Defining polynomial of the first layer of anti-cyclotomic Z_{3}-extension of imaginary quadratic fields of class number 1

By Jae Moon Kim*) and Jangheon $\mathrm{OH}^{* *), ~} \dagger$)
(Communicated by Shigefumi Mori, M. J. A., March 12, 2004)

Abstract

In this paper, we explicitly compute defining polynomials of the first layer of anti-cyclotomic \mathbf{Z}_{3}-extension of imaginary quadratic fields of class number 1.

Key words: Iwasawa theory; anti-cyclotomic \mathbf{Z}_{3}-extension; Kummer extension; defining polynomial.

1. Introduction. For each prime number p, a \mathbf{Z}_{p}-extension of a number field k is an extension $k=$ $k_{0} \subset k_{1} \subset \cdots \subset k_{n} \subset \cdots \subset k_{\infty}$ with $\operatorname{Gal}\left(k_{\infty} / k\right) \simeq$ \mathbf{Z}_{p}, the additive group of p-adic integers. Let k be an imaginary quadratic field, and K an abelian extension of $k . K$ is called an anti-cyclotomic extension of k if it is Galois over \mathbf{Q}, and $\operatorname{Gal}(k / \mathbf{Q})$ acts on $\operatorname{Gal}(K / k)$ by -1 . By class field theory, the compositum M of all \mathbf{Z}_{p}-extensions over k becomes a \mathbf{Z}_{p}^{2}-extension, and M is the compositum of the cyclotomic \mathbf{Z}_{p}-extension and the anti-cyclotomic $\mathbf{Z}_{p^{-}}$ extension of k. The first layer k_{1} of the cyclotomic \mathbf{Z}_{3}-extension of k is just $k(\alpha)$ where α is a root of $x^{3}-3 x+1=0$. The explicit construction of the first layer of the anti-cyclotomic \mathbf{Z}_{3}-extension of k is not known. In [2], we studied, for each imaginary quadratic field k, the Galois group $\operatorname{Gal}\left(F_{1} / \mathbf{Q}\right)$ where F_{1} is the compositum of first layers of all $\mathbf{Z}_{2}{ }^{-}$ extensions of k. Moreover we constructed F_{1} explicitly when k has class number 1 . The purpose of this paper is to compute the defining polynomial of the first layer L of the anti-cyclotomic \mathbf{Z}_{3}-extension of an imaginary quadratic field of class number 1 . The main result of this paper is as follows:

Theorem 1. Let k_{1}^{a} be the first layer of the anti-cyclotomic \mathbf{Z}_{3}-extension of an imaginary quadratic field k of class number 1 . Then k_{1}^{a} is the splitting field L of $f_{k_{1}^{a}}(x)$ over \mathbf{Q}.

[^0]Table I.

k	Δ_{L}	$f_{k_{1}^{a}}(x)$
$\mathbf{Q}(\sqrt{-1})$	$-2^{2} * 3^{4}$	$x^{3}-3 x-4$
$\mathbf{Q}(\sqrt{-2})$	$-2^{3} * 3^{4}$	$x^{3}-3 x-10$
$\mathbf{Q}(\sqrt{-3})$	-3^{5}	$x^{3}-3$
$\mathbf{Q}(\sqrt{-7})$	$-7 * 3^{4}$	$x^{3}-3 x-5$
$\mathbf{Q}(\sqrt{-11})$	$-11 * 3^{4}$	$x^{3}-3 x-46$
$\mathbf{Q}(\sqrt{-19})$	$-19 * 3^{4}$	$x^{3}-3 x-302$
$\mathbf{Q}(\sqrt{-43})$	$-43 * 3^{4}$	$x^{3}-3 x-33710$
$\mathbf{Q}(\sqrt{-67})$	$-67 * 3^{4}$	$x^{3}-3 x-1030190$
$\mathbf{Q}(\sqrt{-163})$	$-163 * 3^{4}$	$x^{3}-3 x-15185259950$

Here Δ_{L} is the discriminant of L.
2. Proof of theorems. To prove Theorem 1 we need lemmas.

Lemma 1. Let p be an odd prime, and k_{1}^{2} be the compositum of first layers of \mathbf{Z}_{p}-extension of an imaginary quadratic field. Then $\operatorname{Gal}(L / \mathbf{Q}) \simeq D_{p} \oplus$ \mathbf{Z} / p.

Proof. Since p is an odd prime, the first layers k_{1}^{a}, k_{1} of anti-cyclotomic and cyclotomic $\mathbf{Z}_{p^{-}}$ extension are linearly disjoint over k. Moreover $\operatorname{Gal}\left(k_{1}^{a} / \mathbf{Q}\right) \simeq D_{p}$, the dihedral group of order $2 p$, which completes the proof.

Lemma 2. Let k be an imaginary quadratic number field whose class number is 1 . Then the only cyclic extensions of degree 3 over k unramified outside 3 which are Galois over \mathbf{Q} are the first layers of anti-cyclotomic and cyclotomic \mathbf{Z}_{3}-extension of k.

Proof. Let H be the Hilbert class field of k and let F be the maximal abelian extension of k unramified outside 3. Then [3] class field theory shows that

$$
\operatorname{Gal}(F / H) \simeq\left(\prod_{\mathfrak{p} \mid 3} U_{\mathfrak{p}}\right) / E^{-}
$$

where E^{-}is the closure of the global units of k, embedded in local units $\prod_{\mathfrak{p} \mid 3} U_{\mathfrak{p}}$ diagonally. So in this case $\operatorname{Gal}\left(F^{3} / k\right) \simeq \mathbf{Z}_{3}^{2}$, where F^{3} is the maximal abelian 3-extension of k unramified outside 3 . By Lemma 1, we see that $\operatorname{Gal}\left(k_{1}^{2} / \mathbf{Q}\right) \simeq D_{3} \oplus \mathbf{Z} / 3$, which has the following presentation.
$\left\langle s, t, u \mid u^{2}=s^{3}=t^{3}=1, s t=t s, u t=t^{2} u, u s=s u\right\rangle$.
It can be easily checked that two groups generated by st and $s^{2} t$ are not normal subgroup of $\operatorname{Gal}\left(k_{1}^{2} / \mathbf{Q}\right)$. Note that the fields fixed by $\langle t\rangle$ and $\langle s\rangle$ are the first layers of anti-cyclotomic and cyclotomic $\mathbf{Z}_{3^{-}}$ extension of k, respectively.

Next we need Kummer theory [1, Theorem 5.3.5]. Let k be an imaginary quadratic field, and let k_{1}^{a} be the first layer of anti-cyclotomic \mathbf{Z}_{3}-extension. Assume that k does not contain a third root of unity ζ_{3}, and let $k_{z}=k\left(\zeta_{3}\right)$ and $L_{z}=k_{1}^{a}\left(\zeta_{3}\right)$. Then by Kummer theory, $L_{z}=k_{z}(\sqrt[3]{\alpha})$ for some $\alpha \in k_{z}^{*} / k_{z}^{* 3}$. Moreover, $k_{1}^{a}=k(\eta)$ with $\eta=\operatorname{Tr}_{L_{z} / k_{1}^{a}}(\sqrt[3]{\alpha})$ and the defining polynomial $P(x)$ of k_{1}^{a} / k is given by the polynomial
$(x-(\theta+\tau(\theta)))\left(x-\left(\zeta_{3} \theta+\zeta_{3}{ }^{2} \tau(\theta)\right)\right)\left(x-\left(\zeta_{3}{ }^{2} \theta+\zeta_{3} \tau(\theta)\right)\right)$,
where $\theta=\sqrt[3]{\alpha}$ and τ is a nontrivial element of $\operatorname{Gal}\left(L_{z} / k_{1}^{a}\right)$.

Now we are ready to prove Theorem 1. It is enough to prove Theorem 1 for k 's except for $k=$ $\mathbf{Q}(\sqrt{-3})$ whose case is trivial. Here we give a proof for the case of $k=\mathbf{Q}(\sqrt{-7})$ since proof of remaining cases are exactly the same. So let k be $\mathbf{Q}(\sqrt{-7})$, and L be the first layer of the anti-cyclotomic $\mathbf{Z}_{3^{-}}$ extension of k. Then the only primes ramified in L_{z} / k_{z} are the primes above 3. Hence

$$
\theta=\sqrt[3]{\left(1-\zeta_{3}\right)^{i} \epsilon^{j} \zeta_{3}{ }^{k}}
$$

for integers $0 \leq i, j, k \leq 2$, where ϵ is the fundamental unit of $k\left(\zeta_{3}\right)=\overline{\mathbf{Q}}(\sqrt{-7}, \sqrt{-3})$. When $\theta=$ $\sqrt[3]{(5+\sqrt{21}) / 2}$ which is the third root of the fundamental unit of $\mathbf{Q}(\sqrt{21})$, then a simple computation shows that $P(x)=x^{3}-3 x-5$. The Galois group of the splitting field of $P(x)$ over \mathbf{Q} is D_{3}. So it is enough to show that the splitting field of $P(x)$ contains $\sqrt{-7}$ by Lemma 2. Let a, b be the imaginary roots of the polynomial $x^{3}-3 x-5$. Then we can easily, for example by a Maple, check that $(a+b) /(a-b)=\sqrt{-7} r$ for some nonzero rational number r. Note that if we take θ as $\sqrt[3]{\zeta_{3}}$, then $P(x)$ becomes $x^{3}-3 x+1$ whose splitting field over \mathbf{Q} is the first layer of the cyclotomic \mathbf{Z}_{3}-extension of \mathbf{Q}. Note also that $x^{3}-3 x-5=x^{3}-3 x-\left(\epsilon+\epsilon^{-1}\right)$. Actually the defining polynomial $P(x)$ in Table I except for the case $\mathbf{Q}(\sqrt{-3})$ is:

$$
P(x)=x^{3}-3 x-\left(\epsilon+\epsilon^{-1}\right),
$$

where ϵ is the fundamental unit of maximal real subfield of $k_{z}=k\left(\zeta_{3}\right)$.

Acknowledgements. We would like to thank the anonymous referee for valuable comments. This work was supported by grant R01-2002-000-00032-0 from the Basic Research Program of the Korea Science \& Engineering Foundation.

References

[1] Cohen, H.: Advanced Topics in Computational Number Theory. Grad. Texts in Math., 193, Springer-Verlag, New York (2000).
[2] Oh, J.: The first layer of \mathbf{Z}_{2}^{2}-extension over imaginary quadratic fields. Proc. Japan Acad., 76A, 132-134 (2000).
[3] Washington, L. C.: Introduction to Cyclotomic Fields. Grad. Texts in Math., 83, SpringerVerlag, New York (1982).

[^0]: 2000 Mathematics Subject Classification. 11R23, 11R32.
 *) Department of Mathematics, College of Natural Sciences, Inha University, 253 Younghyun-dong, Nam-gu, Incheon 402-751, Korea. This paper was completed during the sabbatical year 2003.
 **) Department of Applied Mathematics, College of Natural Sciences, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
 ${ }^{\dagger}$ Correspondence to: J. Oh.

