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Nonunivalent generalized Koebe function

By Shinji Yamashita
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Abstract: The function fα(z) =
({(1 + z)/(1 − z)}α − 1

)
/(2α) with a complex constant

α �= 0 is not univalent in the disk U = {|z| < 1} if and only if α is not in the union A of the closed
disks {|z + 1| � 1} and {|z − 1| � 1}. By making use of a geometric quantity we can describe how
fα “continuously tends to be” univalent in the whole U as α tends to each boundary point of A

from outside.
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1. Introduction. For a nonzero complex
constant α let us define

fα(z) =
1
2α

{(
1 + z

1− z

)α

− 1
}

for z in U = {|z| < 1}, where the branch of the
logarithm is chosen so that log 1 = 0 in(

1 + z

1− z

)α

= exp
(

α log
1 + z

1− z

)
.

The specified case of fα is the Koebe function
f2(z) = z/(1 − z)2. In particular, f ′

α(z) �= 0 for
all z ∈ U .

It is a classical result of E. Hille [H] that fα is
univalent in U if and only if α �= 0 is in the union
A of the closed disks {|z + 1| � 1} and {|z − 1| �
1}. Note that z is in A if and only if |z|2 � 2|Re z|,
whereas z is on the boundary ∂A of A if and only
if |z|2 = 2|Re z|. Let ρα be the maximum of r, 0 <

r � 1, such that fα is univalent in the non-Euclidean
disk ∆(z, r) = {w : |w − z|/|1 − zw| < r} for each
z ∈ U . The set ∆(z, r) actually is the Euclidean disk
with the Euclidean center (1− r2)z/(1− r2|z|2) and
the Euclidean radius r(1− |z|2)/(1− r2|z|2). Such a
ρα > 0 for α �∈ A does exist as will be clarified in

Theorem. Suppose that α �∈ A. If iα is real,
then

(1.1) ρα =
√

λ + 1−
√

λ2 + 2λ,

where λ = 2/ sinh2(π/|α|). If iα is not real, then

(1.2) ρα �
√

µ + 1−
√

µ2 + 2µ,
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where µ = 2 cot2(π|Re α|/|α|2). If α itself is real,
then the equality holds in (1.2).

A consequence is that if β ∈ ∂A and if α �∈
A with |α − β| → 0, then ρα → 1. Namely, fα

“continuously tends to be” univalent in the whole
U . This is obvious for β �= 0 by (1.2) because µ→ 0.
For each sequence αn �∈ A with αn → 0, both (1.1)
and (1.2) show that ραn → 1.

2. Proof of the theorem. For z in the
half-plane H = {z; Re z > 0} the set ∆H(z, ρ) =
{w; |w − z|/|w + z| < ρ}, 0 < ρ < 1, is the image
of ∆(T−1(z), ρ) by the mapping T (ζ) = (1+ ζ)/(1−
ζ), and ∆H(z, ρ) has the Euclidean center c(z) =
(z + ρ2z)/(1 − ρ2) and the Euclidean radius r(z) =
(2ρ Re z)/(1 − ρ2). Hence sin θ = r(z)/|c(z)| with
0 < θ < π/2 and 2θ is the opening angle of ∆H(z, ρ)
viewed from the origin. Consequently,

(2.1) sin2 θ =
4Xρ2

ρ4 + 2(2X − 1)ρ2 + 1

for X = cos2(arg z), | arg z| < π/2.
The image D of ∆H(z, ρ) by log ζ is contained

in the rectangular domain of width

log
|c(z)|+ r(z)
|c(z)| − r(z)

= log
1 + sin θ

1− sin θ

and of height 2θ. The boundary of D touches the
rectangle at exactly four points.

Suppose first that iα is real. Then ζα =
exp(α log ζ) is univalent in ∆H(z, ρ) if and only if

|α| log
1 + sin θ

1− sin θ
� 2π.

To obtain the maximum ρ(z) of ρ one has only to
solve the equation sin θ = tanh(π/|α|) and ρ = ρ(z)
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in (2.1). After a short labor one then has

ρ(z)2 = λX + 1−
√

λ2X2 + 2λX.

The right-hand side function of X attains its mini-
mum at X = 1, namely, if and only if z is on the real
axis, so that

ρ2
α = min

z∈U
ρ(z)2 = λ + 1−

√
λ2 + 2λ.

In the case where iα is not real, the function
ζα is univalent in ∆H(z, ρ) if θ � π|Re α|/|α|2
(< π/2), or equivalently, if sin θ � δ, where δ =
sin(π|Re α|/|α|2). Consequently, this time,

ρ(z)2 � µX + 1−
√

µ2X2 + 2µX,

where ρ(z) is again the maximum of ρ. Following
the same lines as in the proof of (1.1), one finally
observes (1.2). In particular, if α itself is real, then
the function ζα is univalent in ∆H(z, ρ) if and only if
θ = π/|α|. It is now easy to prove that the equality
holds in (1.2).

It is open to prove whether or not the equality
holds in (1.2) for nonreal α.

It follows from (1.1) that (1 − ρα)eπ/|α| → 2
as α → 0 along the imaginary axis B, whereas, it
follows from (1.2) that

0 � lim sup
1− ρα

1− 2|Re α|/|α|2 � π

2

as α tends to a point of ∂A within the complex plane
minus A and B. In particular, if c is real, then

lim
|c|→2+0

1− ρc

|c| − 2
=

π

4
.

If α is not in A, one can prove that

(2.2) ρα �
√

3
|1− α2| .

This is significant in case |1 − α2| > 3 or α is in

the exterior of the specified Jordan curve, namely,
the lemniscate Γ = {|1 − z2| = 3}. In particular, it
follows from (2.2) that ρα → 0 as α → ∞. Let us
return to the Theorem for a moment. If B � α→∞,

then (1 − e−2π/|α|)ρα → 0, whereas, if α is real and
if |α| → +∞, then ρα/|α| → 0.

One can observe that A is contained in the in-
terior of Γ except for 2 and −2, and ∂A touches Γ
at 2 and −2 where both curves have the common
tangents {Re z = 2} and {Re z = −2}, respectively.

For the proof of (2.2) set f = fα and ρ = ρα for
simplicity, and further set

‖f‖ ≡ sup
z∈u

(1− |z|2)2|Sf (z)| = 2|1− α2|,(2.3)

where Sf = f ′′′/f ′−(3/2)(f ′′/f ′)2 is the Schwarzian
derivative of f . Fix z ∈ U and set T (w) = (ρw +
z)/(1 + zρw), so that the function

f ◦ T (w) = a0 + a1w + a2w
2 + a3w

3 + · · ·
of w is univalent in U . It then follows from the
Bieberbach theorem [B], [G, p. 35, Theorem 2] that

ρ2(1− |z|2)2|Sf (z)| = |Sf◦T (0)|

= 6
∣∣∣∣a3

a1
−
(

a2

a1

)2∣∣∣∣ � 6.

Hence ρ2‖f‖ � 6, so that (2.2) is immediate from
this and (2.3).
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