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Abstract:

For some algebraic number fields F' with only one fundamental unit, we give a

lower bound of the extension degree of the ray class field of conductor a rational prime p over the

Hilbert class field of F.
Key words:

We studied the distribution of units modulo
prime ideals [K1]. We would like to generalize it.
To explain our line, let us introduce notations. For
an algebraic number field L, oy, d;, denote the max-
imal order and the discriminant of L respectively,
and let o be the group of units of L. If L is a Ga-
lois extension field of K and ‘B is a prime ideal of
L, o1,k (*B) denotes the Frobenius automorphism in
Gal(L/K) with respect to B, and for a prime ideal p
of K lying below B o,k (p) denotes the conjugacy
class of op,x(B). (n stands for a primitive mth
root of unity. For an integral ideal n of an algebraic
number field F, we set

Em):={umodn|u€ oy} (C (op/n)*),
I(n):=[(op/n)* : E()], e(n) := #E(n).

We note that the extension degree of the ray
class field F(n) of conductor n over F is the product
of I(n) and the class number of F.

Regarding the study of the distribution of in-
dices I(n) as that of units, we consider the following
situation: Let F' be an algebraic number field, and &
a set of integral ideals of F'. To study the behavior
of I(n) (n € &) we suppose that

natural numbers n(n), f(n) correspond to
every ideal n € & and for a square-free nat-
ural number m, there is a union of conju-
gacy classes H,, C Gal(F,,/Fs), where F,,
is a Galois extension field of an algebraic
number field Fis dependent only on &.

They satisfy that f(n) divides I(n), and
that the number of ideals n € & (with
possibly finitely many exceptions depen-
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dent on m) satisfying both n(n) < x and
m | I(n)/f(n) is equal to the number of
prime ideals p of degp = 1 in Fs satisfy-

ing Npg/q(p) < z and oF, /rs (P) € Hy,
multiplied by some positive number c.

The last demand is to invoke Chebotarev’s
density theorem. Under this arithmetic situation,
we have, for a positive number x and X :=

may(ny <o 1(n)/f(n)
#{nee|n<n><x F(n) =

-2 )

n(n)<z m|I(n)/f(n)

Z p(m)#Hn | n(n) <z, m|[I(n)/f(n)}

m<X

p(m)

and then Chebotarev’s density theorem implies

#{n | n(n) <@, m|I(n)/f(n)}
= c#Hp/[Fm : Fs] - Li(z) + o(Li(x)).

If the expected density
o= 2 utn
is convergent to a positive number, we may expect

#{n | n(n) <z, f(n) = I(n)}/Li(x) — cx.

To follow the procedure, we have, besides the
construction of the situation above, an analytic diffi-
culty, i.e. the estimate for the accumulation of error
terms by occasion of making use of Chebotarev’s the-
orem for infinitely many different fields F,,.

In [K1], we succeeded in the construction of the
arithmetic situation when & is some set of prime
ideals. Let us explain it briefly. Let F' be an objec-
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tive algebraic number field and fix any supplemen-
tary Galois extension field K of the rational number
field Q which contains the field F', and choose and
fix any element 7 of Gal(K/Q). Then we take & as
the set of prime ideals p of F' such that p t 2dK and
the Frobenius automorphism of some prime ideal of
K lying above p is equal to . To find the function
f, we take a primitive integral polynomial g(z) of
minimal degree such that {¢ 9 | e € 0} is a finite
group, whose order is denoted by §;. Then g(x) di-
vides 2¢ — 1 in Z[x] for d := [(n) : (n) N Gal(K/F)],
and we put h(z) = (z¢ — 1)/g(x). Next we take the
maximal natural number §y such that %/e buale)
1 holds for Ye € oy and for any extension auto-
morphism p of 1. Then we showed that an integer
f(p) := doh(p)/d1 divides I(p) for p € & where p :=
n(p) is the prime number lying below p, and defining
F,., H,,, Fs somehow, we constructed the arithmetic
situation and we conjectured in [K1]

#{pe&|np) <z f(p) =1(p)}
= kLi(z) + o(Li(z))

and we showed k > 0 by taking advantage of the
existence of some automorphism. The asymptotic
equation above holds under G.R.H. in case that F'is
a real quadratic field and in other some cases [CKY,
K2, L, M, RJ.

As anext step, we would like to consider the case
that G is a subset of rational primes. In this note, we
take up as F real quadratic fields, real cubic fields
with dp < 0 and imaginary abelian quartic fields.
The rank of oy is one for these fields and our main
aim is to construct the arithmetic situation above
and in some cases to make them result in a particular
case in [K1]. Then the positivity of x can be shown
as in [K1].

For a general algebraic number field F', the case
where prime numbers remain prime in F is in [K1].
Thus we omit the case here.

The details will appear elsewhere.

1. Real quadratic fields. Let F' be a real
quadratic field with fundamental unit e. The letter
p denotes odd prime numbers which split in F' and
let & be the set of these prime numbers. We make
this case end in the known case [L, M, R, K1].

1.1. The case of Np/q(€) = 1. In this
subsection, we assume Np/q(€) = 1.

Theorem 1. e((p)) | p—1, which is equivalent
top—111((p)) holds. I((p)) = p — 1 holds if and
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only if I(p) = 1 where p stands for any prime ideal
lying above p.

This follows from e(p) =p—1 < e((p)) =p—1,
making use of the order of e mod p = the order of
e mod p’. By the theorem, we see

#p<z|pe, I((p)=p—1}

is equal to a half of the number of prime ideals p
satisfying deg(p) = 1, Np/q(p) < z,p { 2dr and
I(p)=1.

And then it is known that the number of prime
ideals p above is asymptotically equal to kLi(z) for
a positive number x under G.R.H. by [L, M, R].

1.2. The case of Np/q(e) = —1. In this
subsection, we assume Np/q(€) = —1. We need the
following

Lemma 1. If the order of e mod (p) is p — 1

and €?=1/2 % +1 mod (p) holds, then p = 3 mod 4
and the order of e mod p is p—1 or (p—1)/2, where
p is any prime ideal lying above p.

Theorem 2. e((p)) | 2(p — 1), which is the
same as (p—1)/2 | I((p)) holds, and I((p)) = (p —
1)/2 holds if and only if both p = 3 mod 4 and I(p) =
1 hold for any prime ideal p lying above p.

e((p)) | 2(p — 1) is almost obvious, and e((p)) =
2(p — 1) holds if and only if the order of € mod (p) is
p—1and —1 is not in the group (¢ mod (p)). Then
the lemma leads us to the theorem.

Set K = F(y/—1) and define n in Gal(K/Q) by
J?ln = —/—1 and 7 = the identity on F. Then
the theorem implies that

#Hp<xz|pe&I((p)=(-1)/2}

is equal to a half of the number of prime ideals p
of F' such that deg(p) = 1, Np/q(p) < =, p 1 2dF,
I(p) =1, and ok /q(*B) coincides n where ‘B is some
prime ideal of K lying above p.

This is a special case in [K1], and it is conjec-
tured that the number of prime ideals p above is
asymptotically equal to xLi(z), and it is shown that
the expected density k is positive.

As a remark to this section, these may suggest
with the case of non-decomposable primes [CKY, K1,
R] that the basic part of I((p)) isp—1or (p—1)/2
according as Np/q(€) = 1 or = —1. The field cor-
responding to (p —1)/2 is Q(¢p + (') See [K3]
about the quadratic extension of the composite field
of the Hilbert class field and Q((, + Cp’l) in the case
of NF/Q(e) =1.
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2. Real cubic fields with drF < 0. In this
section, F' is a real cubic field with dr < 0, and €
denotes a positive fundamental unit of F. We set

K = F(\r), Fy = K(§fo}).

2.1. The case of (p) = pipaps. In this
subsection, let & be the set of odd primes p which
split fully in F', and the letter p denotes an element
in G.

Lemma 2. ¢?P~1/2 % —1mod (p) holds. For
a diwisor m of p—1, the order r, of e mod (p) divides
(p—1)/m if and only if (£t = 7{‘/@’)71 =1 holds for
p = 0p, /Q(B), where P is any prime ideal of F,,
lying above p.

This can be proven by translating the condition
e®=1/m = 1 mod (p) in terms of Frobenius auto-
morphisms. Using the lemma, we can define the set
H,, by the subset of automorphisms p € Gal(F,,/Q)
which is the identity on K((n, 3/€1, t/€2, R/€3),
where ¢; are conjugates of €, and the key theorem
is

Theorem 3. e((p)) | 2(p — 1), which is equiv-
alent to (p — 1)2/2 | I((p)) holds, and then I((p)) =
(p — 1)2/2 holds if and only if T, = p— 1 holds.

In this case, we must modify the argument in
the situation as follows:

The number of

{ped|p<z I((p)=(p-1)7/2}
=#{ped|p<z,r=p-1}

>, D

pES, p<z m|(p—1)/rp

= > um#ped|p<zr,|(p—1)/m}

m<x

=2

m<zx

p(m)

m)#{p <z |op,/q((p)) € Hmn}.

And we can show that

K= p(m)#Hp/[Frn: Q] >
m
as in [K1].

Hence we conjecture that the number of {p €
& | p<aI(p) = (p—1)2/2} is asymptotically
equal to kLi(x).

2.2. The case of (p) = p1p2. In this sub-
section, we assume that p denotes odd prime num-
bers which split as (p) = p1p2 in F' of degp; =1, i.e.
p remains prime in Q(v/dr), and let & be the set
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of such primes. Let n € Gal(K/Q) be an automor-
phism of order 2 satisfying €"~! # 1. If F is pure
cubic and K ({/€) is a Galois extension of Q, then we
set dp = 3, otherwise o = 1. &y | I(p2) is known
(K2, K4].

Theorem 4. If I(p2) is odd, then I((p)) =
(p—1)/2- (ps).

Making use of the fact that the order of € mod pq
divides the order of e mod po ([K2]), we can reduce
the argument on p to that on po, and show that
e(p2) = (»* = 1)/6 & e((p)) = 2(p* — 1)/6 for an
odd natural number ¢, which yields the theorem.

By this,

#{pe&|p<uz I((p)=(p—1)/2 00}

is equal to the number of primes p (< z) such that
I(p2) = do and ox/q(PB) = n for a prime ideal P
of K lying above ps. (The last condition on P is
automatically satisfied.)

This is a case treated in [K1, K2, K4], and there
K is already shown to be positive.

As a remark to this section, with [K1, K2], we
can say that the basic part of I((p))is (p—1)2/2if p
splits fully in F', otherwise dg(p—1)/2. In the former
case, p — 1 divides the extension degree of the ray
class field of conductor (p) over the composite field
of the Hilbert class field of F and Q((, + ¢, ).

3. Imaginary quartic abelian fields. In
this section, F' is an imaginary quartic abelian field,
and Fy is the unique real quadratic subfield. € (resp.
€0 (> 0)) is a fundamental unit of F' (resp. Fp). W
denotes the group of roots of unity in F', and set w =
#W and Q = [0} : Woj,]. We set Ey, = F({/of)
for a natural number m.

Lemma 3. @ = 1 or 2 holds, and if @ = 1
then we may assume € = €y. Otherwise, we may
assume €y = Cype2, € = Cype and Np,/q(e) = 1.

This is well-known.

Lemma 4. Let p be a prime number such that
p12drp, and vy, the minimal natural number such that
€'» = (2 mod (p) for some integer a. Then e((p)) =
wry holds, and if € = ¢} mod (p) for some natural
number a, then r, divides r.

This is obvious.

3.1. The case of (p) = p1p2p3ps. In this
subsection, & consists of odd prime numbers which
split fully in F. We set A = 2 if both @ = 1 and
either Np,/q(€0) = 1 or vV/—1 € F. Otherwise, we
set A = 1.
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Proposition 1. A = 2 holds if and only if
eP=1/2 = +1mod (p) holds for every prime num-
ber p in G.

To show this, we need e?~1/2 = §,(= 41) mod
(p) & \/E‘kl = 0, for the Frobenius automorphism p
of every prime ideal P of F; lying above p < (4, =
C2w holds if Q@ = 2, and either N, /q(e) = 1 or
v—=1" = /=1 holds if Q = 1.

The proposition implies e((p)) | w(p — 1)/A,
which is equivalent to f((p)) := (p—1)3A/w | I((p)).
Analyzing the condition m | I((p))/f((p)) in terms
of Frobenius automorphisms, we reach the following
definition of H,,: For a square-free natural number
m, we denote by H,, the set of automorphisms p in
Gal(Fy, /F(Carm)) satisfying that (i) in case of @Q =
1, (.1) 2%/e”~" = +1 holds and (i.2) ¢£~" = 1 holds
if V=1 € F, N, q(e0) = —1 and 2 | m hold, (ii) in
case of Q@ =2, (Comw Ve )?~1 =1 holds.

Theorem 5. For p € &, f((p)) | I((p)
holds. A square-free natural number m divides
1))/ £((9)) if and only if or,, 1 (p) is in Hon.

Setting n((p)) = p and Fs = Q, we complete
the construction of the arithmetic situation, and the
positivity of & is proved similarly to [K1].

3.2. The case of (p) = p1p2. In this sub-
section, & is the set of odd prime numbers p which
split as (p) = p1p2 in F with degp; = 2. We set
p =2 if Ng,/q(e0) = 1 and @ = 1. Otherwise, we
set ¢t = 1. Moreover, we set s, = 1, —1 according as
p decomposes or remains prime in Fy. Set f((p)) =
(P* = D(p+ sp)p/w.

Theorem 6. Forpe &, e((p)) | (p—sp)w/p,
which is equivalent to f((p)) | I((p)) holds.

Once we can guess what happens, the proof is
not difficult.

Translating the condition m | I((p))/f((p)) in
terms of Frobenius automorphisms, we get to the
following definition of H,,: For a square-free natural
number m, we define the subset H,, by the set of
automorphisms p € Gal(Fy,,/Q) satisfying the fol-
lowing properties:

e the order of p on F' is two, and Cf;;f" = 1 holds,
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e in case of Q = 1, ™/€"°* = £1 holds and if
moreover Ng, /q(€) = —1, then /=17 =1,
o in case of Q = 2, (Cow /e )P~% = 1 and
0/eP7%) = 1 hold
where s, = 1 if p is the identity of Fp, and s, = —1,
otherwise.
Theorem 7. For a square-free integer m and

p € 6, m divides I((p))/f((p)) if and only if
0p,.,./Q(p) € Hy, holds.

Setting Fs = Q and n((p)) = p, we complete
the construction of the arithmetic situation.

We can show the positivity of x similarly to [K1].
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