2 +Am−1)er.
Proof. It is easy to see this proposition, since

| exp{ze−iθk}| = | exp{rei(θ−θk)}|
= exp{r cos(θ − θk)} ≤ er.

Lemma 2 (see [4], p. 99). When θ satisfies
(5), for z = reiθ and k ≥ m we have the inequal-
ities :

(6)
|u(z) + wm−1(z) − bkak exp{ze−iθk}|

≤ (s1 +Am−1) exp
{
r cos

2
3
πηk

}
,

(7)

|vm(z) − bk exp{ze−iθk}| ≤ s2 exp
{
r cos

2
3
πηk

}
,

(8)
|vm(z) + wm−1(z) − bk exp{ze−iθk}|

≤ (s2 +Am−1) exp
{
r cos 2

3πηk

}
and for all sufficiently large r

(9)
|u(z) + wm−1(z)|

≥ 1
2
bk|ak| exp

{
r cos

1
3
πηk

}
(if ak �= 0),

(10) |vm(z)| ≥ 1
2
bk exp

{
r cos

1
3
πηk

}
,

(11) |vm(z) + wm−1(z)| ≥ 1
2
bk exp

{
r cos

1
3
πηk

}
.

Proof. We can prove these inequalities as in [4],
p. 99 by Lemma 1 (b). For example, we prove (6).

|u(z) + wm−1(z) − bkak exp{ze−iθk}|
≤ |wm−1(z)| +

∑
ν �=k

bν |aν exp{ze−iθν}|

≤
∑m−1

ν=1
|αν exp{ze−iθν}|

+
∑

ν �=k
bν |aν exp{ze−iθν}|

≤ (Am−1 + s1) exp
{
r cos

2
3
πηk

}
.

Similarly we have (7) and (8). Next we prove
(9). Suppose that ak �= 0. From (6) we have

|u(z) + wm−1(z)|
> bk|ak exp{ze−iθk}|

− (Am−1 + s1) exp
{
r cos

2
3
πηk

}
= bk|ak| exp{r cos(θ − θk)}

− (Am−1 + s1) exp
{
r cos

2
3
πηk

}
≥ bk|ak| exp

{
r cos

1
3
πηk

}
− (Am−1 + s1) exp

{
r cos

2
3
πηk

}
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= exp
{
r cos

1
3
πηk

}(
bk|ak| − (Am−1 + s1)

× exp
{
r
(

cos
2
3
πηk − cos

1
3
πηk

)})
≥ 1

2
bk|ak| exp

{
r cos

1
3
πηk

}
for all suficiently large r since

cos
2
3
πηk − cos

1
3
πηk = −2 sin

π

6
ηk sin

π

2
ηk < 0.

Similarly we have (10) and (11).
Lemma 3. u(z)+wm−1(z) and vm(z) are lin-

early independent over C.
Proof. First of all we note that neither u(z) +

wm−1(z) nor vm(z) is identically equal to zero by (9)
and (10). Supose that they are linearly dependent
over C. Then there is a non-zero constant a satis-
fying (u(z) + wm−1(z))/vm(z) ≡ a. By the choice
of {ak}, there is at least one k ≥ m such that ak �=
0, a. For this k, z = reiθ with θ satisfying (5) and
all suficiently large r we have

0 �= |a− ak| =
∣∣∣∣u(z) + wm−1(z) − akvm(z)

vm(z)

∣∣∣∣
≤ (s1 +Am−1 + |ak|s2) exp

{
r
(
cos 2

3πηk

)}
1
2bk exp

{
r cos 1

3πηk

}
= 2

(s1 +Am−1 + |ak|s2)
bk

× exp
{
r
(

cos
2
3
πηk − cos

1
3
πηk

)}
= 2

(s1 +Am−1 + |ak|s2)
bk

× exp
{
−2r sin

π

6
ηk sin

π

2
ηk

}
,

which tends to zero as r → ∞ since
sin(π/6)ηk sin(π/2)ηk > 0. This is a contradic-
tion. We have our lemma.

Let f = [f1, . . . , fn+1] be a transcendental holo-
morphic curve and for any positive integer p, we put
P (z) = zp. We consider the holomorphic curve

f ◦ P = [f1 ◦ P, . . . , fn+1 ◦ P ].

Note that f1 ◦ P, . . . , fn+1 ◦ P have no common
zero and are linearly independent over C.

We put

ρ(f) = lim sup
r→∞

log T (r, f)
log r

(: the order of f).

Lemma 4. For any a ∈ Cn+1 − {0}

[1] T (r, f ◦P ) = T (rp, f) and ρ(f ◦P ) = pρ(f);
[2] m(r,a, f ◦ P ) = m(rp,a, f);
[3] δ(a, f ◦ P ) = δ(a, f).
Proof. [1] By the definition (1) and as

||f ◦ P (z)|| = ||f(zp)|| we have

T (r, f ◦ P )

=
1

2π

∫ 2π

0

log ||f(rpeipθ)||dθ − log ||f(0)||

=
1

2pπ

∫ 2pπ

0

log ||f(rpeiφ)||dφ− log ||f(0)||

=
1

2π

∫ 2π

0

log ||f(rpeiφ)||dφ− log ||f(0)||

= T (rp, f).

The second assertion can easily be obtained
from this relation.

[2] From the definition of m(r,a, f ◦P ), we eas-
ily obtain this relation by the same way as in [1].

[3] From both [1] and [2], we have

δ(a, f ◦ P ) = lim inf
r→∞

m(r,a, f ◦ P )
T (r, f ◦ P )

= lim inf
r→∞

m(rp,a, f)
T (rp, f)

= δ(a, f).

3. Examples of holomorphic curve with
an infinite number of deficiencies. We shall
give examples of holomorphic curve with an infinite
number of deficiencies in this section. Suppose that
n ≥ 2 throughout this section. Let {ηk} and {θk}
be those given in (3) and (4) of Section 2 respec-
tively. Let Y = {ak = (a1k, . . . , ank, 1) ∈ Cn+1} be
in general position and {cjk}∞k=1 (j = 1, . . . , n) be
sequences of positive numbers satisfying

det(cjk) (j, k = 1, . . . , n) �= 0,

c1k = c2k = · · · = cnk = ck (k = n, n+ 1, . . .)

and

Sj =
∑∞

k=1
cjk <∞ (j = 1, . . . , n),

Sn+1 =
∑∞

k=1

(∑n

j=1
cjk|ajk|

)
<∞.

Put

ϕj(z) =
∑∞

k=1
cjk exp{ze−iθk} (j = 1, . . . , n),

ϕn+1(z) = −
∑∞

k=1

(∑n

j=1
cjkajk

)
exp{ze−iθk},

ψ1(z) =
∑∞

k=n
ck exp{ze−iθk},
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and ϕj − ψ1 = hj (j = 1, . . . , n).
Note that if we put ak =

∑n
j=1 ajk (k =

1, 2, . . .), then {ak} satisfies the condition on {ak}
given in Section 2 since Y is in general position.

Proposition 2. For |z| = r,

|ϕj(z)| < Sje
r (j = 1, 2, . . . , n+ 1).

Proof. For any k and z = reiθ, we have the
inequality

| exp{ze−iθk}| = | exp{rei(θ−θk)}|
= exp{Re(rei(θ−θk))} ≤ er,

so that we easily have our proposition.
Proposition 3. ϕ1, . . . , ϕn+1 have no com-

mon zeros.
Proof. We have only to prove that ϕ1, . . . , ϕn

have no common zeros. Suppose that they have a
common zero at z = zo. Then, as

ϕj(z) =
∑n−1

k=1
cjk exp{ze−iθk}+ψ1(z) (j=1, . . . , n),

it holds that

0 =
∑n−1

k=1
cjk exp{zoe

−iθk}+ψ1(zo) (j = 1, . . . , n),

from which we have for j = 1, . . . , n− 1

(12) 0 =
∑n−1

k=1
(cjk − cnk) exp{zoe

−iθk}.
Here, by the choice of {cjk} it holds that

0 �= det(cjk) (j, k = 1, . . . , n)

= cnn det(cjk − cnk) (j, k = 1, . . . , n− 1),

cnn �= 0, so that we have from (12) that

exp{zoe
−iθk} = 0 (k = 1, . . . , n− 1),

which is a contradiction. We have our proposition.

Proposition 4. ϕ1, . . . , ϕn+1 are linearly in-
dependent over C.

Proof. Put α1ϕ1 + · · · + αn+1ϕn+1 = 0. Then
we have

(13)
α1h1 + · · · + αnhn + αn+1ϕn+1

+ (α1 + · · · + αn)ψ1 = 0.

Now, suppose that αn+1 �= 0. Then, by the definition
of ϕn+1, ψ1 and h1, . . . , hn we can take m = n,

u = ϕn+1, wn−1 = (α1h1 + · · · + αnhn)/αn+1

and vn = ψ1 in Lemma 3 to obtain that

(α1h1 + · · · + αnhn)/αn+1 + ϕn+1 and ψ1

are linearly independent over C. But the relation
(13) reduces to the relation

αn+1{(α1h1 + · · · + αnhn)/αn+1 + ϕn+1}
+ (α1 + · · · + αn)ψ1 = 0,

which means that (α1h1 + · · ·+αnhn)/αn+1 +ϕn+1

and ψ1 are linearly dependent over C since αn+1 �=
0. This is a contradiction. αn+1 must be equal to
zero. So we have from (13)

(14) α1h1 + · · · + αnhn + (α1 + · · · + αn)ψ1 = 0.

Next suppose that α1 + · · · + αn �= 0. Then we have
from (14)(∑n

j=1
αjhj

)/
(α1 + · · · + αn) + ψ1 = 0.

But, by applying (11) in Lemma 2 to m = n,
vn = ψ1 and wn−1 =

(∑n
j=1 αjhj

)
/(α1 + · · · + αn)

we have that(∑n

j=1
αjhj

)/
(α1 + · · · + αn) + ψ1 �= 0,

which is a contradiction. This means that α1 + · · ·+
αn must be equal to zero. As αn = −α1−· · ·−αn−1,
we have from (14) that

(15) α1(h1 − hn) + · · · + αn−1(hn−1 − hn) = 0.

Here,

hj(z) − hn(z) =
∑n−1

k=1
(cjk − cnk) exp{ze−iθk}

(j = 1, . . . , n−1), det(cjk−cnk) �= 0 (see the proof of
Proposition 3) and exp{ze−iθ1}, . . . , exp{ze−iθn−1}
are linearly independent over C since 0 < θ1 < · · · <
θn−1 < 2π, so that h1 − hn, . . . , hn−1 − hn are lin-
early independent over C. We have from (15) that
α1 = · · · = αn−1 = 0, and so αn = 0. We have that
ϕ1, . . . , ϕn+1 are linearly independent over C.

We put ϕ = [ϕ1, . . . , ϕn+1]. Then, ϕ is a
non-degenerate holomorphic curve from C into the
n-dimensional complex projective space Pn(C) by
Propositions 3 and 4.

Proposition 5. T (r, ϕ) < r +O(1).
Proof. As

‖ϕ(reiθ)‖ = (|ϕ1(reiθ)|2 + · · · + |ϕn+1(reiθ)|2)1/2

≤
(∑n+1

j=1
S2

j

)1/2

er

by Proposition 2, we have this proposition by the
definition of T (r, ϕ).

As in the case of Lemma 2, we have the following
estimates.
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Proposition 6. When θ satisfies (5), for
|z| = r∣∣∣ϕn+1(z) +

(∑n

j=1
cjkajk

)
exp{ze−iθk}

∣∣∣
≤
∑

ν �=k

∣∣∣(∑n

j=1
cjνajν

)
exp{ze−iθk}

∣∣∣(16)

≤ Sn+1 exp
{
r cos

2
3
πηk

}
,

(17)

|ϕj(z) − cjk exp{ze−iθk}| ≤ Sj exp
{
r cos

2
3
πηk

}
(j = 1, . . . , n) and for all sufficiently large r

(18) |ϕj(z)| ≥ 1
2
cjk exp

{
r cos

1
3
πηk

}
(j = 1, . . . , n).

Proposition 7. When z = reiθ and r is any
sufficiently large number, we have uniformly for θ

satisfying (5) in Lemma 1

||ak|| ||ϕ(reiθ)||
|(ak, ϕ(reiθ))|

≥ ||ak||(max1≤j≤n cjk) exp
{
r cos 1

3πηk

}
2(Sn+1 +

∑n
j=1 |ajk|Sj) exp

{
r cos 2

3πηk

} .
Proof. First we note that (ak, ϕ(reiθ)) �≡ 0 for

any ak ∈ Y due to Proposition 4.
From (18) for all suficiently large r and for θ

satisfying (5) in Lemma 1 we have the inequality

||ak|| ||ϕ(reiθ)|| ≥ ||ak|| max
1≤j≤n

|ϕj(reiθ)|

≥ ||ak||
2

max
1≤j≤n

cjk exp
{
r cos

1
3
πηk

}
.

From (16) and (17) for θ satisfying (5) in
Lemma 1 we have the inequality

|(ak, ϕ(z))|
≤
∣∣∣ϕn+1(z) +

(∑n

j=1
cjkajk

)
exp{ze−iθk}

∣∣∣
+
∑n

j=1
|ajk(ϕj(z) − cjk exp{ze−iθk})|

≤ Sn+1 exp
{
r cos

2
3
πηk

}
+
(∑n

j=1
|ajk|Sj

)
exp

{
r cos

2
3
πηk

}
=
(
Sn+1 +

∑n

j=1
|ajk|Sj

)
exp

{
r cos

2
3
πηk

}
.

From these two inequalities we have our proposition.

Proposition 8. For all sufficiently large r, we
have the inequality

m(r,ak, ϕ) ≥ 2
9
rη3

k +O(1).

Proof. From the definition of m(r,ak, ϕ), we
have by Proposition 7 for βk = πηk/3,

m(r,ak, ϕ)

≥ 1
2π

∫ θk+βk

θk−βk

log
||ak||||ϕ(reiθ)||
|(ak, ϕ(reiθ))| dθ

≥ r

2π

∫ θk+βk

θk−βk

(
cos

π

3
ηk − cos

2π
3
ηk

)
dθ +O(1)

=
( r

2π
2 sin

π

6
ηk sin

π

2
ηk

) 2π
3
ηk +O(1)

≥ 2r
3
ηk · 2

π

π

6
ηk · 2

π

π

2
ηk +O(1) =

2
9
rη3

k +O(1),

since sinx ≥ (2/π)x for 0 ≤ x ≤ (π/2).
Combining Propositions 5 and 8, we have the

following
Theorem 1. (I) ϕ is of order 1 mean type.
(II) δ(ak, ϕ) ≥ (2/9)η3

k (k = 1, 2, 3, . . .).
Proof. (I) From Propositions 5 and 8 we have

2
9
rη3

1 +O(1) ≤ T (r, ϕ) < r +O(1).

(II) From Propositions 5 and 8 we have

δ(ak, ϕ) = lim inf
r→∞

m(r,ak, ϕ)
T (r, ϕ)

≥ 2
9
η3

k.

Remark. Let ϕ, Y = {ak} and ηk etc. be
those given in this section and for any positive in-
teger p put P (z) = zp.

A. Put ϕ ◦ P = [ϕ1 ◦ P, . . . , ϕn+1 ◦ P ]. Then,
we obtain the following theorem from Theorem 1 and
Lemma 4.

Theorem 2. (I) ϕ ◦ P is of order p mean
type; (II) δ(ak, ϕ ◦ P ) ≥ (2/9)η3

k (k = 1, 2, 3, . . .).
B. Put

Y1 = Y ∪ {bm = (m+ 1)a1 | 1 ≤ m ≤ N − n},
where N is a positive integer larger than n. Then, Y1

is in N -subgeneral position but not in N ′-subgeneral
position for any positive integer N ′ < N . It is easy
to see the following

Corollary 1. For our ϕ ◦ P given in A we
have

δ(ak, ϕ ◦ P ) ≥ 2
9
η3

k (k = 1, 2, 3, . . .)
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and

δ(bm, ϕ ◦ P ) ≥ 2
9
η3
1 (m = 1, . . . , N − n).

C. As in the case of meromorphic function ([4],
p. 98), we have the following

Corollary 2. For any 0 < ε < 1/3, there exist
a holomorphic curve ϕ ◦P of order p mean type and
{ak} (k = 1, 2, . . .) in general position satisfying

(19)
∑∞

k=1
δ(ak, ϕ ◦ P )1/3−ε = ∞.

Taking the result of Weitsman ([7]) and this
corollary into consideration, we would like to know
whether the inequality

(20)
∑

a∈X
δ(a, f)1/3 <∞

holds or not when the (lower) order of f is finite.
Added in proof . After our original submission,

we found three papers: [9, 10] and [11] relating to
our paper. [10] and [11] give holomorphic curves with
an infinite number of deficiencies, which are different
from ours. Those in [10] satisfy (19). (20) is given in
[9] as an open problem.
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