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Abstract:

We shall show a relation between Gauss’ ternary quadratic form and an ideal

of a quadratic field. Using this relation, we can compute rapidly the 2-part of ideal class group of

a quadratic field in narrow sense and in wide sense.
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1. Introduction. Let K be a quadratic field
Q(y/m), where m is a square free integer and m # 1
(mod 4). Let Cl3 and Cly be the 2-part of ideal class
group in narrow sense and in wide sense respectively.
When two ideals A, B belong to the same ideal class
in narrow sense, we write A = B. Conjugate of 6 €
K and ideal A are denoted by 6, A respectively. N,
NA mean 00, AA respectively. Hasse [4] proposed
how to calculate C’l;|r using Legendre theorem. But
we must decompose many integers to prime factors
(cf. [1, 5]). So this method is not efficient. Shanks
[8] and Bosma, Stevenhagen [2] calculated Cl3 very
efficiently using Gauss’ ternary quadratic form. But
they did not use ideal theory directly. So they could
not calculate Cly. We shall show an ideal interpre-
tation of Gauss’ ternary quadratic form.

2. Square root of ideal class. When A, B
are primitive ideals such that

A=Ja,b+vm], B=][z,u+vm|, A=B?

where a = NA > 0. Then for some p(pp > 0), A =
pB2. So A contains 6 = pz? and

9_920/524_ 2

a  ppz?
(cf. [7]). Put 6 = ax + (b+ /m)y. Then
(1) az? + 2bzy + cy? = 22, where b —m = ac.

Conversely if A contains 6 = az + (b + v/m)y such
that N@ = az? for some integer z, then we may as-
sume ged(z, y) = 1. So there exists primitive ideal
C such that () = AC, CC = z2. All prime factors
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of z must be decomposed and we have

c=][r*= (HP>2

plz plz

where (p) = PP, P # P.
So we have
A~:z2A=ACC=60C=C

(cf. [7]). Put B =[], P. Then we have A = B2
We can compute B from A and @ as follows:

(0)A = AAC =aC,
I
B?2=C=—0A =[2*, u++vm] = [z, u+ vVm]>.
a

As az? = 00 = (ax + by)?> — my? we have integer
solutions U, V, W such that aU? + mV?2 = W2, We
may assume ged(U, V') = 1. For an odd prime divisor
pofm,if p) athen p | U because m is square free. If
pla then p|W, p? f a,p| U, pJ V because b> — ac =
m. So we have the local conditions (cf. [6]) xp(a) =1
for all odd prime divisors p of m where x,(a) is

0
(=) ) »

If we have a prime decomposition of m, we can
examine these local conditions and if these local con-
ditions are satisfied, Gauss ([3], 286) showed a very
rapid algorithm for computing the global solution of
(1). We shall explain Gauss’ method.

pla



192 J. M. BAsiLLA and H. WADA

We can compute rapidly X, Y such that

a=X? (modm)
—b=XY (modm)
c=Y? (mod m)
(cf. [2]). Let L € M3(Z) be
(Y2—¢)/m (XY +b)/m Y
L=|(XY+b/m (X?>-a)/m X
Y X m
Then |L| = —1 and M = L~ is of the form (cf. [2])
a b x
M=|{b ¢ «|, 'M=M, |M=-
ok ok

We can find rapidly S € SL3(Z) such that

1
(2) ISMS = 1
1

(cf. [3], 277). Let F be the right hand of (2) and put

Xk ok a [ v
S=|x x x|, St=|a 3 ~«
A B C all ﬁll ,yll
X T ax + By
Y]|=8"'yl|l=|dz+73y
A 0 o'z +5//y
Then we have
o g a f
(3) A= o B —B = o B
(4) M="1"1Fs™1 ¢=p5%+2p83".

(5) L=M"1=SF'S, m=DB?+2AC.

And we have the quadratic forms
x
azx® 4 2bxy + cy® = (z,y,0)0M |y
0

1\ /X
=(X,Y,2) 1 Y
1 z

When ged(a”,3") = d, we put ¢ = p"’/d, y =
—a’'/d. Then Z =0, X =—-B/d, Y = A/d and

=Y?4+2X27.

az® + 2bzy + ¢y = Y2, ged(z, y) = 1.

Namely we get the global solution of (1) and NB =
Y1,

[Vol. 80(A),

From (4) we have

ax + by T T
br+ey| =M |y | ="tFS |y
* 0 0
1 X Y +a"X
=5t 1 Y |=[8Y+p5'X]|,
1 0 *
0 b—
BQZEA:—“H( - VY b+ i)

= laz + (b —vm)y, (b+Vm)z + cy]
= [0V +a"X —Vmy, BY + "X + v/ma]
=[a'Y — (=B +vm)y, BY + (-B + vm)z].

As B > Y and ged(z,y) = 1, WehaveBB(B—i—
v/m), namely B = [Y, —B + /m]. From (3), (5) we
have d|m, A|B? —m. Therefore we get

A 2
A= [E’ _B+m] ~ (A, —B+ V]2,

3. The case m =1 (mod 4). When square
free integer m = 1 (mod 4), then we must make

a few modifications. We start from the following

forms:
Ao V] g |, wtym
2 2
b
b> —m = ac, 4lc, 0 = ax + +2ﬁy.
Then we have the quadratic form
00
(6) 2% =—==ax®+ by + EyQ, ged(z,y) = 1.
a
Multiplying 4, we get
a(2z)* 4 2b(2z)y + ey’ = (22)%.

If we have a solution xg, 3o, 2o such that
axg + 2bxoyo + cyg = zg, ged(zo, yo) =1

then there are two cases.
Case 1. xg = even. Put x = x¢/2, y = yo, 2 = 20/2.
Case 2. xg = odd. Put z = zq, y = 2y, 2 = 2p.
Then we have a solution of (6). From (4), /' must
be even. So we have

Case 1. 3" = even,

b—vm b+m

c
axr + 5 Y, 5 x + Zy

B? =
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~ [azo + byo \/Ey bxo + ciyo N \/Ex] m = 433(10'°° + 949)(10'°° 4- 1293) (10 + 2809)
L2 27 4 2 x (100 4 6637)(10'°° 4 22261)
/
— 'K__B—‘_\/%,Ez_i_i_B—i_ﬁx we get
2 2 2 2 2 N
] Cly =(2,4,4,4,64) type
r 2 2 ) Ty Ty T
Y -B
=3 ;ﬁ] Cly = (2,2,4,4,64) type
From _ (cf. [2]). Tt took only 2 seconds using a personal
v 14 A B computer. We made the program using Ubasic.
-m
2 d2 2 ‘ 4
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