Computable sequences in the Sobolev spaces

By Shoki MIYAMOTO^{*)} and Atsushi YOSHIKAWA^{**)}

(Communicated by Shigefumi MORI, M. J. A., March 12, 2004)

Abstract: Pour-El and Richards [5] discussed computable smooth functions with noncomputable first derivatives. We show that a similar result holds in the case of Sobolev spaces by giving a non-computable $\mathcal{H}^1(0, 1)$ -element which, however, is computable in any of larger Sobolev spaces $\mathcal{H}^s(0, 1)$ for any computable $s, 0 \leq s < 1$.

Key words: Effective and non-effective convergence; Sobolev spaces.

1. Introduction. Let Ω be an open set in a *d*-dimensional Euclidean space \mathbf{R}^d . The Sobolev space $\mathcal{H}^m(\Omega)$ of order m, $(m = 0, 1, 2, \cdots)$, over Ω is a Hilbert space consisting of the Lebesgue measurable (complex valued) functions u(x) such that it and all of its weak derivatives up to order m inclusive are square summable over Ω . The inner-product of $\mathcal{H}^m(\Omega)$ is given by

$$(u, v)_m = \sum_{|\alpha| \le m} \int_{\Omega} \partial^{\alpha} u(x) \cdot \overline{\partial^{\alpha} v(x)} \, dx,$$

for $u, v \in \mathcal{H}^m(\Omega)$. Here $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbf{N}^n$ are multi-indices. Thus, the length of α is $|\alpha| = \alpha_1 + \dots + \alpha_d$. Recall also $\partial^{\alpha} = \partial_1^{\alpha_1} \dots \partial_d^{\alpha_d}$ for a partial derivation of order α . Recall $||u||_m = \sqrt{(u, u)_m}$ defines the norm of $u \in \mathcal{H}^m(\Omega)$. In particular, the Sobolev space of order 0, $\mathcal{H}^0(\Omega)$, coincides with the Lebesgue space $\mathcal{L}^2(\Omega)$ of the square summable functions. For these function spaces, see any standard textbook of partial differential equations or functional analysis. See, e.g., Adams [1], also Hörmander [4]. The computability notion in a separable Hilbert space is discussed in Pour-El and Richards [5]. Computability properties of the Sobolev spaces are discussed in Zhong [7] for the case $\Omega = \mathbf{R}^d$.

The inclusion relation

(1)
$$\mathcal{H}^m(\Omega) \subset \mathcal{H}^l(\Omega), \ m > l \ge 0,$$

is clear from the definition. (1) means that the canonical injection

(2)
$$\mathcal{H}^m(\Omega) \ni u \mapsto u \in \mathcal{H}^l(\Omega), \quad m > l \ge 0$$

is continuous.

It is a classical fact that if Ω has a nice (\mathcal{C}^{∞}) boundary $\partial\Omega$, then $\bigcap_{\ell=0}^{\infty} \mathcal{H}^{l}(\Omega) (\subset \mathcal{C}^{\infty}(\Omega))$ is dense in each of $\mathcal{H}^{m}(\Omega)$. Actually, the set spanned by the \mathcal{C}^{∞} functions supported in closed disks intersecting with Ω , centered at rational points and with rational radii, is contained in $\bigcap_{\ell=0}^{\infty} \mathcal{H}^{l}(\Omega)$ and dense in each $\mathcal{H}^{m}(\Omega)$. Note then that we have a common effective generating set for all the $\mathcal{H}^{m}(\Omega)$ consisting of rational dilations and translations of a fixed \mathcal{C}^{∞} function supported in the unit disk (as the one analogous to $\varphi(t)$ given below). Thus, by the First Main Theorem of Pour-El and Richards [5], the injection (2) preserves computability. In particular, in the present context, if u is computable in $\mathcal{H}^{m}(\Omega)$, then so is it in $\mathcal{H}^{\ell}(\Omega), m > \ell \geq 0$.

However, the mapping (2) also maps noncomputable elements in smaller spaces $\mathcal{H}^{m}(\Omega)$ to computable elements in larger spaces $\mathcal{H}^{\ell}(\Omega)$. Similar phenomena have been observed for computability in the standard sense of Turing/Lacombe/Grzegorczyk: There is a computable function f (on the real line **R**), which is continuously differentiable, but with noncomputable derivative f' (See [5]).

Modifying the related arguments in [5], we get, in fact, an example of a computable sequence of elements which is non-effectively convergent in $\mathcal{H}^m(\Omega)$, in both of the weak and strong topologies, and which, nevertheless, converges effectively in any of larger spaces $\mathcal{H}^l(\Omega)$, $m > l \ge 0$.

2. A counterexample. To verify our statement in the last lines of §1, we argue for the case d = 1 and $\Omega = (0, 1)$, the unit open interval.

Proposition 2.1. Let d = 1 and $\Omega = (0, 1)$. There is a bounded sequence $\{u_n(x)\} \subset \mathcal{H}^1(0, 1)$

²⁰⁰⁰ Mathematics Subject Classification. Primary 03D25; Secondary 46A35.

^{*)} Graduate School of Mathematics, Kyushu University, 10-1, Hakozaki 6-chome, Fukuoka 812-8581.

^{**)} Faculty of Mathematics, Kyushu University, 10-1, Hakozaki 6-chome, Fukuoka 812-8581.

which converges to an element u(x) effectively in $\mathcal{H}^0(0,1)$ but non-effectively in $\mathcal{H}^1(0,1)$.

Note that the limit $u(x) \in \mathcal{H}^0(0, 1)$ actually belongs to $\mathcal{H}^1(0, 1)$ because of weak compactness. In fact, we can then extract a subsequence of $\{u_n(x)\}$ which converges weakly to some element $\tilde{u}(x)$ in $\mathcal{H}^1(0, 1)$. By Rellich's theorem, this subsequence converges to $\tilde{u}(x)$ in $\mathcal{H}^0(0, 1)$. However, the subsequence already converges to u(x) in $\mathcal{H}^0(0, 1)$, and thus $\tilde{u}(x) = u(x)$.

To achieve the proof of the proposition, we adopt the idea of Pour-El and Richards [5], Chapter 1 (p.52). Let

$$\varphi(t) = \begin{cases} \exp\left(-\frac{t^2}{1-t^2}\right), & |t| < 1\\ 0, & |t| \ge 1 \end{cases}.$$

 $\varphi(t)$ is a non-negative \mathcal{C}^{∞} even function and its support is the closed interval [-1, 1].

Let $a : \mathbf{N} \to \mathbf{N}$ be a one-to-one recursive function which enumerates a recursively enumerable nonrecursive set A. We may assume $0 \notin A$ or a(n) > 0for all n. Now put

(3)
$$\varphi_n(x) = \varphi(2^{(n+a(n)+2)} (x - 2^{-a(n)})).$$

Each $\varphi_n(x)$ is supported on a closed subinterval

$$\left[2^{-a(n)} - 2^{-(n+a(n)+2)}, 2^{-a(n)} + 2^{-(n+a(n)+2)}\right]$$

of (0, 1). $\varphi_n(x)$ and $\varphi_{n'}(x)$ have disjoint supports for $n \neq n'$. For, we may assume without loss of generality that a(n) < a(n') = a(n) + k for some $k \geq 1$. Then disjointness of the supports of $\varphi_n(x)$ and $\varphi_{n'}(x)$ reduces to positivity of the difference

$$(2^{-a(n)} - 2^{-(n+a(n)+2)}) - (2^{-a(n')} + 2^{-(n'+a(n')+2)}) = 2^{-(a(n')+2)} (2^{k+2} - 2^{k-n} - 2^2 - 2^{-n'}).$$

However,

$$2^{k+2} - 2^{k-n} - 2^2 - 2^{-n'} \ge 3 \cdot 2^k - 5 > 0$$

since $n, n' \ge 0$ and $k \ge 1$.

The $\mathcal{L}^2\text{-norms}$ of $\varphi_n(x)$ and its derivative $\varphi_n'(x)$ are given by

(4)
$$\|\varphi_n\|_0^2 = 2^{-(n+a(n)+2)} c_0,$$

(5)
$$\|\varphi'_n\|_0^2 = 2^{n+a(n)+2} c_1$$

where

$$c_0 = 2 \int_0^1 \varphi(t)^2 dt, \quad c_1 = 2 \int_0^1 \varphi'(t)^2 dt$$

are both computable reals.

(6)
$$u_n(x) = \sum_{k=0}^n 2^{-b(k)} \varphi_k(x), \quad n = 0, 1, 2, \cdots.$$

Choosing b(k) appropriately, we will have the proposition verified. Let us compute the $\mathcal{H}^m(0, 1)$ -norms of $u_n(x)$ for m = 0, 1. The orthogonality then implies

(7)
$$\|u_n\|_0^2 = \sum_{k=0}^n 2^{-2b(k)} \|\varphi_k\|_0^2$$
$$= c_0 \sum_{k=0}^n 2^{-2b(k)-k-a(k)-2}.$$

In particular, for whatever a(k) > 0 and b(k) > 0, the sequence $\{u_n(x)\}$ converges effectively to the element

(8)
$$u(x) = \sum_{k=0}^{\infty} 2^{-b(k)} \varphi_k(x)$$

in $\mathcal{L}^2(0,1)$. In fact, we have

$$||u - u_n||_0^2 = c_0 \sum_{k=n+1}^{\infty} 2^{-2b(k)-k-a(k)-2}$$

< 2⁻ⁿ⁻¹ c₀,

since a(k) + 2b(k) > 0. On the other hand, note

(9)
$$\|u'_n\|_0^2 = \sum_{k=0}^n 2^{-2b(k)} \|\varphi'_k\|_0^2$$
$$= c_1 \sum_{k=0}^n 2^{-2b(k)+k+a(k)+2}.$$

Therefore, taking

$$b(k) = a(k) + \frac{1}{2}k,$$

we see that $\{u'_n(x)\}$ converges to

(10)
$$v(x) = \sum_{k=0}^{\infty} 2^{-b(k)} \varphi'_k(x)$$

in $\mathcal{L}^2(0,1)$ since

$$|v - u'_n||_0^2 = c_1 \sum_{k=n+1}^{\infty} 2^{-a(k)+2}$$

However, this convergence is not effective (See [5], p. 16). It is readily seen that v(x) is the weak derivative u'(x) of u(x), whence $u \in \mathcal{H}^1(0, 1)$. Then the sequence $\{u_n(x)\}$ converges to u(x) in $\mathcal{H}^1(0, 1)$ as

$$||u - u_n||_1^2 = ||u - u_n||_0^2 + ||v - u'_n||_0^2 \to 0, \quad n \to \infty.$$

This convergence is not effective.

The weak convergence of the sequence $\{u_n(x)\}$ is not effective in the following sense.

Corollary 2.1. There is a $\hat{u}(x) \in \mathcal{H}^1(0,1)$ such that $(u_n - u, \hat{u})_1$ does not converge effectively.

In fact, take $\hat{u}(x) = u(x)$. Then

$$(u - u_n, u)_1 = (u, u)_1 - (u_n, u_n)_1 = ||u - u_n||_1^2$$

because of disjointness of the supports of $\varphi_k(x)$.

Remark 2.1. Analogously to (5), \mathcal{L}^2 -norms of the *m*-th derivatives $\varphi_n^{(m)}(x)$ of $\varphi_n(x)$ ($m = 2, 3, \cdots$) are given by

$$\|\varphi_n^{(m)}\|_0^2 = 2^{(2m-1)(n+a(n)+2)} c_m,$$

$$c_m = 2 \int_0^1 \varphi^{(m)}(t)^2 dt,$$

where c_m are computable. Therefore, taking

$$b(k) = m a(k) + \left(m - \frac{1}{2}\right)k$$

in (6), we have a non-effectively convergent sequence $\{u_n(x)\}$ in $\mathcal{H}^m(0,1)$ which converges effectively in $\mathcal{H}^0(0,1)$. $\{u_n(x)\}$ also converges effectively in each of $\mathcal{H}^l(0,1)$, $m > l \ge 0$.

3. Further observation. Let 0 < s < 1. The Sobolev space $\mathcal{H}^{s}(0,1)$ of order s can be defined via the Fourier series expansions. Let $w(x) \in \mathcal{L}^{2}(0,1)$ be expanded into the Fourier series

$$w(x) = \alpha_0 + \sum_{n=1}^{\infty} \{ \alpha_n \cos 2n\pi x + \beta_n \sin 2n\pi x \}.$$

Then we have $w \in \mathcal{H}^{s}(0,1)$ if and only if

(11)
$$|\alpha_0|^2 + \frac{1}{2} \sum_{n=1}^{\infty} (1+n^2)^s \{ |\alpha_n|^2 + |\beta_n|^2 \} < +\infty.$$

In fact, (11) gives the square $||w||_s^2$ of the $\mathcal{H}^s(0, 1)$ -norm of w(x).

Observe that we have the logarithmic convexity of norms

(12)
$$||w||_s \le ||w||_0^{1-s} ||w||_1^s \quad (0 < s < 1)$$

for $w \in \mathcal{H}^1(0,1)(\subset \mathcal{H}^s(0,1) \subset \mathcal{H}^0(0,1))$. In fact, it is easy to see (12) in the present case. For we have

$$(1+n^2)^s \le (1-s)\,\epsilon^{-s} + s\,\epsilon^{1-s}\,(1+n^2)$$

for all $\epsilon > 0$ and $n = 0, 1, 2, \cdots$. Thus, (11) implies that if $w \in \mathcal{H}^1(0, 1)$, then

$$\|w\|_s^2 \le (1-s)\,\epsilon^{-s}\,\|w\|_0^2 + s\,\epsilon^{1-s}\,\|w\|_1^2$$

for all $\epsilon > 0$. Taking the minimum of the right hand side, we get (12).

The space $\mathcal{H}^{s}(0, 1)$ is obtained as the complex interpolation space $\mathcal{H}^{s}(0, 1) = [\mathcal{H}^{0}(0, 1), \mathcal{H}^{1}(0, 1)]_{s}$ in the sense of Calderón [3]. (See, e.g., Bergh *et al.* [2]). Then recall that the computability structure in $\mathcal{H}^{s}(0, 1)$ is induced from those of $\mathcal{H}^{0}(0, 1)$ and $\mathcal{H}^{1}(0, 1)$ if *s* is computable (See Yoshikawa [6]).

Proposition 3.1. Let 0 < s < 1 be computable. Then the sequence $\{u_n(x)\} \subset \mathcal{H}^1(0,1)$ in Proposition 2.1 effectively converges to u(x) also in $\mathcal{H}^s(0,1)$.

In fact, from (12), we have

$$||u - u_n||_s \le ||u - u_n||_0^{1-s} ||u - u_n||_1^s.$$

Note

$$||u - u_n||_1 < \sqrt{c_0 + 4c_1} = c$$

Hence,

$$||u - u_n||_s \le c^s ||u - u_n||_0^{1-s} = 2^{-(1-s)(n+1)} c^s.$$

Thus, choose a recursive function $e_s(N)$ such that

$$e_s(N) \ge \frac{N}{1-s} + \frac{s}{1-s}\log_2 c - 1.$$

Then we have $||u - u_n||_s < 2^{-N}$ for $n > e_s(N)$.

Remark 3.1. We may take $e_s(N) \ge e_{s'}(N)$, s > s', since $||u - u_n||_{s'} \le ||u - u_n||_s$ if $s > s' \ge 0$.

References

- Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65, Academic Press, New York-London (1975).
- [2] Bergh, J., and Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, no. 223, Springer-Verlag, Berlin-New York (1976).
- [3] Calderón, A. P.: Intermediate spaces and interpolation, the complex method. Studia Math., 24, 113-190 (1964).
- [4] Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution theory and Fourier analysis. Grundlehren der Mathematischen Wissenschaften, no. 256, Springer-Verlag, Berlin-Heidelberg-New York (1983).
- [5] Pour-El, Marian B., and Richards, J. Ian: Computability in Analysis and Physics. Perspective in Mathematical Logic. Springer-Verlag, Berlin (1989).
- [6] Yoshikawa, A.: Interpolation functor and computability. Theoret. Comput. Sci., 284, 487–498 (2002).
- Zhong, N.: Computability structure of the Sobolev spaces and its applications. Theoret. Comput. Sci., 219, 487–510 (1999).

No. 3]