Elliptic Hecke algebras and modified Cherednik algebras

By Tadayoshi Takebayashi
College of Industrial Technology, Nihon University, 2-1, Izumicho 1-chome, Narashino, Chiba 275-8575
(Communicated by Heisuke Hironaka, m. J. a., April 14, 2003)

Abstract

The elliptic Hecke algebras associated to the 1-codimensional elliptic root systems have been defined by H. Yamada [10], which are subalgebras of Cherednik's double affine Hecke algebras [2, 3]. The elliptic Hecke algebras associated to the elliptic root systems of type $X^{(1,1)}$ have been defined similarly by the author [11] in terms of generators and relations associated to the completed elliptic diagram. On the other hand, M. Kapranov [6] has defined modified Cherednik algebras associated to the double coset decomposition of the group schemes over 2dimensional local field. In this paper, we see that modified Cherednik algebras are isomorphic to elliptic Hecke algebras of type $X^{(1,1)}$.

Key words: Double affine Hecke algebras; elliptic Hecke algebras; modified Cherednik algebras.

1. Introduction. Let G be a Chevalley group over a \mathfrak{p}-adic field K associated to a complex semi-simple Lie algebra $\mathfrak{g}_{\mathbf{C}}$, and G^{\prime} be the commutator subgroup of G. Let $B \subset G$ be a Borel subgroup and $B^{\prime}=B \cap G^{\prime}$, then N . Iwahori and H . Matsumoto [4] examined the structure of the double coset decomposition of G^{\prime}, G, with respect to B^{\prime}, B, respectively. The decompositions (so called the Bruhat decompositions) $G^{\prime}=\bigcup_{\sigma \in \widetilde{W}^{\prime}} B^{\prime} w(\sigma) B^{\prime}$ and $G=\bigcup_{\sigma \in \widetilde{W}} B w(\sigma) B$ induce the structure of the affine Hecke algebra $\mathscr{H}\left(G^{\prime}, B^{\prime}\right)$, and the extended affine Hecke algebra $\mathscr{H}(G, B)$, where \widetilde{W}^{\prime} and \widetilde{W} are the affine and the extended affine Weyl group, and we have $\widetilde{W} \cong \widetilde{W^{\prime}} \rtimes \Pi$, by using a finite abelian group Π isomorphic to P^{\vee} / Q^{\vee} (where Q^{\vee} and P^{\vee} are the coroot and coweight lattices of $\mathfrak{g}_{\mathbf{C}}$). The group Π acts on $\mathscr{H}\left(G^{\prime}, B^{\prime}\right)$ as a group of automorphism and $\mathscr{H}(G, B)$ is isomorphic to the "twisted" tensor product $\mathbf{Z}[\Pi] \otimes \mathbf{Z} \mathscr{H}\left(G^{\prime}, B^{\prime}\right)$, with respect to this action. Recently, I. Cherednik defined "the double affine Hecke algebra" [2]. This is an algebra generated by three set of variables; $T_{i}(i=1, \ldots, l)$, $Y_{\lambda}\left(\lambda \in P^{\vee}\right), X_{\mu}(\mu \in P)$, and the central element $q^{ \pm 1 / m}$, where Y_{λ}, T_{i} satisfy the relations of the extended affine Hecke algebra. In this construction, the generators $Y_{\lambda}, T_{i}(i=1, \ldots, l)$ are replaced with $\Pi, T_{0}, \ldots, T_{l}$ which generate the same extended affine Hecke algebra, and the subalgebra generated by $T_{1}, \ldots, T_{l}, X_{\mu}(\mu \in P)$ satisfy the relations of

[^0]the extended affine Hecke algebra for the root system R^{\vee} (where R^{\vee} is the dual root system of R) (see A. Kirillov [9]). But the double affine Hecke algebra is also differently defined by the generators $T_{0}, \ldots, T_{l}, \Pi, X_{\mu}\left(\mu \in P^{\vee}\right)$ and $q^{ \pm 1 / m}[3]$. In this case $Q^{\vee} \subset P^{\vee}$ and in the previous case, by considering the embedding of lattices $Q^{\vee} \hookrightarrow P$, we can consider the subalgebra generated by the elements $T_{i}(0 \leq i \leq l), X_{\beta}\left(\beta \in Q^{\vee}\right)$ and $q^{ \pm 1}$. We will see that this subalgebra is isomorphic to the elliptic Hecke algebra of type $X^{(1,1)}$ defined by the author in [11]. Similarly to the case of the \mathfrak{p}-adic field (i.e., 1 dimensional local field), in the case of 2-dimensional local field K, for the group scheme $G(K)$, one can consider the problem to decompose $G(K)$ to the double coset spaces with respect to a Borel subgroup (see A. N. Parshin [8]), and to describe the associated Hecke algebra. M. Kapranov [6] has given one answer to this problem, and constructed the modified Cherednik algebra $\mathscr{H}\left(\Gamma, \Delta_{1}\right)$ which is a subalgebra of the double affine Hecke algebra. In this article, we will show that $\mathscr{H}\left(\Gamma, \Delta_{1}\right)$ is isomorphic to the elliptic Hecke algebra of type $X^{(1,1)}$.
2. Double affine Hecke algebras and elliptic Hecke algebras. Let R be a root system of type $X\left(X=A_{l}, B_{l}, \ldots, G_{2}\right)$, and Q^{\vee}, P^{\vee} be the coroot lattice, the coweight lattice of R. Let $\widetilde{R}:=R \times$ \mathbf{Z} and $\widehat{R}:=R \times \mathbf{Z} \times \mathbf{Z}$ be the affine root system of type $X^{(1)}$ and the elliptic root system of type $X^{(1,1)}$ (see [1]), respectively. Let W be the Weyl group as-
sociated to R, then the elliptic Weyl group and the extended elliptic Weyl group of type $X^{(1,1)}$ are realized by the semi-direct product $W \ltimes\left(Q^{\vee} \times Q^{\vee}\right)$ and $W \ltimes\left(P^{\vee} \times P^{\vee}\right)$, respectively. The quotient group $P^{\vee} / Q^{\vee} \cong \Pi$ acts on the system of simple roots of the affine root system \widetilde{R} by permutations. Now let us recall the definiton of the double affine Hecke algebras [3]. Let $\mathbf{C}_{q, t}$ be the field of rational functions in terms of independent variables $q^{1 / m},\left\{t_{j}^{1 / 2}:=t_{\alpha_{j}}^{1 / 2}\right.$ $(0 \leq j \leq l)\}$, where $m=2$ for $D_{2 k}$ and $C_{2 k+1}, m=$ 1 for $C_{2 k}, B_{l}$, otherwise $m=|\Pi|$. Let $\alpha_{1}, \ldots, \alpha_{l}$ be the basis of simple roots in R, and $\alpha_{0}=-\theta+$ $\delta, \alpha_{1}, \ldots, \alpha_{l}$ be the basis of simple roots in \widetilde{R}, where $\theta \in R$ is the maximal root.

Definition 2.1 (I. Cherednik [3]). The double affine Hecke algebra \mathscr{H} is generated over the field $\mathbf{C}_{q, t}$ by the elements $\left\{T_{j}, 0 \leq j \leq l\right\}$, pairweise commutative $\left\{X_{\beta^{\vee}}, \beta^{\vee} \in P^{\vee}\right\}\left(\beta^{\vee}:=2 \beta /\langle\beta, \beta\rangle\right)$, group Π and the central element $q^{ \pm 1 / m}$. Let $X_{\beta^{\vee}+k \delta}:=$ $X_{\beta^{\vee}} q^{k}$ for $\beta^{\vee} \in P^{\vee}, k \in(1 / m) \mathbf{Z}$. Then the following relations are imposed.
(0) $\left(T_{j}-t_{j}^{1 / 2}\right)\left(T_{j}+t_{j}^{-1 / 2}\right)=0, \quad 0 \leq j \leq l$,
(i) $T_{i} T_{j} T_{i} \cdots=T_{j} T_{i} T_{j} \cdots$,

$$
m_{i j} \text { factors on each side, }
$$

($m_{i j}=2,3,4,6$ if α_{i} and α_{j} are joined
by $0,1,2,3$ laces respectively),
(ii) $\pi_{r} T_{i} \pi_{r}^{-1}=T_{j}$ if $\pi_{r}\left(\alpha_{i}\right)=\alpha_{j}$,
(iii) $T_{i} X_{\beta^{\vee}} T_{i}=X_{\beta^{\vee}-\alpha_{i}^{\vee}}$

$$
\text { if }\left\langle\beta^{\vee}, \alpha_{i}\right\rangle=1,1 \leq i \leq l \text {, }
$$

(iv) $T_{0} X_{\beta \vee} T_{0}=X_{s_{0}\left(\beta^{\vee}\right)}$ if $\left\langle\beta^{\vee}, \theta\right\rangle=-1$,
(v) $T_{i} X_{\beta^{\vee}}=X_{\beta^{\vee}} T_{i}$

$$
\text { if }\left\langle\beta^{\vee}, \alpha_{i}\right\rangle=0 \text { for } 0 \leq i \leq l \text {, }
$$

(vi) $\pi_{r} X_{\beta \vee} \pi_{r}^{-1}=X_{\pi_{r}\left(\beta^{\vee}\right)}$.

Let us introduce the element $X_{\alpha_{0}^{\vee}}:=X_{\alpha_{1}^{1}}^{-n_{1}} \cdots$ $X_{\alpha_{l}^{\vee}}^{-n_{l}} q$ for $\alpha_{0}^{\vee}:=-n_{1} \alpha_{1}^{\vee}-\cdots-n_{l} \alpha_{l}^{\vee}+\delta$, and define the algebra $\mathscr{H}_{e l}$ which is a subalgebra of the double affine Hecke algebra \mathscr{H} as follows:

Definition 2.2. Let \mathbf{C}_{t} be the field of rational functions of the variables $t_{j}^{1 / 2}=t_{\alpha_{j}}^{1 / 2}(0 \leq j \leq l)$, then we define the algebra $\mathscr{H}_{e l}$ by the following set of generators and relations.

Generators: $\quad T_{\alpha}$ for $\alpha \in\left\{\alpha_{0}, \ldots, \alpha_{l}\right\}, X_{\alpha \vee}$ for $\alpha^{\vee} \in Q^{\vee}$ and $q^{ \pm 1}$.

Relations: $\quad X_{\alpha^{\vee}} X_{\beta^{\vee}}=X_{\beta^{\vee}} X_{\alpha^{\vee}}$ for $\alpha^{\vee}, \beta^{\vee} \in$ Q^{\vee} and

$$
\begin{aligned}
& \text { (0) }\left(T_{\alpha}-t_{\alpha}^{1 / 2}\right)\left(T_{\alpha}+t_{\alpha}^{-1 / 2}\right)=0 \\
& \text { (i) } T_{\alpha} T_{\gamma} T_{\alpha} \cdots=T_{\gamma} T_{\alpha} T_{\gamma} \cdots, \\
& m_{\alpha \gamma} \text { factors on each side, } \\
& \left(m_{\alpha \gamma}=2,3,4,6 \text { if } \alpha \text { and } \gamma\right. \text { are joined } \\
& \text { by } 0,1,2,3 \text { laces respectively }),
\end{aligned}
$$

(ii) $T_{\alpha} X_{-\beta^{\vee}} T_{\alpha}=X_{-\beta^{\vee}-\alpha^{\vee}}$ if $\left\langle\beta^{\vee}, \alpha\right\rangle=-1$,

$$
T_{\alpha} X_{-\beta \vee}=X_{-\beta \vee} T_{\alpha} \text { if }\left\langle\beta^{\vee}, \alpha\right\rangle=0
$$

Remark 2.3. The inner product $\langle\cdot, \cdot\rangle$ is normalized by $\langle\alpha, \alpha\rangle=2$ for long roots α, and this induces that $\left\langle\alpha_{0}, \alpha_{0}\right\rangle=2$ for all root system R.

Remark 2.4. By the following reformulation,

$$
\begin{array}{lll}
& T_{\alpha_{0}} X_{\beta \vee} T_{\alpha_{0}}=X_{s_{0}\left(\beta^{\vee}\right)} & \text { if }\left\langle\beta^{\vee}, \theta\right\rangle=-1 \\
\Leftrightarrow & T_{\alpha_{0}} X_{\beta^{\vee} \vee} T_{\alpha_{0}}=X_{s_{0}\left(\beta^{\vee}\right)} & \text { if }\left\langle\beta^{\vee}, \alpha_{0}\right\rangle=1 \\
\Leftrightarrow & T_{\alpha_{0}} X_{\beta^{\vee}} T_{\alpha_{0}}=X_{\beta^{\vee}-\alpha_{0}^{\vee}} & \text { if }\left\langle\beta^{\vee}, \alpha_{0}\right\rangle=1 \\
\Leftrightarrow & T_{\alpha_{0}} X_{-\beta^{\vee} \vee} T_{\alpha_{0}}=X_{-\beta^{\vee}-\alpha_{0}^{\vee}} & \text { if }\left\langle\beta^{\vee}, \alpha_{0}\right\rangle=-1
\end{array}
$$

the relations (iii) and (iv) in \mathscr{H} are reduced to the first relation of (ii) in $\mathscr{H}_{e l}$.

Remark 2.5. By the inner products $\left\langle\alpha^{\vee}, \beta\right\rangle=-1,\left\langle\alpha, \beta^{\vee}\right\rangle=-t$ for the diagram $\underset{\alpha}{\bigcirc \rightarrow}{ }_{t}{ }_{\beta}$ the relations (0), (i) and (ii) in $\mathscr{H}_{e l}$ are easily described in terms of the Dynkin diagram as follows:

			$\left(T_{\alpha}-t_{\alpha}^{1 / 2}\right)\left(T_{\alpha}+t_{\alpha}^{-1 / 2}\right)=0$.
	$\begin{aligned} & \bigcirc \\ & \beta \end{aligned}$		$T_{\alpha} T_{\beta}=T_{\beta} T_{\alpha}$,
$\begin{aligned} & \bigcirc \\ & \alpha \end{aligned}$		\Longrightarrow	$T_{\alpha} X_{-\beta \vee}=X_{-\beta^{\prime} \vee} T_{\alpha}$,
			$T_{\beta} X_{-\alpha \vee}=X_{-\alpha}{ }^{\text {d }} T_{\beta}$.
		\longrightarrow	$\begin{aligned} & T_{\alpha} X_{-\alpha^{\vee}-\beta^{\vee}}=X_{-\alpha^{\vee}-\beta^{\vee}} T_{\alpha}, \\ & T_{\beta} X_{-\alpha^{\vee}-\beta^{\vee}}=X_{-\alpha^{\vee}-\beta^{\vee}} T_{\beta} . \end{aligned}$

$$
\begin{array}{lll}
\\
\hdashline & T_{\alpha} T_{\beta} T_{\alpha}=T_{\beta} T_{\alpha} T_{\beta} \\
\hdashline & T_{\alpha} X_{-\beta^{\vee}} T_{\alpha}=X_{-\beta^{\vee}-\alpha^{\vee}} \\
T_{\beta} X_{-\alpha \vee} T_{\beta}=X_{-\alpha^{\vee}-\beta^{\vee}}
\end{array}
$$

Here we set $T_{\alpha}^{*}:=T_{\alpha^{*}}:=T_{\alpha}^{-1} X_{-\alpha^{\vee}}$, and a, b denote one of the elements $\left\{\alpha, \alpha^{*}\right\},\left\{\beta, \beta^{*}\right\}$ respectively, then we obtain the following.

Proposition 2.6. The algebra $\mathscr{H}_{e l}$ is described by the following set of generators and relations:

Generators: $\quad T_{\alpha}, T_{\alpha^{*}}$ for $\alpha \in\left\{\alpha_{0}, \ldots, \alpha_{l}\right\}$.
Relations:
(I)

$$
\begin{array}{ll}
\bigcirc \\
\alpha
\end{array} \quad \Longrightarrow \quad \begin{aligned}
& \left(T_{a}-t_{\alpha}^{1 / 2}\right)\left(T_{a}+t_{\alpha}^{-1 / 2}\right)=0 \\
& \left(t_{\alpha^{*}}=t_{\alpha}\right)
\end{aligned}
$$

$$
\begin{array}{llll}
\bigcirc & \bigcirc \\
\alpha & \Longrightarrow & T_{a} T_{b}=T_{b} T_{a} \\
& & \\
& T_{a} T_{b} T_{a}=T_{b} T_{a} T_{b} \\
\hdashline- & T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\beta} T_{\beta}^{*} T_{\alpha} \\
\alpha & \beta & & T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}=T_{\alpha} T_{\alpha}^{*} T_{\beta} \\
& T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\beta} T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}
\end{array}
$$

$$
\left(T_{a} T_{b}\right)^{2}=\left(T_{b} T_{a}\right)^{2}
$$

$$
\stackrel{\bigcirc-\mathrm{O}^{2}}{\bigcirc} \Longrightarrow \begin{aligned}
& T_{\alpha}^{*} T_{\beta} T_{\beta}^{*} T_{\alpha}=T_{\beta} T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*} \\
& T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}=T_{\alpha} T_{\alpha}^{*} T_{\beta} \\
& T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\beta} T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}
\end{aligned}
$$

$$
\left(T_{a} T_{b}\right)^{3}=\left(T_{b} T_{a}\right)^{3}
$$

$$
\underset{\alpha-3 \not \beta}{\bigcirc \longrightarrow} \Longrightarrow \begin{aligned}
& T_{\alpha}^{*} T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*} T_{\alpha} \\
& T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}=T_{\alpha} T_{\alpha}^{*} T_{\beta} \\
& T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\beta} T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}
\end{aligned}
$$

(II)

$$
\begin{aligned}
A_{l}^{(1,1)}(l \geq 1) \Longrightarrow & T_{0} T_{0}^{*} T_{1} T_{1}^{*} \cdots T_{l} T_{l}^{*}=q^{-1} \\
B_{l}^{(1,1)}(l \geq 3) \Longrightarrow & T_{0} T_{0}^{*} T_{1} T_{1}^{*}\left(T_{2} T_{2}^{*} \cdots T_{l-1} T_{l-1}^{*}\right)^{2} \\
& T_{l} T_{l}^{*}=q^{-1} \\
C_{l}^{(1,1)}(l \geq 2) \Longrightarrow & T_{0} T_{0}^{*} T_{1} T_{1}^{*} \cdots T_{l} T_{l}^{*}=q^{-1} \\
D_{l}^{(1,1)}(l \geq 4) \Longrightarrow & T_{0} T_{0}^{*} T_{1} T_{1}^{*}\left(T_{2} T_{2}^{*} \cdots T_{l-2} T_{l-2}^{*}\right)^{2} \\
& T_{l-1} T_{l-1}^{*} T_{l} T_{l}^{*}=q^{-1} \\
E_{6}^{(1,1)} \Longrightarrow & T_{0} T_{0}^{*} T_{1} T_{1}^{*}\left(T_{2} T_{2}^{*}\right)^{2}\left(T_{3} T_{3}^{*}\right)^{3}\left(T_{4} T_{4}^{*}\right)^{2} \\
& T_{5} T_{5}^{*}\left(T_{6} T_{6}^{*}\right)^{2}=q^{-1}
\end{aligned}
$$

$$
\begin{aligned}
E_{7}^{(1,1)} \Longrightarrow & T_{0} T_{0}^{*} T_{1} T_{1}^{*}\left(T_{2} T_{2}^{*}\right)^{2}\left(T_{3} T_{3}^{*}\right)^{3}\left(T_{4} T_{4}^{*}\right)^{4} \\
& \left(T_{5} T_{5}^{*}\right)^{3}\left(T_{6} T_{6}^{*}\right)^{2}\left(T_{7} T_{7}^{*}\right)^{2}=q^{-1}
\end{aligned}
$$

$$
\begin{aligned}
E_{8}^{(1,1)} \Longrightarrow & T_{0} T_{0}^{*}\left(T_{1} T_{1}^{*}\right)^{2}\left(T_{2} T_{2}^{*}\right)^{3}\left(T_{3} T_{3}^{*}\right)^{2} T_{4} T_{4}^{*} \\
& =q^{-1}
\end{aligned}
$$

$$
\begin{aligned}
F_{4}^{(1,1)} \Longrightarrow & T_{0} T_{0}^{*}\left(T_{1} T_{1}^{*}\right)^{2}\left(T_{2} T_{2}^{*}\right)^{3}\left(T_{3} T_{3}^{*}\right)^{2} T_{4} T_{4}^{*} \\
& =q^{-1}
\end{aligned}
$$

$G_{2}^{(1,1)} \Longrightarrow T_{0} T_{0}^{*}\left(T_{1} T_{1}^{*}\right)^{2} T_{2} T_{2}^{*}=q^{-1}$.
Proof. From $X_{-\alpha^{\vee}}=T_{\alpha} T_{\alpha}^{*}$, we obtain the following relations:

$$
\begin{aligned}
X_{\alpha \vee} X_{\beta^{\vee}}= & X_{\beta^{\vee}} X_{\alpha^{\vee}} \\
& \Longrightarrow \quad T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\beta} T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*} \\
T_{\alpha} X_{-\alpha^{\vee}-\beta^{\vee}}= & X_{-\alpha^{\vee}-\beta^{\vee}} T_{\alpha} \\
& \Longrightarrow \quad T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\alpha}^{*} T_{\beta} T_{\beta}^{*} T_{\alpha}, \\
T_{\alpha} X_{-\beta^{\vee}} T_{\alpha}= & X_{-\alpha^{\vee}-\beta^{\vee}} \\
& \Longrightarrow \quad T_{\beta} T_{\beta}^{*} T_{\alpha}=T_{\alpha}^{*} T_{\beta} T_{\beta}^{*},
\end{aligned}
$$

and from $X_{\alpha_{0}^{\vee}}=X_{\alpha_{1}^{\vee}}^{-n_{1}} \cdots X_{\alpha_{l}^{\vee}}^{-n_{l}} q$, we obtain

$$
T_{0} T_{0}^{*}\left(T_{1} T_{1}^{*}\right)^{n_{1}}\left(T_{2} T_{2}^{*}\right)^{n_{2}} \cdots\left(T_{l} T_{l}^{*}\right)^{n_{l}}=q^{-1}
$$

Further, in the next cases, from the relations of the left hand side, we can obtain the relations of the right hand side, which has been already proved in [11] (in the proof of Proposition 4.2).
$\left\{\begin{array}{l}T_{\alpha} T_{\beta} T_{\alpha}=T_{\beta} T_{\alpha} T_{\beta} \\ T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\beta} T_{\beta}^{*} T_{\alpha} \\ T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}=T_{\alpha} T_{\alpha}^{*} T_{\beta} \\ T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\beta} T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}\end{array} \Rightarrow\left\{\begin{array}{l}T_{\alpha} T_{\beta}^{*} T_{\alpha}=T_{\beta}^{*} T_{\alpha} T_{\beta}^{*} \\ T_{\beta} T_{\alpha}^{*} T_{\beta}=T_{\alpha}^{*} T_{\beta} T_{\alpha}^{*} \\ T_{\alpha}^{*} T_{\beta}^{*} T_{\alpha}^{*}=T_{\beta}^{*} T_{\alpha}^{*} T_{\beta}^{*}\end{array}\right.\right.$
$\left\{\begin{array}{l}\left(T_{\alpha} T_{\beta}\right)^{2}=\left(T_{\beta} T_{\alpha}\right)^{2} \\ T_{\alpha}^{*} T_{\beta} T_{\beta}^{*} T_{\alpha}=T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*} \\ T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}=T_{\alpha} T_{\alpha}^{*} T_{\beta} \\ T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\beta} T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}\end{array} \Rightarrow\left\{\begin{array}{l}\left(T_{\alpha} T_{\beta}^{*}\right)^{2}=\left(T_{\beta}^{*} T_{\alpha}\right)^{2} \\ \left(T_{\beta} T_{\alpha}^{*}\right)^{2}=\left(T_{\alpha}^{*} T_{\beta}\right)^{2} \\ \left(T_{\alpha}^{*} T_{\beta}^{*}\right)^{2}=\left(T_{\beta}^{*} T_{\alpha}^{*}\right)^{2}\end{array}\right.\right.$
$\left\{\begin{array}{l}\left(T_{\alpha} T_{\beta}\right)^{3}=\left(T_{\beta} T_{\alpha}\right)^{3} \\ T_{\alpha}^{*} T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*} \\ \quad=T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*} T_{\alpha} \\ T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}=T_{\alpha} T_{\alpha}^{*} T_{\beta} \\ T_{\alpha} T_{\alpha}^{*} T_{\beta} T_{\beta}^{*}=T_{\beta} T_{\beta}^{*} T_{\alpha} T_{\alpha}^{*}\end{array} \Rightarrow\left\{\begin{array}{l}\left(T_{\alpha} T_{\beta}^{*}\right)^{3}=\left(T_{\beta}^{*} T_{\alpha}\right)^{3} \\ \left(T_{\beta} T_{\alpha}^{*}\right)^{3}=\left(T_{\alpha}^{*} T_{\beta}\right)^{3} \\ \left(T_{\alpha}^{*} T_{\beta}^{*}\right)^{3}=\left(T_{\beta}^{*} T_{\alpha}^{*}\right)^{3}\end{array}\right.\right.$
so the proof is completed.
Remark 2.7. From Proposition 2.6, we see that the algebra $\mathscr{H}_{e l}$ is isomorphic to the elliptic Hecke algebra of type $X^{(1,1)}$ defined in [11].
3. Modified Cherednik algebras. Let us recall the results in $[5,6]$ and $[7]$. Let G be a split simple, simply-connected algebraic group (over Z), $T \subset G$ the fixed maximal torus, and we regard G, T as group schemes. Let $L=\operatorname{Hom}\left(\mathbf{G}_{m}, T\right)$ and $L^{\vee}=$ $\operatorname{Hom}\left(T, \mathbf{G}_{m}\right)$ be the coweight and weight lattices of $G, R \subset L^{\vee}$ be the root system. Let $T^{\vee}=\operatorname{Spec} \mathbf{C}[L]$ be the complex torus dual to T. Let $L_{\text {aff }}=\mathbf{Z} \oplus$ L be the lattice of affine coweight of G. Let W and $W_{\text {aff }}:=W \ltimes L$ be the Weyl group and the affine Weyl group of G. Let $W_{e l}:=W \ltimes(L \oplus L)$ be the elliptic Weyl group (double affine Weyl group) and $\widetilde{W}:=$ $W_{\text {aff }} \ltimes L_{\text {aff }}$ be its central extension (double affine Heisenberg-Weyl group). Let $T_{a f f}^{\vee}=\operatorname{Spec} \mathbf{C}\left[L_{\text {aff }}\right]$ be the affine torus corresponding to T^{\vee}. Here we note that as G is simply connected, in the notation of the previous section, we can identify $L=Q^{\vee}, L^{\vee}=P$. Set $P_{a f f}=P \oplus(1 / m) \mathbf{Z}, \widetilde{T}_{\text {aff }}=\operatorname{Spec} \mathbf{C}\left[P_{a f f}\right]$, where $m \in \mathbf{Z}_{+}$is the smallest integer such that $m\langle\lambda, \mu\rangle \in \mathbf{Z}$ for every $\lambda \in P^{\vee}, \mu \in P$. Let $\mathbf{C}\left(T_{\text {aff }}^{\vee}\right)$ and $\mathbf{C}\left(\widetilde{T}_{\text {aff }}\right)$ be the field of rational functions on $T_{a f f}^{\vee}$ and $\widetilde{T}_{a f f}$, respectively, then the double affine Hecke algebra \mathscr{H} is realized by the subalgebra consisting of finite linear combinations $\sum_{w \in W \ltimes P^{\vee}} f_{w}(t)[w]$ with $f_{w}(t) \in$ $\mathbf{C}\left(\widetilde{T}_{\text {aff }}\right)$ satisfying certain residue conditions (see [6]). Classically, for a locally compact group G and its compact subgroup Δ, the Hecke algebra $\mathscr{H}(G, \Delta)$ can be defined as the algebra compactly supported double Δ-invariant continuous functions of G with the operation given by the convolution with respect to the Haar measure on G. In the case of $G(K)$ with 2-dimensional local field K, for that purpose, M. Kapranov defined the Hecke algebra $\mathscr{H}\left(\Gamma, \Delta_{1}\right)$, for the central extension Γ of $G(K)$ and an appropriate subgroup $\Delta_{1} \subset \Gamma$. Further he showed that $\mathscr{H}\left(\Gamma, \Delta_{1}\right)$ is a subalgebra of the double affine Hecke algebra \mathscr{H} consisting of linear combinations as above but going over $W \ltimes Q^{\vee} \subset W \ltimes P^{\vee}$ with $f_{w}(t) \in \mathbf{C}\left(T_{a f f}^{\vee}\right)$, and called $\mathscr{H}\left(\Gamma, \Delta_{1}\right)$ "the modified Cherednik algebra". From these arguments, we have the following.

Proposition 3.1. The modified Cherednik algebra $\mathscr{H}\left(\Gamma, \Delta_{1}\right)$ is isomorphic to the elliptic Hecke algebra of type $X^{(1,1)}$.

Proof. We use the definition ([2, 6]) of the Cherednik algebra \mathscr{H}_{r} with generators

$$
\begin{aligned}
& Y_{(b, n)}:=Y_{b} q^{n}, \quad(b, n) \in P_{\text {aff }}=P \oplus \frac{1}{m} \mathbf{Z}, \\
& \tau_{w}, w \in \widehat{W}:=W \ltimes Q^{\vee}, \quad \text { and } \tau_{\pi}, \pi \in \Pi .
\end{aligned}
$$

From Remark 2.7, we see that the elliptic Hecke algebra of type $X^{(1,1)}$ is isomorphic to the subalgebra of \mathscr{H}_{r} generated by $Y_{(b, n)}$ for $(b, n) \in Q^{\vee} \oplus \mathbf{Z}$ and $\tau_{i}(0 \leq i \leq l)$ with the relations in Definition 2.2 by the correspondence $Y_{(b, n)} \leftrightarrow X_{b} q^{n}, \tau_{i} \leftrightarrow T_{i}$. Here we note that $\left\{\tau_{w}, w \in W \ltimes Q^{\vee}\right\} \cong\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{l}\right.$ $\left.\left(\tau_{i}:=\tau_{s_{i}}\right)\right\}$. From the results in [6]

$$
\mathbf{C}\left(\widetilde{T}^{\text {aff }}\right)\left[W \ltimes P^{\vee}\right] \cong \mathbf{C}\left(\widetilde{T}^{\text {aff }}\right)\left[W \ltimes Q^{\vee}\right][\breve{\Pi}],
$$

and
$\mathscr{H}_{r} \cong\left\{\right.$ the subalgebra in $\mathbf{C}\left(\widetilde{T}^{\text {aff }}\right)\left[W \ltimes P^{\vee}\right]$ consisting of $\sum f_{w}(\lambda)[w]$ such that f_{w} satisfy the certain residue conditions $([6])\}$. The correspondence of the generators of the both algebras has been given by $([5,6])$;

$$
\begin{aligned}
Y_{(b, n)} & \leftrightarrow t_{(b, n)}:=t^{b} \zeta^{n} \\
\tau_{i} & \leftrightarrow \sigma_{i}:=\left(\frac{\zeta t^{\alpha_{i}}-\zeta^{-1}}{t^{\alpha_{i}}-1}\right)\left[s_{i}\right]-\frac{\zeta-\zeta^{-1}}{t^{\alpha_{i}}-1}[1] \\
\tau_{\pi} & \leftrightarrow[\pi] .
\end{aligned}
$$

The modified Cherednik algebra $\mathscr{H}\left(\Gamma, \Delta_{1}\right)$ is the subalgebra in $\mathbf{C}\left(T_{a f f}^{\vee}\right)\left[W \ltimes Q^{\vee}\right]$ consisting of $\sum f_{w}(\lambda)[w]$ such that f_{w} satisfy the same residue conditions as \mathscr{H}_{r}, and owing to the result [6] (Theorem 3.3.8), which is isomorphic to $\mathbf{C}\left(T_{\text {aff }}^{\vee}\right)\left[W \ltimes Q^{\vee}\right] \cap$ \mathscr{H}_{r}. Therefore we see that $\mathscr{H}\left(\Gamma, \Delta_{1}\right)$ is the algebra generated by the elements

$$
\begin{gathered}
t_{(b, n)}=t^{b} \zeta^{n}, \quad(b, n) \in Q_{a f f}^{\vee}=Q^{\vee} \oplus \mathbf{Z} \\
\text { and } \quad \sigma_{i}(i=0, \ldots, l),
\end{gathered}
$$

with the relations in Definition 2.2, and which completes the proof.

References

[1] Saito, K.: Extended affine root systems. I. Coxeter transformations. Publ. Res. Inst. Math. Sci., 21, 75-179 (1985); Extended affine root systems. II. Flat invariants. Publ. Res. Inst. Math. Sci., 26, 15-78 (1990).
[2] Cherednik, I.: Double affine Hecke algebras and Macdonald's conjectures. Ann. of Math., 141, 191-216 (1995).
[3] Cherednik, I.: Intertwining operators of double affine Hecke algebras. Selecta Math., 3, 459-495 (1997).
[4] Iwahori, N., and Matsumoto, H.: On some Bruhat decomposition and structure of the Hecke rings of p-adic Chevalley groups. Inst. Hautes Études Sci. Publ. Math., 25, 5-48 (1965).
[5] Ginzburg, V., Kapranov, M., and Vasserot, E.: Residue construction of Hecke algebras. Adv. Math., 128, 1-19 (1997).
[6] Kapranov, M.: Double affine Hecke algebras and 2-dimensional local fields. J. Amer. Math. Soc., 14, 239-262 (2001).
[7] Kapranov, M.: Harmonic analysis on algebraic group over two-dimensional local fields of equal characteristic. Geom. Topol. Monogr., 3, 255-262 (2000).
[8] Parshin, A. N.: Vector bundles and arithmetic groups I. Proc. Steklov Inst. Math., 208, 212233 (1995).
[9] Kirillov, A., Jr.: Lectures on affine Hecke algebras and Macdonald's conjectures. Bull. Amer. Math. Soc. (N.S.), 34, 251-292 (1997).
[10] Yamada, H.: Elliptic root system and elliptic Artin group. Publ. Res. Inst. Math. Sci., 36, 111-138 (2000).
[11] Takebayashi, T.: Double affine Hecke algebras and elliptic Hecke algebras. J. Algebra, 253, 314-349 (2002).

[^0]: 2000 Mathematics Subject Classification. 22E50.

