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Distribution of units of algebraic number fields with
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Abstract: For some algebraic number fields F with only one fundamental unit, we give a
lower bound of the extension degree of the ray class field of conductor a rational prime p over the
Hilbert class field of F .
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We studied the distribution of units modulo
prime ideals [K1]. We would like to generalize it.
To explain our line, let us introduce notations. For
an algebraic number field L, oL, dL denote the max-
imal order and the discriminant of L respectively,
and let o×L be the group of units of L. If L is a Ga-
lois extension field of K and P is a prime ideal of
L, σL/K(P) denotes the Frobenius automorphism in
Gal(L/K) with respect to P, and for a prime ideal p

of K lying below P σL/K(p) denotes the conjugacy
class of σL/K(P). ζm stands for a primitive mth
root of unity. For an integral ideal n of an algebraic
number field F , we set

E(n) := {u mod n | u ∈ o×F } (⊂ (oF /n)× ),

I(n) := [(oF /n)× : E(n)], e(n) := #E(n).

We note that the extension degree of the ray
class field F (n) of conductor n over F is the product
of I(n) and the class number of F .

Regarding the study of the distribution of in-
dices I(n) as that of units, we consider the following
situation: Let F be an algebraic number field, and S

a set of integral ideals of F . To study the behavior
of I(n) (n ∈ S) we suppose that

natural numbers n(n), f(n) correspond to
every ideal n ∈ S and for a square-free nat-
ural number m, there is a union of conju-
gacy classes Hm ⊂ Gal(Fm/FS), where Fm

is a Galois extension field of an algebraic
number field FS dependent only on S.
They satisfy that f(n) divides I(n), and
that the number of ideals n ∈ S (with
possibly finitely many exceptions depen-
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dent on m) satisfying both n(n) ≤ x and
m | I(n)/f(n) is equal to the number of
prime ideals p of deg p = 1 in FS satisfy-
ing NFS/Q(p) ≤ x and σFm/FS

(p) ∈ Hm

multiplied by some positive number c.
The last demand is to invoke Chebotarev’s

density theorem. Under this arithmetic situation,
we have, for a positive number x and X :=
maxn(n)≤x I(n)/f(n)

#{n ∈ S | n(n) ≤ x, f(n) = I(n)}
=

∑
n,n(n)≤x

∑
m|I(n)/f(n)

µ(m)

=
∑

m≤X

µ(m)#{n | n(n) ≤ x, m | I(n)/f(n)}

and then Chebotarev’s density theorem implies

#{n | n(n) ≤ x, m | I(n)/f(n)}
= c#Hm/[Fm : FS] · Li(x) + o(Li(x)).

If the expected density

κ :=
∑
m

µ(m)#Hm/[Fm : FS]

is convergent to a positive number, we may expect

#{n | n(n) ≤ x, f(n) = I(n)}/Li(x) → cκ.

To follow the procedure, we have, besides the
construction of the situation above, an analytic diffi-
culty, i.e. the estimate for the accumulation of error
terms by occasion of making use of Chebotarev’s the-
orem for infinitely many different fields Fm.

In [K1], we succeeded in the construction of the
arithmetic situation when S is some set of prime
ideals. Let us explain it briefly. Let F be an objec-
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tive algebraic number field and fix any supplemen-
tary Galois extension field K of the rational number
field Q which contains the field F , and choose and
fix any element η of Gal(K/Q). Then we take S as
the set of prime ideals p of F such that p � 2dK and
the Frobenius automorphism of some prime ideal of
K lying above p is equal to η. To find the function
f , we take a primitive integral polynomial g(x) of
minimal degree such that {ε g(η) | ε ∈ o×F } is a finite
group, whose order is denoted by δ1. Then g(x) di-
vides xd − 1 in Z[x] for d := [〈η〉 : 〈η〉 ∩ Gal(K/F )],
and we put h(x) = (xd − 1)/g(x). Next we take the
maximal natural number δ0 such that δ0

√
ε

δ1g(ρ) =
1 holds for ∀ε ∈ o×F and for any extension auto-
morphism ρ of η. Then we showed that an integer
f(p) := δ0h(p)/δ1 divides I(p) for p ∈ S where p :=
n(p) is the prime number lying below p, and defining
Fm, Hm, FS somehow, we constructed the arithmetic
situation and we conjectured in [K1]

#{p ∈ S | n(p) ≤ x, f(p) = I(p)}
= κLi(x) + o(Li(x))

and we showed κ > 0 by taking advantage of the
existence of some automorphism. The asymptotic
equation above holds under G.R.H. in case that F is
a real quadratic field and in other some cases [CKY,
K2, L, M, R].

As a next step, we would like to consider the case
that S is a subset of rational primes. In this note, we
take up as F real quadratic fields, real cubic fields
with dF < 0 and imaginary abelian quartic fields.
The rank of o×F is one for these fields and our main
aim is to construct the arithmetic situation above
and in some cases to make them result in a particular
case in [K1]. Then the positivity of κ can be shown
as in [K1].

For a general algebraic number field F , the case
where prime numbers remain prime in F is in [K1].
Thus we omit the case here.

The details will appear elsewhere.
1. Real quadratic fields. Let F be a real

quadratic field with fundamental unit ε. The letter
p denotes odd prime numbers which split in F and
let S be the set of these prime numbers. We make
this case end in the known case [L, M, R, K1].

1.1. The case of NF/Q(ε) = 1. In this
subsection, we assume NF/Q(ε) = 1.

Theorem 1. e((p)) | p−1, which is equivalent
to p − 1 | I((p)) holds. I((p)) = p − 1 holds if and

only if I(p) = 1 where p stands for any prime ideal
lying above p.

This follows from e(p) = p−1 ⇔ e((p)) = p−1,
making use of the order of ε mod p = the order of
ε mod p′. By the theorem, we see

#{p ≤ x | p ∈ S, I((p)) = p− 1}
is equal to a half of the number of prime ideals p

satisfying deg(p) = 1, NF/Q(p) ≤ x, p � 2dF and
I(p) = 1.

And then it is known that the number of prime
ideals p above is asymptotically equal to κLi(x) for
a positive number κ under G.R.H. by [L, M, R].

1.2. The case of NF/Q(ε) = −1. In this
subsection, we assume NF/Q(ε) = −1. We need the
following

Lemma 1. If the order of ε mod (p) is p − 1
and ε(p−1)/2 �≡ ±1 mod (p) holds, then p ≡ 3 mod 4
and the order of ε mod p is p− 1 or (p− 1)/2, where
p is any prime ideal lying above p.

Theorem 2. e((p)) | 2(p − 1), which is the
same as (p − 1)/2 | I((p)) holds, and I((p)) = (p −
1)/2 holds if and only if both p ≡ 3 mod 4 and I(p) =
1 hold for any prime ideal p lying above p.

e((p)) | 2(p− 1) is almost obvious, and e((p)) =
2(p− 1) holds if and only if the order of ε mod (p) is
p− 1 and −1 is not in the group 〈ε mod (p)〉. Then
the lemma leads us to the theorem.

Set K = F (
√−1) and define η in Gal(K/Q) by√−1

η
= −√−1 and η = the identity on F . Then

the theorem implies that

#{p ≤ x | p ∈ S, I((p)) = (p− 1)/2}
is equal to a half of the number of prime ideals p

of F such that deg(p) = 1, NF/Q(p) ≤ x, p � 2dF ,
I(p) = 1, and σK/Q(P) coincides η where P is some
prime ideal of K lying above p.

This is a special case in [K1], and it is conjec-
tured that the number of prime ideals p above is
asymptotically equal to κLi(x), and it is shown that
the expected density κ is positive.

As a remark to this section, these may suggest
with the case of non-decomposable primes [CKY, K1,
R] that the basic part of I((p)) is p− 1 or (p− 1)/2
according as NF/Q(ε) = 1 or = −1. The field cor-
responding to (p − 1)/2 is Q(ζp + ζ−1

p ). See [K3]
about the quadratic extension of the composite field
of the Hilbert class field and Q(ζp + ζ−1

p ) in the case
of NF/Q(ε) = 1.
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2. Real cubic fields with dF < 0. In this
section, F is a real cubic field with dF < 0, and ε

denotes a positive fundamental unit of F . We set

K = F (
√
dF ), Fm = K( m

√
o×K).

2.1. The case of (p) = p1p2p3. In this
subsection, let S be the set of odd primes p which
split fully in F , and the letter p denotes an element
in S.

Lemma 2. ε(p−1)/2 �≡ −1 mod (p) holds. For
a divisor m of p−1, the order rp of ε mod (p) divides
(p−1)/m if and only if ζρ−1

m = m
√
ε

ρ−1 = 1 holds for
ρ = σFm/Q(P), where P is any prime ideal of Fm

lying above p.
This can be proven by translating the condition

ε(p−1)/m ≡ 1 mod (p) in terms of Frobenius auto-
morphisms. Using the lemma, we can define the set
Hm by the subset of automorphisms ρ ∈ Gal(Fm/Q)
which is the identity on K(ζm, m

√
ε1, m

√
ε2, m

√
ε3),

where εi are conjugates of ε, and the key theorem
is

Theorem 3. e((p)) | 2(p− 1), which is equiv-
alent to (p− 1)2/2 | I((p)) holds, and then I((p)) =
(p− 1)2/2 holds if and only if rp = p− 1 holds.

In this case, we must modify the argument in
the situation as follows:

The number of

{p ∈ S | p ≤ x, I((p)) = (p− 1)2/2}
= #{p ∈ S | p ≤ x, rp = p− 1}
=

∑
p∈S,p≤x

∑
m|(p−1)/rp

µ(m)

=
∑
m≤x

µ(m)#{p ∈ S | p ≤ x, rp | (p− 1)/m}

=
∑
m≤x

µ(m)#{p ≤ x | σFm/Q((p)) ∈ Hm}.

And we can show that

κ =
∑
m

µ(m)#Hm/[Fm : Q] > 0

as in [K1].
Hence we conjecture that the number of {p ∈

S | p ≤ x, I((p)) = (p − 1)2/2} is asymptotically
equal to κLi(x).

2.2. The case of (p) = p1p2. In this sub-
section, we assume that p denotes odd prime num-
bers which split as (p) = p1p2 in F of deg pi = i, i.e.
p remains prime in Q(

√
dF ), and let S be the set

of such primes. Let η ∈ Gal(K/Q) be an automor-
phism of order 2 satisfying εη−1 �= 1. If F is pure
cubic and K( 3

√
ε) is a Galois extension of Q, then we

set δ0 = 3, otherwise δ0 = 1. δ0 | I(p2) is known
[K2, K4].

Theorem 4. If I(p2) is odd, then I((p)) =
(p− 1)/2 · I(p2).

Making use of the fact that the order of ε mod p1

divides the order of ε mod p2 ([K2]), we can reduce
the argument on p to that on p2, and show that
e(p2) = (p2 − 1)/δ ⇔ e((p)) = 2(p2 − 1)/δ for an
odd natural number δ, which yields the theorem.

By this,

#{p ∈ S | p ≤ x, I((p)) = (p− 1)/2 · δ0}
is equal to the number of primes p (≤ x) such that
I(p2) = δ0 and σK/Q(P) = η for a prime ideal P

of K lying above p2. (The last condition on P is
automatically satisfied.)

This is a case treated in [K1, K2, K4], and there
κ is already shown to be positive.

As a remark to this section, with [K1, K2], we
can say that the basic part of I((p)) is (p−1)2/2 if p
splits fully in F , otherwise δ0(p−1)/2. In the former
case, p − 1 divides the extension degree of the ray
class field of conductor (p) over the composite field
of the Hilbert class field of F and Q(ζp + ζ−1

p ).
3. Imaginary quartic abelian fields. In

this section, F is an imaginary quartic abelian field,
and F0 is the unique real quadratic subfield. ε (resp.
ε0 (> 0)) is a fundamental unit of F (resp. F0). W
denotes the group of roots of unity in F , and set w =

#W and Q = [o×F : Wo×F0
]. We set Fm = F ( m

√
o×F )

for a natural number m.
Lemma 3. Q = 1 or 2 holds, and if Q = 1

then we may assume ε = ε0. Otherwise, we may
assume ε0 = ζwε

2, ε = ζwε and NF0/Q(ε0) = 1.
This is well-known.
Lemma 4. Let p be a prime number such that

p � 2dF , and rp the minimal natural number such that
εrp ≡ ζa

w mod (p) for some integer a. Then e((p)) =
wrp holds, and if εr ≡ ζa

w mod (p) for some natural
number a, then rp divides r.

This is obvious.
3.1. The case of (p) = p1p2p3p4. In this

subsection, S consists of odd prime numbers which
split fully in F . We set ∆ = 2 if both Q = 1 and
either NF0/Q(ε0) = 1 or

√−1 ∈ F . Otherwise, we
set ∆ = 1.
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Proposition 1. ∆ = 2 holds if and only if
ε(p−1)/2 ≡ ±1 mod (p) holds for every prime num-
ber p in S.

To show this, we need ε(p−1)/2 ≡ δp(= ±1) mod
(p) ⇔ √

ε
ρ−1 = δp for the Frobenius automorphism ρ

of every prime ideal P of F2 lying above p ⇔ ζρ
2w =

ζ2w holds if Q = 2, and either NF0/Q(ε0) = 1 or√−1
ρ

=
√−1 holds if Q = 1.

The proposition implies e((p)) | w(p − 1)/∆,
which is equivalent to f((p)) := (p−1)3∆/w | I((p)).
Analyzing the condition m | I((p))/f((p)) in terms
of Frobenius automorphisms, we reach the following
definition of Hm: For a square-free natural number
m, we denote by Hm the set of automorphisms ρ in
Gal(F2m/F (ζ2m)) satisfying that (i) in case of Q =
1, (i.1) ∆m

√
ε

ρ−1 = ±1 holds and (i.2) ζρ−1
8 = 1 holds

if
√−1 ∈ F , NF0/Q(ε0) = −1 and 2 | m hold, (ii) in

case of Q = 2, (ζmw
m
√
ε

2)ρ−1 = 1 holds.
Theorem 5. For p ∈ S, f((p)) | I((p))

holds. A square-free natural number m divides
I((p))/f((p)) if and only if σF2m/Q(p) is in Hm.

Setting n((p)) = p and FS = Q, we complete
the construction of the arithmetic situation, and the
positivity of κ is proved similarly to [K1].

3.2. The case of (p) = p1p2. In this sub-
section, S is the set of odd prime numbers p which
split as (p) = p1p2 in F with deg pi = 2. We set
µ = 2 if NF0/Q(ε0) = 1 and Q = 1. Otherwise, we
set µ = 1. Moreover, we set sp = 1, −1 according as
p decomposes or remains prime in F0. Set f((p)) =
(p2 − 1)(p+ sp)µ/w.

Theorem 6. For p ∈ S, e((p)) | (p− sp)w/µ,
which is equivalent to f((p)) | I((p)) holds.

Once we can guess what happens, the proof is
not difficult.

Translating the condition m | I((p))/f((p)) in
terms of Frobenius automorphisms, we get to the
following definition of Hm: For a square-free natural
number m, we define the subset Hm by the set of
automorphisms ρ ∈ Gal(Fmµ/Q) satisfying the fol-
lowing properties:
• the order of ρ on F is two, and ζρ−sρ

mµ = 1 holds,

• in case of Q = 1, mµ
√
ε
ρ−sρ = ±1 holds and if

moreover NF0/Q(ε0) = −1, then m
√−1

ρ−sρ = 1,
• in case of Q = 2, (ζmw

m
√
ε

2)ρ−sρ = 1 and
m
√
ε

w(ρ−sρ) = 1 hold
where sρ = 1 if ρ is the identity of F0, and sρ = −1,
otherwise.

Theorem 7. For a square-free integer m and
p ∈ S, m divides I((p))/f((p)) if and only if
σFmµ/Q(p) ∈ Hm holds.

Setting FS = Q and n((p)) = p, we complete
the construction of the arithmetic situation.

We can show the positivity of κ similarly to [K1].
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