Computable sequences in the Sobolev spaces

By Shoki Miyamoto*) and Atsushi Yoshikawa**)
(Communicated by Shigefumi Mori, M. J. A., March 12, 2004)

Abstract

Pour-El and Richards [5] discussed computable smooth functions with noncomputable first derivatives. We show that a similar result holds in the case of Sobolev spaces by giving a non-computable $\mathcal{H}^{1}(0,1)$-element which, however, is computable in any of larger Sobolev spaces $\mathcal{H}^{s}(0,1)$ for any computable $s, 0 \leq s<1$.

Key words: Effective and non-effective convergence; Sobolev spaces.

1. Introduction. Let Ω be an open set in a d-dimensional Euclidean space \mathbf{R}^{d}. The Sobolev space $\mathcal{H}^{m}(\Omega)$ of order $m,(m=0,1,2, \cdots)$, over Ω is a Hilbert space consisting of the Lebesgue measurable (complex valued) functions $u(x)$ such that it and all of its weak derivatives up to order m inclusive are square summable over Ω. The inner-product of $\mathcal{H}^{m}(\Omega)$ is given by

$$
(u, v)_{m}=\sum_{|\alpha| \leq m} \int_{\Omega} \partial^{\alpha} u(x) \cdot \overline{\partial^{\alpha} v(x)} d x
$$

for $u, v \in \mathcal{H}^{m}(\Omega)$. Here $\alpha=\left(\alpha_{1}, \cdots, \alpha_{d}\right) \in \mathbf{N}^{n}$ are multi-indices. Thus, the length of α is $|\alpha|=\alpha_{1}+$ $\cdots+\alpha_{d}$. Recall also $\partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{d}^{\alpha_{d}}$ for a partial derivation of order α. Recall $\|u\|_{m}=\sqrt{(u, u)_{m}}$ defines the norm of $u \in \mathcal{H}^{m}(\Omega)$. In particular, the Sobolev space of order $0, \mathcal{H}^{0}(\Omega)$, coincides with the Lebesgue space $\mathcal{L}^{2}(\Omega)$ of the square summable functions. For these function spaces, see any standard textbook of partial differential equations or functional analysis. See, e.g., Adams [1], also Hörmander [4]. The computability notion in a separable Hilbert space is discussed in Pour-El and Richards [5]. Computablity properties of the Sobolev spaces are discussed in Zhong [7] for the case $\Omega=\mathbf{R}^{d}$.

The inclusion relation

$$
\begin{equation*}
\mathcal{H}^{m}(\Omega) \subset \mathcal{H}^{l}(\Omega), m>l \geq 0 \tag{1}
\end{equation*}
$$

is clear from the definition. (1) means that the canonical injection

[^0]\[

$$
\begin{equation*}
\mathcal{H}^{m}(\Omega) \ni u \mapsto u \in \mathcal{H}^{l}(\Omega), \quad m>l \geq 0 \tag{2}
\end{equation*}
$$

\]

is continuous.
It is a classical fact that if Ω has a nice $\left(\mathcal{C}^{\infty}\right)$ boundary $\partial \Omega$, then $\bigcap_{\ell=0}^{\infty} \mathcal{H}^{l}(\Omega)\left(\subset \mathcal{C}^{\infty}(\Omega)\right)$ is dense in each of $\mathcal{H}^{m}(\Omega)$. Actually, the set spanned by the \mathcal{C}^{∞} functions supported in closed disks intersecting with Ω, centered at rational points and with rational radii, is contained in $\bigcap_{\ell=0}^{\infty} \mathcal{H}^{l}(\Omega)$ and dense in each $\mathcal{H}^{m}(\Omega)$. Note then that we have a common effective generating set for all the $\mathcal{H}^{m}(\Omega)$ consisting of rational dilations and translations of a fixed \mathcal{C}^{∞} function supported in the unit disk (as the one analogous to $\varphi(t)$ given below). Thus, by the First Main Theorem of Pour-El and Richards [5], the injection (2) preserves computability. In particular, in the present context, if u is computable in $\mathcal{H}^{m}(\Omega)$, then so is it in $\mathcal{H}^{\ell}(\Omega), m>\ell \geq 0$.

However, the mapping (2) also maps noncomputable elements in smaller spaces $\mathcal{H}^{m}(\Omega)$ to computable elements in larger spaces $\mathcal{H}^{\ell}(\Omega)$. Similar phenomena have been observed for computability in the standard sense of Turing/Lacombe/Grzegorczyk: There is a computable function f (on the real line \mathbf{R}), which is continuously differentiable, but with noncomputable derivative f^{\prime} (See [5]).

Modifying the related arguments in [5], we get, in fact, an example of a computable sequence of elements which is non-effectively convergent in $\mathcal{H}^{m}(\Omega)$, in both of the weak and strong topologies, and which, nevertheless, converges effectively in any of larger spaces $\mathcal{H}^{l}(\Omega), m>l \geq 0$.
2. A counterexample. To verify our statement in the last lines of $\S 1$, we argue for the case $d=1$ and $\Omega=(0,1)$, the unit open interval.

Proposition 2.1. Let $d=1$ and $\Omega=(0,1)$. There is a bounded sequence $\left\{u_{n}(x)\right\} \subset \mathcal{H}^{1}(0,1)$
which converges to an element $u(x)$ effectively in $\mathcal{H}^{0}(0,1)$ but non-effectively in $\mathcal{H}^{1}(0,1)$.

Note that the limit $u(x) \in \mathcal{H}^{0}(0,1)$ actually belongs to $\mathcal{H}^{1}(0,1)$ because of weak compactness. In fact, we can then extract a subsequence of $\left\{u_{n}(x)\right\}$ which converges weakly to some element $\tilde{u}(x)$ in $\mathcal{H}^{1}(0,1)$. By Rellich's theorem, this subsequence converges to $\tilde{u}(x)$ in $\mathcal{H}^{0}(0,1)$. However, the subsequence already converges to $u(x)$ in $\mathcal{H}^{0}(0,1)$, and thus $\tilde{u}(x)=u(x)$.

To achieve the proof of the proposition, we adopt the idea of Pour-El and Richards [5], Chapter $1 \S 1$ (p.52). Let

$$
\varphi(t)= \begin{cases}\exp \left(-\frac{t^{2}}{1-t^{2}}\right), & |t|<1 \\ 0, & |t| \geq 1\end{cases}
$$

$\varphi(t)$ is a non-negative \mathcal{C}^{∞} even function and its support is the closed interval $[-1,1]$.

Let $a: \mathbf{N} \rightarrow \mathbf{N}$ be a one-to-one recursive function which enumerates a recursively enumerable nonrecursive set A. We may assume $0 \notin A$ or $a(n)>0$ for all n. Now put

$$
\begin{equation*}
\varphi_{n}(x)=\varphi\left(2^{(n+a(n)+2)}\left(x-2^{-a(n)}\right)\right) . \tag{3}
\end{equation*}
$$

Each $\varphi_{n}(x)$ is supported on a closed subinterval

$$
\left[2^{-a(n)}-2^{-(n+a(n)+2)}, 2^{-a(n)}+2^{-(n+a(n)+2)}\right]
$$

of $(0,1) . \quad \varphi_{n}(x)$ and $\varphi_{n^{\prime}}(x)$ have disjoint supports for $n \neq n^{\prime}$. For, we may assume without loss of generality that $a(n)<a\left(n^{\prime}\right)=a(n)+k$ for some $k \geq 1$. Then disjointness of the supports of $\varphi_{n}(x)$ and $\varphi_{n^{\prime}}(x)$ reduces to positivity of the difference

$$
\begin{aligned}
& \left(2^{-a(n)}-2^{-(n+a(n)+2)}\right) \\
& \quad-\left(2^{-a\left(n^{\prime}\right)}+2^{-\left(n^{\prime}+a\left(n^{\prime}\right)+2\right)}\right) \\
& \quad=2^{-\left(a\left(n^{\prime}\right)+2\right)}\left(2^{k+2}-2^{k-n}-2^{2}-2^{-n^{\prime}}\right)
\end{aligned}
$$

However,

$$
2^{k+2}-2^{k-n}-2^{2}-2^{-n^{\prime}} \geq 3 \cdot 2^{k}-5>0
$$

since $n, n^{\prime} \geq 0$ and $k \geq 1$.
The \mathcal{L}^{2}-norms of $\varphi_{n}(x)$ and its derivative $\varphi_{n}^{\prime}(x)$ are given by

$$
\begin{align*}
\left\|\varphi_{n}\right\|_{0}^{2} & =2^{-(n+a(n)+2)} c_{0} \tag{4}\\
\left\|\varphi_{n}^{\prime}\right\|_{0}^{2} & =2^{n+a(n)+2} c_{1} \tag{5}
\end{align*}
$$

where

$$
c_{0}=2 \int_{0}^{1} \varphi(t)^{2} d t, \quad c_{1}=2 \int_{0}^{1} \varphi^{\prime}(t)^{2} d t
$$

are both computable reals.
Let
(6) $\quad u_{n}(x)=\sum_{k=0}^{n} 2^{-b(k)} \varphi_{k}(x), \quad n=0,1,2, \cdots$.

Choosing $b(k)$ appropriately, we will have the proposition verified. Let us compute the $\mathcal{H}^{m}(0,1)$-norms of $u_{n}(x)$ for $m=0,1$. The orthogonality then implies

$$
\begin{align*}
\left\|u_{n}\right\|_{0}^{2} & =\sum_{k=0}^{n} 2^{-2 b(k)}\left\|\varphi_{k}\right\|_{0}^{2} \\
& =c_{0} \sum_{k=0}^{n} 2^{-2 b(k)-k-a(k)-2} . \tag{7}
\end{align*}
$$

In particular, for whatever $a(k)>0$ and $b(k)>0$, the sequence $\left\{u_{n}(x)\right\}$ converges effectively to the element

$$
\begin{equation*}
u(x)=\sum_{k=0}^{\infty} 2^{-b(k)} \varphi_{k}(x) \tag{8}
\end{equation*}
$$

in $\mathcal{L}^{2}(0,1)$. In fact, we have

$$
\begin{aligned}
\left\|u-u_{n}\right\|_{0}^{2} & =c_{0} \sum_{k=n+1}^{\infty} 2^{-2 b(k)-k-a(k)-2} \\
& <2^{-n-1} c_{0}
\end{aligned}
$$

since $a(k)+2 b(k)>0$. On the other hand, note

$$
\begin{align*}
\left\|u_{n}^{\prime}\right\|_{0}^{2} & =\sum_{k=0}^{n} 2^{-2 b(k)}\left\|\varphi_{k}^{\prime}\right\|_{0}^{2} \tag{9}\\
& =c_{1} \sum_{k=0}^{n} 2^{-2 b(k)+k+a(k)+2}
\end{align*}
$$

Therefore, taking

$$
b(k)=a(k)+\frac{1}{2} k
$$

we see that $\left\{u_{n}^{\prime}(x)\right\}$ converges to

$$
\begin{equation*}
v(x)=\sum_{k=0}^{\infty} 2^{-b(k)} \varphi_{k}^{\prime}(x) \tag{10}
\end{equation*}
$$

in $\mathcal{L}^{2}(0,1)$ since

$$
\left\|v-u_{n}^{\prime}\right\|_{0}^{2}=c_{1} \sum_{k=n+1}^{\infty} 2^{-a(k)+2}
$$

However, this convergence is not effective (See [5], p.16). It is readily seen that $v(x)$ is the weak derivative $u^{\prime}(x)$ of $u(x)$, whence $u \in \mathcal{H}^{1}(0,1)$. Then the sequence $\left\{u_{n}(x)\right\}$ converges to $u(x)$ in $\mathcal{H}^{1}(0,1)$ as $\left\|u-u_{n}\right\|_{1}^{2}=\left\|u-u_{n}\right\|_{0}^{2}+\left\|v-u_{n}^{\prime}\right\|_{0}^{2} \rightarrow 0, \quad n \rightarrow \infty$.

This convergence is not effective.
The weak convergence of the sequence $\left\{u_{n}(x)\right\}$ is not effective in the following sense.

Corollary 2.1. There is a $\hat{u}(x) \in \mathcal{H}^{1}(0,1)$ such that $\left(u_{n}-u, \hat{u}\right)_{1}$ does not converge effectively.

In fact, take $\hat{u}(x)=u(x)$. Then

$$
\left(u-u_{n}, u\right)_{1}=(u, u)_{1}-\left(u_{n}, u_{n}\right)_{1}=\left\|u-u_{n}\right\|_{1}^{2}
$$

because of disjointness of the supports of $\varphi_{k}(x)$.
Remark 2.1. Analogously to (5), \mathcal{L}^{2}-norms of the m-th derivatives $\varphi_{n}^{(m)}(x)$ of $\varphi_{n}(x) \quad(m=$ $2,3, \cdots)$ are given by

$$
\begin{aligned}
\left\|\varphi_{n}^{(m)}\right\|_{0}^{2} & =2^{(2 m-1)(n+a(n)+2)} c_{m} \\
c_{m} & =2 \int_{0}^{1} \varphi^{(m)}(t)^{2} d t
\end{aligned}
$$

where c_{m} are computable. Therefore, taking

$$
b(k)=m a(k)+\left(m-\frac{1}{2}\right) k
$$

in (6), we have a non-effectively convergent sequence $\left\{u_{n}(x)\right\}$ in $\mathcal{H}^{m}(0,1)$ which converges effectively in $\mathcal{H}^{0}(0,1)$. $\left\{u_{n}(x)\right\}$ also converges effectively in each of $\mathcal{H}^{l}(0,1), m>l \geq 0$.
3. Further observation. Let $0<s<1$. The Sobolev space $\mathcal{H}^{s}(0,1)$ of order s can be defined via the Fourier series expansions. Let $w(x) \in$ $\mathcal{L}^{2}(0,1)$ be expanded into the Fourier series

$$
w(x)=\alpha_{0}+\sum_{n=1}^{\infty}\left\{\alpha_{n} \cos 2 n \pi x+\beta_{n} \sin 2 n \pi x\right\}
$$

Then we have $w \in \mathcal{H}^{s}(0,1)$ if and only if

$$
\begin{equation*}
\left|\alpha_{0}\right|^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(1+n^{2}\right)^{s}\left\{\left|\alpha_{n}\right|^{2}+\left|\beta_{n}\right|^{2}\right\}<+\infty \tag{11}
\end{equation*}
$$

In fact, (11) gives the square $\|w\|_{s}^{2}$ of the $\mathcal{H}^{s}(0,1)$ norm of $w(x)$.

Observe that we have the logarithmic convexity of norms

$$
\begin{equation*}
\|w\|_{s} \leq\|w\|_{0}^{1-s}\|w\|_{1}^{s} \quad(0<s<1) \tag{12}
\end{equation*}
$$

for $w \in \mathcal{H}^{1}(0,1)\left(\subset \mathcal{H}^{s}(0,1) \subset \mathcal{H}^{0}(0,1)\right)$. In fact, it is easy to see (12) in the present case. For we have

$$
\left(1+n^{2}\right)^{s} \leq(1-s) \epsilon^{-s}+s \epsilon^{1-s}\left(1+n^{2}\right)
$$

for all $\epsilon>0$ and $n=0,1,2, \cdots$. Thus, (11) implies that if $w \in \mathcal{H}^{1}(0,1)$, then

$$
\|w\|_{s}^{2} \leq(1-s) \epsilon^{-s}\|w\|_{0}^{2}+s \epsilon^{1-s}\|w\|_{1}^{2}
$$

for all $\epsilon>0$. Taking the minimum of the right hand side, we get (12).

The space $\mathcal{H}^{s}(0,1)$ is obtained as the complex interpolation space $\mathcal{H}^{s}(0,1)=\left[\mathcal{H}^{0}(0,1), \mathcal{H}^{1}(0,1)\right]_{s}$ in the sense of Calderón [3]. (See, e.g., Bergh et al. [2]). Then recall that the computability structure in $\mathcal{H}^{s}(0,1)$ is induced from those of $\mathcal{H}^{0}(0,1)$ and $\mathcal{H}^{1}(0,1)$ if s is computable (See Yoshikawa [6]).

Proposition 3.1. Let $0<s<1$ be computable. Then the sequence $\left\{u_{n}(x)\right\} \subset \mathcal{H}^{1}(0,1)$ in Proposition 2.1 effectively converges to $u(x)$ also in $\mathcal{H}^{s}(0,1)$.

In fact, from (12), we have

$$
\left\|u-u_{n}\right\|_{s} \leq\left\|u-u_{n}\right\|_{0}^{1-s}\left\|u-u_{n}\right\|_{1}^{s} .
$$

Note

$$
\left\|u-u_{n}\right\|_{1}<\sqrt{c_{0}+4 c_{1}}=c
$$

Hence,

$$
\left\|u-u_{n}\right\|_{s} \leq c^{s}\left\|u-u_{n}\right\|_{0}^{1-s}=2^{-(1-s)(n+1)} c^{s}
$$

Thus, choose a recursive function $e_{s}(N)$ such that

$$
e_{s}(N) \geq \frac{N}{1-s}+\frac{s}{1-s} \log _{2} c-1
$$

Then we have $\left\|u-u_{n}\right\|_{s}<2^{-N}$ for $n>e_{s}(N)$.
Remark 3.1. We may take $e_{s}(N) \geq e_{s^{\prime}}(N)$, $s>s^{\prime}$, since $\left\|u-u_{n}\right\|_{s^{\prime}} \leq\left\|u-u_{n}\right\|_{s}$ if $s>s^{\prime} \geq 0$.

References

[1] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65, Academic Press, New York-London (1975).
[2] Bergh, J., and Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, no. 223, Springer-Verlag, Berlin-New York (1976).
[3] Calderón, A. P.: Intermediate spaces and interpolation, the complex method. Studia Math., 24, 113-190 (1964).
[4] Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution theory and Fourier analysis. Grundlehren der Mathematischen Wissenschaften, no. 256, Springer-Verlag, Berlin-Heidelberg-New York (1983).
[5] Pour-El, Marian B., and Richards, J. Ian: Computability in Analysis and Physics. Perspective in Mathematical Logic. Springer-Verlag, Berlin (1989).
[6] Yoshikawa, A.: Interpolation functor and computability. Theoret. Comput. Sci., 284, 487-498 (2002).
[7] Zhong, N.: Computability structure of the Sobolev spaces and its applications. Theoret. Comput. Sci., 219, 487-510 (1999).

[^0]: 2000 Mathematics Subject Classification. Primary 03D25; Secondary 46A35.
 *) Graduate School of Mathematics, Kyushu University, 10-1, Hakozaki 6-chome, Fukuoka 812-8581.
 **) Faculty of Mathematics, Kyushu University, 10-1, Hakozaki 6-chome, Fukuoka 812-8581.

