On the rank of the elliptic curves with a rational point of order 4. II

By Shoichi Kihara
Department of Neuropsychiatry, School of Medicine, Tokushima University
3-18-15, Kuramoto-cho, Tokushima 770-8503

(Communicated by Shokichi Iyanaga, M. J. A., Oct. 12, 2004)

Abstract

We construct an elliptic curve with non-constant j-invariant of rank ≥ 5 with a rational point of order 4 over $\mathcal{Q}(t)$.

Key words: Elliptic curve; rank.

In [1] we constructed an elliptic curve of rank ≥ 4 with a rational point of order 4 over $\mathcal{Q}(t)$.

We improve our previous result and show the following theorem.

Theorem 1. There is an elliptic curve with non-constant j-invariant of rank ≥ 5 with a rational point of order 4 over $\mathcal{Q}(t)$.

As in [1] we consider the projective curve,

$$
C:\left(x^{2}-y^{2}\right)^{2}+2 a\left(x^{2}+y^{2}\right) z^{2}+b z^{4}=0
$$

By $X=\left(a^{2}-b\right) y^{2} / x^{2}$ and $Y=\left(a^{2}-b\right) y\left(b z^{2}+a x^{2}+\right.$ $\left.a y^{2}\right) / x^{3}$, we have the elliptic curve

$$
E: Y^{2}=X\left(X^{2}+\left(2 a^{2}+2 b\right) X+\left(a^{2}-b\right)^{2}\right)
$$

The point $P\left(a^{2}-b, 2 a\left(a^{2}-b\right)\right)$ is on E and $4 P=O$. We also consider the affine curve

$$
H:\left(x^{2}-y^{2}\right)^{2}+2 a\left(x^{2}+y^{2}\right)+b=0
$$

We assume that the points $P_{1}(r, s)$ and $P_{2}(r, u)$ are on H, then we have $a=\left(2 r^{2}-s^{2}-u^{2}\right) / 2$ and $b=$ $s^{2} u^{2}+s^{2} r^{2}+u^{2} r^{2}-3 r^{4}$. We further assume that the points $P_{3}(s, p), P_{4}(u, q)$ and $P_{5}(p, m)$ are on H, then we have

$$
\begin{align*}
p^{2} & =3 s^{2}+u^{2}-3 r^{2} \tag{1}\\
q^{2} & =s^{2}+3 u^{2}-3 r^{2} \tag{2}\\
m^{2} & =6 s^{2}+3 u^{2}-8 r^{2} \tag{3}
\end{align*}
$$

We solve these Diophantine equations as follows:
Let $s=1, u=t+e, r=(t+1) / 2+e w$ and $p=(t-3) / 2+c e$, then from (1) we have $e=(3 c+$ $2 t-c t-3 w-3 t w) /\left(-1+c^{2}+3 w^{2}\right)$. From (2) we have

$$
q^{2}=I(c, t, w) /\left(4\left(-1+c^{2}+3 w^{2}\right)^{2}\right)
$$

[^0]where $I(c, t, w) \in Z[c, t, w]$ and $I(c, t, w)$ is a degree 4 polynomial of w and the coefficient of w^{4} is $9(3 t-$ $1)^{2}$. Then we have the unique expression
$$
(3 t-1)^{6} I(c, t, w)=G(c, t, w)^{2}+L(c, t, w)
$$
where $G(c, t, w), L(c, t, w) \in Z[c, t, w]$ and $G(c, t, w)$ is a degree 2 polynomial of w, and $L(c, t, w)$ is a degree 1 polynomial of w.

We see that the polynomial $2\left(t^{2}-1\right) c-t^{2}+6 t-1$ is a factor of $L(c, t, w)$. So we take $c=\left(t^{2}-6 t+\right.$ 1) $/\left(2\left(t^{2}-1\right)\right)$ to make $I(c, t, w)$ a square. From (3) we have $m^{2}=J(t, w) / H(t, w)^{2}$ where $J(t, w), H(t, w) \in$ $Z[t, w]$ and $J(t, w)$ is a degrre 4 polynomial of w and the coefficient of w^{4} is a square. By the same method used to solve (2), we can make $J(t, w)$ a square. We have $w=A(t) / B(t)$, where

$$
\begin{aligned}
A(t)=3 t^{9}-20 t^{8}+ & t^{7}+202 t^{6}-627 t^{5}+1248 t^{4} \\
& -1369 t^{3}+946 t^{2}-216 t+24
\end{aligned}
$$

$$
B(t)=2(t-2)^{2}(t-1)(t+1)^{2}\left(3 t^{4}-17 t^{3}+27 t^{2}\right.
$$

$$
-43 t+6)
$$

By multiplying the denominators, we have

$$
\begin{aligned}
r= & -\left(t^{2}-1\right)\left(12 t^{11}-219 t^{10}+1699 t^{9}-7248 t^{8}\right. \\
& +21004 t^{7}-45434 t^{6}+72862 t^{5}-90128 t^{4} \\
& \left.+77496 t^{3}-46283 t^{2}+10095 t-768\right) \\
s= & 3 t^{13}-128 t^{12}+1185 t^{11}-5018 t^{10}+13628 t^{9} \\
& -27704 t^{8}+44162 t^{7}-63956 t^{6}+84827 t^{5} \\
& -100976 t^{4}+92061 t^{3}-52802 t^{2}+10662 t \\
& -552 . \\
u= & -21 t^{13}+330 t^{12}+2117 t^{11}+8532 t^{10} \\
& -24566 t^{9}+51764 t^{8}-83474 t^{7}+99728 t^{6} \\
& -92921 t^{5}+63962 t^{4}-39209 t^{3}+21228 t^{2} \\
& -8828 t+984 .
\end{aligned}
$$

$$
\begin{aligned}
p= & -6 t^{13}+33 t^{12}-155 t^{11}+1911 t^{10}-11855 t^{9} \\
& +43046 t^{8}-106778 t^{7}+187562 t^{6}-236720 t^{5} \\
& +215945 t^{4}-128363 t^{3}+53439 t^{2}-9179 t \\
& +336 . \\
q= & 30 t^{13}-443 t^{12}+2589 t^{11}-9725 t^{10}+28685 t^{9} \\
& -67490 t^{8}+130502 t^{7}-199886 t^{6}+238460 t^{5} \\
& -201395 t^{4}+109245 t^{3}-15317 t^{2}-7239 t \\
& +1200 . \\
m= & -15 t^{13}+138 t^{12}-259 t^{11}-2160 t^{10}+17250 t^{9} \\
& -66700 t^{8}+165618 t^{7}-291384 t^{6}+370045 t^{5} \\
& -325350 t^{4}+195345 t^{3}-54248 t^{2}+5424 t \\
& +120 .
\end{aligned}
$$

Now we have $5 \mathcal{Q}(t)$-rational points on the affine curve H, and $5 \mathcal{Q}(t)$-rational points on the corresponding elliptic curve E. It is easy to see that the j-invariant $j(t)$ of E is not a constant. The 5 points on E are independent. For let $t=4$ then the determinant of the Grammian height-pairing matrix of these 5 points is 23494465.07 , since this is not 0 these points are independent.

So we have Theorem 1.
Since the j-invariant $j(t)$ of E is not a constant, we have infinitely many elliptic curve of rank ≥ 5 with a rational point of order 4 over Q by specializing t. So we again have Theorem 2 in [1] as a corollary of above Theorem 1. (See the Specialization Theorem of Silverman [3], p. 368).

We note that from (1), (2) and (3), we have the following equations.

$$
\begin{aligned}
& 5 p^{4}+q^{4}-m^{4}=10 s^{4}+5 u^{4}-10 r^{4} \quad \text { and } \\
& 16 p^{2} q^{2}-5 q^{2} m^{2}-m^{2} p^{2}=40 s^{2} u^{2}-10 u^{2} r^{2}-20 r^{2} s^{2}
\end{aligned}
$$

Appendix. In this place we show the following little but beautiful claim which has played a center role in [2].

Claim 1. Let x, y, z, p, q, r be rational numbers, then the following two conditions are equivalent
(i) $x^{4}+y^{4}+z^{4}=p^{4}+q^{4}+r^{4}$ and $x^{2} y^{2}+y^{2} z^{2}+$ $z^{2} x^{2}=p^{2} q^{2}+q^{2} r^{2}+r^{2} p^{2}$
(ii) There is a rational number s such that $p^{2}=$ $a x^{2}+b y^{2}+c z^{2}, q^{2}=b x^{2}+c y^{2}+a z^{2}$ and $r^{2}=$ $c x^{2}+a y^{2}+b z^{2}$, where $a=(2 s+2) /\left(s^{2}+3\right)$, $b=\left(s^{2}-1\right) /\left(s^{2}+3\right)$ and $c=(-2 s+2) /\left(s^{2}+3\right)$.
Proof. (ii) \Rightarrow (i) trivial. (i) \Rightarrow (ii) we avoid the trivial case $\left\{x^{2}, y^{2}, z^{2}\right\}=\left\{p^{2}, q^{2}, r^{2}\right\}$. In this case we take a suitable permutation and set $s=1$. Now from (i) we have $\left(x^{2}+y^{2}+z^{2}\right)^{2}=\left(p^{2}+q^{2}+r^{2}\right)^{2}$, so we have $x^{2}+y^{2}+z^{2}=p^{2}+q^{2}+r^{2}$. There are non-zero rational numbers h and u such that $p^{2}=z^{2}+h, q^{2}=$ $x^{2}+h u$ and $r^{2}=y^{2}-h-h u$. (note that we avoided the trivial case). From $x^{4}+y^{4}+z^{4}=p^{4}+q^{4}+r^{4}$ we have $h=\left(-u x^{2}+(1+u) y^{2}-z^{2}\right) /\left(I+u+u^{2}\right)$. So we have $s=-(u+2) / u$.

References

[1] Kihara, S.: On the rank of elliptic curves with a rational points of order 4. Proc. Japan Acad. 80A., 26-27 (2004).
[2] Kihara, S.: On the rank of elliptic curves with three rational points of order 2. III. Proc. Japan Acad. 80A., 13-14 (2004).
[3] Silverman, J. H.: The Arithmetic of Elliptic Curves. Grad. Texts in Math., 106. Springer, New York (1986).

[^0]: 2000 Mathematics Subject Classification. Primary 11G05.

