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Abstract:

We prove a general optimal inequality for warped products in complex projec-

tive spaces and determine warped products which satisfy the equality case of the inequality. Two
non-immersion theorems are obtained as immediate applications.
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Let N; and N> be Rie-
mannian manifolds of positive dimension n; and no,
equipped with Riemannian metrics g; and gs, respec-
tively. Let f be a positive function on N;. The
warped product Ny x ¢ N is defined to be the prod-
uct manifold N7 x Ny with the warped metric: g =
g1+ f?g2 (see [7]).

For a warped product N1 x y No, we denote by Dy
the set of horizontal vector fields, i.e., vector fields on
N; x ¢ Nj obtained from the horizonal lift of tangent
vector fields of Ny; by Do the set of vertical vector
fields, i.e., vector fields obtained from the vertical lift
of tangent vector fields of No. Denote by H and V the
vector bundles over N; Xy Na consisting of vectors

1. Introduction.

tangent to leaves and to fibers, respectively.

Let ¢ : Ny Xy No — M be an isometric immer-
sion of a warped product into a Riemannian mani-
fold. Denote by h the second fundamental form of ¢.
Let tr A1 and tr he be the trace of h restricted to Ny
and Na, respectively, i.e.,

ni ni+naz
trhy = Z h(ea,€n), trhs = Z h(es, er)
a=1 t=n1+1

for orthonormal vector fields ej,...,e,, in H and
€nq+1s- -3 Enqi4ny 11 V, respectively. The immersion
¢ is called mixed totally geodesic if h(X, Z) = 0 for
any X in H and Z in V.

A submanifold N of a Kaehler manifold
(M, g, J) is called totally real if the complex struc-
ture J carries each tangent space of N into its cor-
responding normal space [4]. A totally real subman-
ifold N in M with dimg N = dimc M is known as a
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Lagrangian submanifold [1].

In [3], the author investigated warped products
in complex hyperbolic spaces and obtain the follow-
ing.

Theorem A. Let ¢ : Ny x5 Ny — CH™(4c)
be an isometric immersion of a warped product into
the complex hyperbolic m-space CH™(4c). Then we
have

(1.1) Af  (mtna)

f 4TL2

where n; = dim N; (i = 1,2), H? is the squared mean
curvature of ¢, and A is the Laplacian of Ni.

The equality sign of (1.1) holds identically if
and only if we have (1) ¢ is mized totally geodesic,
(2) trhy =trhe and (3) JH L V.

In [3] the author applied Theorem A to obtain
some non-immersion theorems.

H? + nic,

In this article, we study warped products in
complex projective spaces and obtain the following.

Theorem 1. Let ¢ : Ny Xy Ny — CP™(4c) be
an arbitrary isometric immersion of a warped prod-
uct into the complex projective m-space C P™(4c) of
constant holomorphic sectional curvature 4c. Then
we have

(n1 +n2)

Af ? o
— < H .
. + (3+n1)c

7=
The equality sign of (1.2) holds identically if and
only if we have (1) ny = ny =1, (2) f is an eigen-
function of the Laplacian of N1 with eigenvalue 4c,
and (3) ¢ is totally geodesic and holomorphic.

(1.2)

As an immediate application, we obtain the fol-
lowing non-immersion theorem.
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Theorem 2. If f is a positive function on a
Riemannian ni-manifold Ny such that (Af)/f >
3 4+ ny at some point p € Ny, then, for any Rie-
mannian manifold No, the warped product N1 X § N
does mot admit any isometric minimal immersion
into CP™(4) for any m.

For totally real minimal immersions, Theorem 2
can be sharpen as the following.

Theorem 3. If f is a positive function on a
Riemannian ni-manifold Ny such that (Af)/f > nq
at some point p € Np, then, for any Riemannian
manifold No, the warped product Ny Xy No does not
admit any isometric totally real minimal immersion
into CP™(4) for any m.

In the last section, we provide examples to show
that Theorems 1, 2 and 3 are sharp.

2. Preliminaries. Let N be
dimensional Riemannian manifold isometrically

an  n-

immersed in a Riemannian manifold M. We denote
by (, ) the inner product for NV as well as for M.
For any vector X tangent to N we put

JX = PX + FX,

where PX and F'X are the tangential and the normal
components of JX, respectively. Thus P is a well-
defined endomorphism of the tangent bundle T'NV sat-
isfying

(PX,Y)=—(X,PY).

We denote by V and V the Levi-Civita connec-
tions of N and M, respectively. Then the Gauss and
Weingarten formulas are given respectively by

(2.1) VxY =VxY +h(X,Y),
(2.2) Vx€&=—A¢X 4 Dxé

for X, Y tangent to N and £ normal to N, where h
denotes the second fundamental form, D the normal
connection and A the shape operator.

The mean curvature vector H is defined by H =
(1/n)trh. The squared mean curvature is given by
H? = <ﬁ, ﬁ> A submanifold N is called mini-
mal (respectively, totally geodesic) if its mean cur-
vature vector (respectively, its second fundamental
form) vanishes identically.

For the second fundamental form h, we define
(2.3) (Vxo)(Y,Z) = Dx(o(Y, Z))
' —o(VxY,Z) - o(Y,VxZ).

The equation of Codazzi is given by

[Vol. T9(A),

(R(X,Y)Z)*
= (Vx0)(Y,Z) - (Vyo)(X, 2)

—~

2.4)

where (R(X, Y)~Z)l is the normal component of
R(X,Y)Z and R is the curvature tensors of M.

The scalar curvature of N is given by

Z K(e;i Nej),

1<i<j<n

T =

where K(e; A e;) is the sectional curvature of the
plane section spanned by e; and e;.

For a differentiable function ¢ on N, the Lapla-
cian of ¢ is defined by

Ap = {(Ve,ei)e — ejejp},
j=1

where ey, ..., e, is an orthonormal frame.
The Riemann curvature tensor R of CP™(4c) is
given by

R(X,Y; Z,W) = c{(X, W) (Y, Z)
- <XaZ> (KW> + (JX,W> <JY>Z>

—(JX, Z) (JY,W) +2(X,JY) (JZ,W)}.

(2.5)

For a submanifold N of C'P™(4c), the equation
of Gauss is given by

(R(X,Y)Z,W) = (h(X, W), (Y. 2))
— (h(X, Z), h(Y, W) + c{ (X, W) (Y, Z)
(X, 2) (Y, W) + (JY. Z) (JX.W)

— (JX, Z) (JY, W) +2/(X, JY) (JZ, W)},

(2.6)

where R is the Riemannian curvature tensor of N.
From (2.6) we know that the scalar curvature and
the squared mean curvature of N satisfy

(2.7) 21 =n*H? — ||h|)*> + n(n — 1)c+ 3¢||P||?,

where ||h||? denotes the squared norm of the second
fundamental form and

n

2
IPIP =D (e, Pej)

ij=1

(2.8)

is the squared norm of the endomorphism P.
Let N1 x¢ Ny be a warped product. Then, for

unit vector fields X, Y in Dy and Z in Dy, we have
VxZ=VzX=(Xlf)Z,

2.9) X z (X'In f)
(VxY,Z) =0

which implies that [7, page 210]
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(2.10) K(XNZ)= —{ (VxX)f—X*f}.
Thus, if e1,...,e,, are orthonormal horizontal vec-

tors and z a unit vertical vector field, we have

A -
(2.11) —f=ZK(ea/\z).
f a=1
Let n be a natural number > 2 and nq,...,nx

If ny +---4+ nir = n, then
ny) is called a partition of n.

be k natural numbers.
(nl, ey
We recall the following general algebraic lemma
from [2].
Lemma 1. Let ay,...,a, be n real numbers
and let k be an integer in [2,n — 1]. Then, for any

partition (n,...,nk) of n, we have
Z @i aj, + Z @iy Gy

1<ii<ji<ng n1+1<ia<je<ni+na

(2.12) TR > aiy aj,
ny-Ang_1+1<i1<ji<n
1
> s {1+ + an)? — k(al + - +ad) ],
with the equality holding if and only if
a + e + a —
(2.13) ! "
= Qnytetng g +1 Tt e

In this article, we use the following convention
on the range of indices unless mentioned otherwise:

jak7€:15"'7n1+n2;
Oé,ﬁz 1,...,7’7,1
S,t=mn1+1,...,n1+ noe.

3. Proofs of Theorems 1, 2 and 3. Let
¢ : N1 x5 No — CP™(4c) be an isometric immersion
of a warped product Ny Xy Ny into CP™(4c).

If we put

n2
(3.1) 77:27'—?HQ—n(n—l)c—BcHPHQ,

then (2.7) and (3.1) imply

(3.2) n?H? = 2n+2||n|2.
Let e1,...,e2, be an orthonormal frame such
that ey, ...,en, are in H, €y, 41, . -, €ny4n, are in V,

and en41 is in the direction of the mean curvature
vector. Then (3.2) can be written as
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(fﬁﬁﬁ ~23 ()’
(3.3) 77 =1 o
(h)" +2 > (hi;)".

=2n+4 Z
r=n+2,j=1

1<i<j<n

Because (ni,ms) is a partition of ny + na,
Lemma 1 implies that

Z 4hn+1hn+1

1<a<pf<n;

(Zh”“) —22% h”“ ,

with the equality holding if and only if

Z hn—i—l Z hn—i—l.

s=ni+1

Combining (3.3) and (3.4) gives

DD D

Z 4hn+1hn+1

ni1+1<s<t<n

(3.4)

(3.5)

1<a<pf<n; n1+1<s<t<n
(36) n 1 2m n )
+1
> ot 2 M) g 3 30 05
1<j<k<n r=n+2 j,k=1

with the equality holding if and only if (3.5) occurs.
On the other hand, (2.6) and (2.11) imply

TLQAf nl(nl — 1) TLQ(TLQ — 1)
— =7 c— c
f 2 2
Z Z hr r aﬁ)Q)
(37) r=n+1a<fg
=SS i )
r=n+1 s<t
— Z 3c( Pea,eg 230 Peé,et
a<fB s<t
Therefore, by (3.1), (3.6) and (3.7), we find
A -1
mAf MCMMC_%
2m ) 2m 2
r=n+1 o,t r=n—+2 «
(3.8) o .
Z (Z hft) - Z 3¢ (Peg, ep)’
r=n+2 t a<f
- 230 (Pey, e;)?
s<t
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Hence, we have

A -1
mAf o nln =)
(3.9) f 2 2
. - 3¢ (Pea, e5)” — 230 (Pey, e,)?
a<fB s<t

with the equality holding if and only if ¢ is mixed
totally geodesic and

ni n
a=1

t=ni1+1

(3.10)

for r = n+1,...,2m. Combining (3.1) and (3.9)
yields

Af n? _, 3c 2
— < —H — P
< B et - ét (Peq, et)
(3.11) :
n? 2 . ni
< —H"+nic+3cming —, 1.
4ng ng

In particular, if ¢ : N1 Xy Na — CP™(4c) is totally
real, (3.11) implies that

Af n? _,
— < —H*"+nqc.
f 7 4ng !
Now, we divide the proof into two cases.
Case (a): n1 < ng. In this case, (3.11) implies
that

(3.12)

Af n? 5
— < —H 3)c.
7S I +(n1+3)c
Suppose that the equality case of (3.13) holds
identically. Then we have

(3.13)

(a.l) ny = na,
(a.2) JH =YV, and
(a.3) the immersion is mixed totally geodesic.

From (a.2) we know that N7 x ; Ny is immersed
as a complex submanifold. Hence, we obtain from
conditions (a.2) and (a.3) that

(3.14) WX, Y)=—Jh(X,JY)=0

for X, Y € H.
Similarly, we also have

(3.15) WZ,W)=0 for Z,W e V.

By combining (3.14) and (3.15) with (a.3), we know
that the warped product is also totally geodesic.
Hence, it is immersed as an open part of C'P"*(4c).
Also, (a.2) implies that leaves and fibers of Ny x y Ny
are immersed as Lagrangian submanifolds. By the
fact that leaves are totally geodesic Lagrangian sub-
manifolds of C' P™(4c), we also know that N; is iso-

[Vol. T9(A),

metric to an open part of a real projective ni-space
RP™ (1) of constant curvature one.

On the other hand, since fibers are totally um-
bilical in Ny x; N3, they are totally umbilical La-
grangian submanifolds in CP™ (4¢). Hence, by ap-
plying Theorem 1 of [5], we conclude that either

(i) ny = ng = 1, or

(ii) fibers are totally geodesic in N1 X Na.

If case (ii) occurs, then f is constant. But this
cannot happen, since C' P™ (4c) is locally irreducible.
So, we must have n; = ng = 1.

Since N7 Xy Ny is totally geodesic in CP™(4c)
and ny = 1, the equality case of (1.2) implies that f
is an eigenfunction of A with eigenvalue 4c.

The converse is easy to verify.

Case (b): n1 > ng. In this case, (3.11) gives

Af n? 5
3.16 — < —H 3
(3.16) 7= I + (n1+3)c
with equality holding if and only if we have
(b.1) JV CH,
(b.2) ¢ is mixed totally geodesic, and
(b3) tr hl =tr hg =0.

Now, assume that the equality sign of (3.16)
holds identically.

For vertical vector fields Z,W in V, we have
VizJW = JV;zW. Hence, (b.1), (b.2) and the
formulas of Gauss and Weingarten imply that

(3.17)  Vyz(JW) +h(JZ,JW) = JV ;,W.

On the other hand, since leaves are totally
geodesic in Ny x5 No, V ;zW is always tangent to
fibers for vertical vector fields Z, W. So, JV ;2 W is
tangent to leaves according to (b.1). Thus, we obtain
from (3.17) that

(3.18) h(JV, JV) = {0}.

Assume that ne > 1. Let (p, ¢) be a fixed point
in N1 X Ny and let Z1, Zs be two orthogonal nonzero
vector fields in Dy with |Z1] = | Z3]. We choose a vec-
tor field X in D; such that X = JZ; at (p,q) Since
we have h(H,V) = h(JV, JV) = {0} and (X, Z5) =
(X,JZ3) =0 at (p,q), equation (2.6) of Gauss im-
plies that

(3.19) K(X,7Z,) =4K(X,Z3) at (p,q).

On the other hand, from (2.10) we have
K(X,Z,) = K(X, Z;) which contradicts to (3.19).
Hence, we must have ny = 1.
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Let
H=L®JV

be an orthogonal decomposition of H. Since the rank
of JV is one, there is a unit vector field 7 in JV.

For any horizontal vector X € H, we obtain
from (b.2) that

(3.20) JVxn+ Jh(X,n) =Vx(Jn).

Because ny = 1, the leaves are totally geodesic
in Ny x¢ Na, and J7 is a unit vector normal field of
the leaves, so Weingarten’s formula gives

(3.21) Vx(Jn) =—A}, X + DxJn =0,

where A' and D' denote the shape operator and the
normal connection of leaves in Ny x ¢ V.
Combining (3.20) and (3.21) gives

(3.22) Vn =0,
(3.23) h(X,n) =0

for XeH=LB IV
Equation (3.22) implies that both £ and JV are
totally geodesic distributions. Hence, locally NV is
the Riemannian product L x I, where L and I are
integral submanifolds of £ and JV, respectively.
Choose a unit speed geodesic v = y(s) in L. Let
us consider the immersion:

Gy x I x Ny 2twsion, nr s Ny 25 0 P™ (4e).

With respect to the induced metric, v X I x Ny is
also a warped product manifold v x I x i No, where

f is the restriction of f on v x I.

Let o denote the second fundamental form of
yxIx;Nyin Ny x Ny andlet h, A, ..., etc., be the
second fundamental form, the shape operator, ...,
etc., of vy x I X N3 in CP™(4c), respectively. Then
we have

(3.24)

Wz, y) = Wz, y) + o(z, y)
for x,y tangent to v x I X ¢ Na. Since 7 is a geodesic
in L, Lemma 9 of [6] gives
oy ,n) =o(y,Jn) =a(n,n)
=o(n,Jn) = 0.
From (b.2), (3.17) and (3.23)—(3.25) we get

h(y',n) = h(', Jn) = h(n,n)
= h(n, Jn) = 0.
Using (2.3) and (3.26) we find

(3.25)

(3.26)
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(527) (Vniz)(Jn,v’) — (Vayh)(n,7')

= h(n, V) = h(Tn, Vo),
where V is the Levi-Civita connection of  x I x i Na.

Equations (2.4), (2.5), (3.26), and (3.27) imply
that

2¢ = R(n, Jn;~', Jv')
= (b0, V), V) = (h(In, V'), JA)
= _<AJ’)" J77> @?7’7/> .

On the other hand, from (2.1), (2.2), (3.26) and
(3.27), we find

(3.29)

(3.28)

IV, =V, Jy =D, Jv.
Since A..Jn € Span {Jn} by (3.26), (3.29) implies
(3.30) (Agy In, VY )y =0

which contradicts to (3.28) due to the fact: ¢ > 0.
Hence, case (b) cannot occur. This completes the
proof of Theorem 1.

Theorem 2 is an immediate consequence of in-
equality (1.2).

For the proof of Theorem 3, let us assume that
f is a positive function on a Riemannian n;-manifold
such that

— >N

f

at some point p € N7 and let N> be an arbitrary Rie-
mannian manifold of positive dimension. If Ny X f N
admits an isometric totally real minimal immersion
into CP™(4), then (3.12) implies that

(3.31)

(3.32) ﬂ S n1
f
at every point in N7 which contradicts to (3.31). This
proves Theorem 3. Ol
4. Examples.
Example 1. Let I = (—n/4,7/4), Ny =

S1(1) and f = (1/2)cos2s. Then the warped prod-
uct

N1 X N2 =1 X(COSQS)/Q Sl(l)

has constant sectional curvature 4. Clearly, we have
(Af)/f = 4. If we define the complex structure J
on the warped product by

0 0
J <£> = 2(sec 25)@,
then (I X (cos2s)/2 S*(1), g, J) is holomorphically iso-
metric to a dense open subset of CP'(4).

(4.1)
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Let ¢ : CP(4) — CP™(4) be a standard to-
tally geodesic embedding of CP(4) into CP™(4).
Then the restriction of ¢ to I X (cos25)/2 S*(1) gives
rise to a minimal isometric immersion of I X (cos24)/2
S1(1) into CP™(4c) which satisfies the equality case
of (1.2) on I X (cos2s)/2 S*(1) identically.

Example 2. Consider the same warped prod-
uct Ny Xy No = I X(cos2s)/2 S(1) as given in Ex-
ample 1. Let ¢ : CPY(4) — CP™(4) be the to-
tally geodesic holomorphic embedding of CP!(4)
into CP™(4). Then the restriction of ¢ to N1 X No
is an isometric minimal immersion of N; x ¢ IV into
CP™(4) which satisfies (Af)/f = 3+ ny identically.

This example shows that the assumption
“(Af)/f > 34 ny at some point in N;” given in
Theorem 2 is best possible.

Example 3. Let S"71(1) denote the unit (n—
1)-sphere and g1 be the standard metric on S™~1(1).
Denote by Ny x; Na the warped product given by
Ny = (—=7/2,7/2), N2 = S"71(1) and f = coss.
Then the warped function of this warped product
satisfies
Af

f

identically. Moreover, it is easy to verify that this
warped product is isometric to a dense open subset
of S™(1).

Let

(4.2) ny

projection
-

¢ :S"(1) RP™(1)
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totally geodesic
Y BT, O P (4)

totally real

be a standard totally geodesic Lagrangian immersion
of S™(1) into CP™(4). Then the restriction of ¢ to
N1 x5 Ny is a totally real minimal immersion.

This example illustrates that the assumption
“(Af)/f > n1 at some point in N;” given in Theo-
rem 3 is also sharp.
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