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Abstract: We shall show a relation between Gauss’ ternary quadratic form and an ideal
of a quadratic field. Using this relation, we can compute rapidly the 2-part of ideal class group of
a quadratic field in narrow sense and in wide sense.
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1. Introduction. Let K be a quadratic field
Q(

√
m), where m is a square free integer and m �≡ 1

(mod 4). Let Cl+2 and Cl2 be the 2-part of ideal class
group in narrow sense and in wide sense respectively.
When two ideals A, B belong to the same ideal class
in narrow sense, we write A ∼= B. Conjugate of θ ∈
K and ideal A are denoted by θ̄, Ā respectively. Nθ,
NA mean θθ̄, AĀ respectively. Hasse [4] proposed
how to calculate Cl+2 using Legendre theorem. But
we must decompose many integers to prime factors
(cf. [1, 5]). So this method is not efficient. Shanks
[8] and Bosma, Stevenhagen [2] calculated Cl+2 very
efficiently using Gauss’ ternary quadratic form. But
they did not use ideal theory directly. So they could
not calculate Cl2. We shall show an ideal interpre-
tation of Gauss’ ternary quadratic form.

2. Square root of ideal class. When A, B
are primitive ideals such that

A = [a, b+
√
m ], B = [z, u+

√
m ], A ∼= B2

where a = NA > 0. Then for some ρ(ρρ̄ > 0), A =
ρB2. So A contains θ = ρz2 and

θθ̄

a
=
ρρ̄z4

ρρ̄z2
= z2

(cf. [7]). Put θ = ax+ (b+
√
m)y. Then

(1) ax2 + 2bxy+ cy2 = z2, where b2 −m = ac.

Conversely if A contains θ = ax + (b +
√
m)y such

that Nθ = az2 for some integer z, then we may as-
sume gcd(x, y) = 1. So there exists primitive ideal
C such that (θ) = AC, CC̄ = z2. All prime factors
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of z must be decomposed and we have

C =
∏
p|z

P2 =
(∏

p|z
P

)2

where (p) = PP̄, P �= P̄.

So we have

A ∼= z2A = ACC̄ = θC̄ ∼= C̄

(cf. [7]). Put B =
∏

p|z P̄. Then we have A ∼= B2.
We can compute B from A and θ as follows:

(θ)Ā = AĀC = aC,

B2 = C̄ =
1
a
θ̄A = [z2, u+

√
m ] = [z, u+

√
m ]2.

As az2 = θθ̄ = (ax + by)2 − my2 we have integer
solutions U , V , W such that aU2 +mV 2 = W 2. We
may assume gcd(U, V ) = 1. For an odd prime divisor
p of m, if p |/ a then p |/ U because m is square free. If
p|a then p|W , p2 |/ a, p |/ U , p |/ V because b2 − ac =
m. So we have the local conditions (cf. [6]) χp(a) = 1
for all odd prime divisors p of m where χp(a) is

χp(a) =




(
a

p

)
p |/ a

(−am/p2

p

)
=

(
c

p

)
p|a.

If we have a prime decomposition of m, we can
examine these local conditions and if these local con-
ditions are satisfied, Gauss ([3], 286) showed a very
rapid algorithm for computing the global solution of
(1). We shall explain Gauss’ method.
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We can compute rapidly X, Y such that

a ≡ X2 (mod m)
−b ≡ XY (mod m)
c ≡ Y 2 (mod m)

(cf. [2]). Let L ∈ M3(Z) be

L =


 (Y 2 − c)/m (XY + b)/m Y

(XY + b)/m (X2 − a)/m X

Y X m


 .

Then |L| = −1 and M = L−1 is of the form (cf. [2])

M =


a b ∗
b c ∗
∗ ∗ ∗


 , tM = M, |M | = −1.

We can find rapidly S ∈ SL3(Z) such that

(2) tSMS =


 1

1
1




(cf. [3], 277). Let F be the right hand of (2) and put

S =


∗ ∗ ∗

∗ ∗ ∗
A B C


 , S−1 =


 α β γ

α′ β′ γ′

α′′ β′′ γ′′





XY
Z


 = S−1


xy

0


 =


 αx+ βy

α′x+ β′y
α′′x+ β′′y


 .

Then we have

A =
∣∣∣∣α′ β′

α′′ β′′

∣∣∣∣ , −B =
∣∣∣∣ α β

α′′ β′′

∣∣∣∣ .(3)

M = tS−1FS−1, c = β′2 + 2ββ′′.(4)

L = M−1 = SF tS, m = B2 + 2AC.(5)

And we have the quadratic forms

ax2 + 2bxy+ cy2 = (x, y, 0)M


xy

0




= (X, Y, Z)


 1

1
1





XY
Z


 = Y 2 + 2XZ.

When gcd(α′′, β′′) = d, we put x = β′′/d, y =
−α′′/d. Then Z = 0, X = −B/d, Y = A/d and

ax2 + 2bxy+ cy2 = Y 2, gcd(x, y) = 1.

Namely we get the global solution of (1) and NB =
|Y |.

From (4) we have
ax+ by

bx+ cy

∗


 = M


xy

0


 = tS−1FS−1


xy

0




= tS−1


 1

1
1





XY

0


 =


α′Y + α′′X
β′Y + β′′X

∗


 ,

B2 =
θ̄

a
A =

ax+ (b−√
m)y

a
[a, b+

√
m ]

= [ax+ (b −√
m)y, (b+

√
m)x+ cy]

= [α′Y + α′′X −√
my, β′Y + β′′X +

√
mx]

= [α′Y − (−B +
√
m)y, β′Y + (−B +

√
m)x].

As B 	 Y and gcd(x, y) = 1, we have B 	 (−B +√
m), namely B = [Y, −B +

√
m ]. From (3), (5) we

have d|m, A|B2 −m. Therefore we get

A ∼=
[
A

d
, −B +

√
m

]2

∼= [A, −B +
√
m ]2.

3. The case m ≡1 (mod 4). When square
free integer m ≡ 1 (mod 4), then we must make
a few modifications. We start from the following
forms:

A =
[
a,
b+

√
m

2

]
, B =

[
z,
u+

√
m

2

]

b2 −m = ac, 4|c, θ = ax+
b+

√
m

2
y.

Then we have the quadratic form

(6) z2 =
θθ̄

a
= ax2 + bxy +

c

4
y2, gcd(x, y) = 1.

Multiplying 4, we get

a(2x)2 + 2b(2x)y + cy2 = (2z)2.

If we have a solution x0, y0, z0 such that

ax2
0 + 2bx0y0 + cy2

0 = z2
0 , gcd(x0, y0) = 1

then there are two cases.
Case 1. x0 = even. Put x = x0/2, y = y0, z = z0/2.
Case 2. x0 = odd. Put x = x0, y = 2y0, z = z0.
Then we have a solution of (6). From (4), β′ must
be even. So we have
Case 1. β′′ = even,

B2 =
[
ax+

b−√
m

2
y,
b+

√
m

2
x+

c

4
y

]
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=
[
ax0 + by0

2
−

√
m

2
y,
bx0 + cy0

4
+

√
m

2
x

]

=
[
α′Y

2
− −B +

√
m

2
y,
β′

2
Y

2
+

−B +
√
m

2
x

]

=
[
Y

2
,
−B +

√
m

2

]2

.

From

Y

2
=

1
d

A

2
,
A

2

∣∣∣ B2 −m

4
we have

A ∼=
[
Y

2
,
−B +

√
m

2

]2

∼=
[
A

2
,
−B +

√
m

2

]2

.

Case 2. β′′ = odd,

B2 =
[
α′Y − −B +

√
m

2
y,
β′

2
Y +

−B +
√
m

2
x

]

=
[
Y,

−B +
√
m

2

]2

.

From

d|m, Y =
1
d
A, 2Y

∣∣∣ B2 −m

2
, A

∣∣∣ B2 −m

2
,

we have d = odd,

(2Y, A) = Y, 2A
∣∣∣ B2 −m

2
and

A ∼=
[
Y,

−B +
√
m

2

]2

∼=
[
A,

−B +
√
m

2

]2

.

Using these we can find a system of generators
of Cl+2 (cf. [2]). So we can find the relation between
(
√
m) and the generators. Therefore we can compute

Cl2. When

m = 433(10100 + 949)(10100 + 1293)(10100 + 2809)

× (10100 + 6637)(10100 + 22261)

we get

Cl+2 = (2, 4, 4, 4, 64) type

Cl2 = (2, 2, 4, 4, 64) type

(cf. [2]). It took only 2 seconds using a personal
computer. We made the program using Ubasic.
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