On an ad hoc computability structure in a Hilbert space

By Atsushi Yoshikawa
Faculty of Mathematics, Kyushu University, 10-1, Hakozaki 6-chome, Fukuoka 812-8581
(Communicated by Shigefumi Mori, m. J. A., March 12, 2003)

Abstract

Pour-El \& Richards [3] discussed an ad hoc computability structure in an effectively separable Hilbert space taking as an effective generating set a slightly modified one from the original orthonormal basis. We show that an application of the Poincaré-Wigner orthogonalizing procedure to Pour-El \& Richards' modified system gives an orthonormal effective generating set which yields a third computability structure.

Key words: Computability structure; effectively separable Hilbert space.

1. Introduction. Pour-El and Richards discussed an ad hoc computability structure in an effectively separable Hilbert space \mathbf{X} (over the complex number field) with a computability structure \mathcal{S}, i.e., $\langle\mathbf{X}, \mathcal{S}\rangle([3]$, Chapter $4, \S \S 5,6)$. Recall that a computability structure is the set of all the computable sequences and that computable sequences in \mathbf{X} are specified by a set of three axioms ([3], Chapter 2, $\S 1)$. Effective separability of \mathbf{X} means that \mathbf{X} admits a computable sequence, say \mathcal{E}, called effective generating set, whose linear combinations are dense in \mathbf{X}. Thus, when a countable basis is designated as a computable sequence, a computability structure is determined (Effective Densnity Lemma. [3], p. 86). In fact, Pour-El \& Richards actually worked out the case of $\mathbf{X}=L^{2}[0,1]$, taking the standard complete orthonormal basis $\left\{\mathrm{e}^{2 \pi i m x}, m=0, \pm 1, \pm 2, \ldots\right\}$ as an effectively generating set, which determines the standard computability structure of $L^{2}[0,1]$. Since their crucial arguments were done in the space ℓ^{2}, we may replace $L^{2}[0,1]$ by a separable Hilbert space \mathbf{X} and $\left\{\mathrm{e}^{2 \pi i m x}\right\}$ by any of its complete orthonormal bases $\mathcal{E}=\left\{\mathbf{e}_{n} ; n=0,1,2, \ldots\right\}$, and may then consider \mathcal{E} as the standard basis of \mathbf{X} and the computability structure \mathcal{S} generated by it as the standard one.

Following [3] faithfully, we then have another computability structure, an ad hoc computability structure \mathcal{T} in \mathbf{X}, effectively generated by a sequence $\mathcal{F}=\left\{\mathbf{f}, \mathbf{e}_{1}, \mathbf{e}_{2}, \ldots\right\}$ with $\mathbf{f} \in \mathbf{X}$, non-computable with respect to \mathcal{S}. To specify \mathbf{f}, Pour-El and Richards took a recursive function $a: \mathbf{N} \rightarrow \mathbf{N}$ which enumerates a recursively enumerable non-recursive

[^0]set A in a one-to-one manner, supposing $0 \notin A$. Then they let
\[

$$
\begin{equation*}
\alpha_{n}=2^{-a(n)}, \quad n \geq 1, \tag{1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\gamma^{2}=1-\sum_{n=1}^{\infty} \alpha_{n}^{2}, \quad \gamma>0 \tag{2}
\end{equation*}
$$

whence finally

$$
\begin{equation*}
\mathbf{f}=\gamma \mathbf{e}_{0}+\sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n} \tag{3}
\end{equation*}
$$

Notice that $\sqrt{2 / 3}<\gamma<1$ and γ is not computable since the convergence (2) is not effective (cf. [3], pp. 16-17). Thus, \mathbf{f} is not computable in $\langle\mathbf{X}, \mathcal{S}\rangle$. They subsequently applied the Gramm-Schmidt orthogonalization procedure to the system \mathcal{F} to get an orthonormal basis $\left\{\mathbf{u}_{n} ; n=0,1,2, \ldots\right\}$ of \mathbf{X}.

Although their observations occupied only a part of the proof of the Eigenvector Theorem, they thus showed existence of a unitary operator $U: \mathbf{X} \rightarrow$ \mathbf{X}, which maps \mathcal{S} onto \mathcal{T}. However, they wondered how this operator U could be grasped more explicitly ([3], pp. 139-141). Actually, it is evident that the image \mathcal{E}_{V} of \mathcal{E} by any unitary operator V in \mathbf{X} defines a computability structure \mathcal{S}_{V} in \mathbf{X}. If \mathcal{E} is an orthonormal basis, then so is \mathcal{E}_{V}. Thus, by means of Fourier coefficients, the question, as mentioned earlier, is reduced to a discussion of unitary matrices acting in the space ℓ^{2} of square summable series. It is certainly interesting to obtain detailed knowledge about such matrices.

The purpose of the present note is to apply the Poincaré-Wigner orthogonalization procedure to the
above \mathcal{F}, which results producing an explit unitary matrix (See $\S 3$ below). It turns out that the orthonormal basis thus obtained defines a third computability structure in \mathbf{X} which coincides neither with the standard one \mathcal{S} nor with the structure \mathcal{T} of Pour-El \& Richards mentioned above (See §4).
2. The Poincaré-Wigner procedure. It is well-known that given an orthonormal basis $\mathcal{E}=$ $\left\{\mathbf{e}_{n} ; n=0,1,2, \ldots\right\}$ of a Hilbert space \mathbf{X}, a unitary isomorphism $\Phi_{\mathcal{E}}$ from \mathbf{X} to the Hilbert space ℓ^{2} of square summable sequences of complex numbers is determined by the Fourier expansion

$$
\begin{gather*}
\Phi_{\mathcal{E}}: \mathbf{X} \ni \mathbf{x} \mapsto x=\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right) \in \ell^{2} \\
\xi_{n}=\left(\mathbf{x}, \mathbf{e}_{n}\right), \quad n=0,1,2, \ldots, \tag{4}
\end{gather*}
$$

where (,) denotes the scalar product of the Hilbert space \mathbf{X}. The unitarity is nothing but the Parseval relation

$$
\begin{equation*}
(\mathbf{x}, \mathbf{x})=\sum_{n=0}^{\infty}\left|\xi_{n}\right|^{2} \tag{5}
\end{equation*}
$$

The sequence \mathcal{F} is not orthonormal, but serves as a basis of the space \mathbf{X} (For Riesz bases and the related materials, see, e.g., Daubechies [1]).

Lemma 2.1. The sequence \mathcal{F} is a Riesz basis in the Hilbert space \mathbf{X}. In other words, \mathcal{F} determines a linear isomorphism $R_{\mathcal{F}}$ from \mathbf{X} onto the Hilbert space ℓ^{2}.

Proof. First observe that any $\mathbf{x} \in \mathbf{X}$ is uniquely expressed as

$$
\begin{equation*}
\mathbf{x}=\eta_{0} \mathbf{f}+\sum_{n=1}^{\infty} \eta_{n} \mathbf{e}_{n} \tag{6}
\end{equation*}
$$

the right-hand side converging in \mathbf{X}. In fact, in terms of the system $\left\{\mathbf{e}_{n}\right\}$,
(7) $\quad \eta_{0} \gamma=\xi_{0}, \quad \eta_{0} \alpha_{n}+\eta_{n}=\xi_{n}, \quad n=1,2, \ldots$.

Note then

$$
\begin{equation*}
(\mathbf{x}, \mathbf{x})=\left|\eta_{0}\right|^{2}+\sum_{n=1}^{\infty} \alpha_{n}\left(\eta_{0} \overline{\eta_{n}}+\overline{\eta_{0}} \eta_{n}\right)+\sum_{n=1}^{\infty}\left|\eta_{n}\right|^{2} \tag{8}
\end{equation*}
$$

since $(\mathbf{f}, \mathbf{f})=1$. Since

$$
\left|\sum_{n=1}^{\infty} \alpha_{n}\left(\eta_{0} \overline{\eta_{n}}+\overline{\eta_{0}} \eta_{n}\right)\right| \leq \frac{1-\gamma^{2}}{\epsilon}\left|\eta_{0}\right|^{2}+\epsilon \sum_{n=1}^{\infty}\left|\eta_{n}\right|^{2}
$$

for any $\epsilon>0$, we see

$$
\begin{equation*}
A \sum_{n=0}^{\infty}\left|\eta_{n}\right|^{2} \leq(\mathbf{x}, \mathbf{x}) \leq B \sum_{n=0}^{\infty}\left|\eta_{n}\right|^{2} \tag{9}
\end{equation*}
$$

for some $A>0$ and $B>0$. In fact, taking $\epsilon=1-$ $(1 / 2) \gamma^{2}$, we have

$$
A=\min \left\{1-\frac{1-\gamma^{2}}{\epsilon}, 1-\epsilon\right\}=\frac{1}{2} \gamma^{2}
$$

while by taking $\epsilon=1$

$$
B=\max \left\{1+\frac{1-\gamma^{2}}{\epsilon}, 1+\epsilon\right\}=2
$$

Thus, (6) and (9) determine a linear isomorphism

$$
\begin{equation*}
\mathcal{R}_{\mathcal{F}}: \mathbf{x} \mapsto y=\left(\eta_{0}, \eta_{1}, \eta_{2}, \ldots\right) \tag{10}
\end{equation*}
$$

from \mathbf{X} to the Hilbert space ℓ^{2} of square summable sequences.

Now we rewrite the computability structure \mathcal{T} in the following way (cf. [3], p. 135).

Proposition 2.1. Let \mathcal{S}_{2} be the standard computability structure of the Hilbert space ℓ^{2}. Then the linear isomorphism $R_{\mathcal{F}}$ maps the computability structure \mathcal{T} of \mathbf{X} onto \mathcal{S}_{2}.

Remark 2.1. By means of the Fourier expansion $\Phi_{\mathcal{E}}$, we have the linear isomorphism

$$
\mathcal{R}=R_{\mathcal{F}} \Phi_{\mathcal{E}}^{-1}: \ell^{2} \rightarrow \ell^{2}
$$

In fact, write the Fourier expansion

$$
\Phi_{\mathcal{E}}\left(\sum_{n=0}^{\infty} c_{n} \mathbf{e}_{n}\right)=\sum_{n=0}^{\infty} c_{n} e_{(n)} .
$$

Here each $e_{(j)} \in \ell^{2}$ has only one non-vanishing component, the $(\mathrm{j}+1)$-st, which is 1 . Then $\Phi_{\mathcal{E}}(\mathbf{f})=$ $\gamma e_{(0)}+\sum_{n=1}^{\infty} \alpha_{n} e_{(n)}$ but $R_{\mathcal{F}}(\mathbf{f})=e_{(0)}$ and $R_{\mathcal{F}}\left(\mathbf{e}_{n}\right)=e_{(n)}$ for $n \geq 1$. \mathcal{R} is given by an infinite square matrix

$$
\begin{equation*}
\mathcal{R}=I-\frac{1}{\gamma} P_{0} \tag{11}
\end{equation*}
$$

where I is the identity matrix in the space ℓ^{2} and

$$
P_{0}=\left(\begin{array}{ccccc}
\gamma-1 & 0 & 0 & \cdots & \cdots \tag{12}\\
\alpha_{1} & 0 & 0 & \ddots & \ddots \\
\alpha_{2} & 0 & 0 & 0 & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
\alpha_{n} & & & & \\
\vdots & & & &
\end{array}\right)
$$

Note that the operator P_{0} is nilpotent since the matrix equation

$$
\begin{equation*}
P_{0}^{2}+(1-\gamma) P_{0}=0 \tag{13}
\end{equation*}
$$

is valid. The inverse of \mathcal{R} is then a slightly simpler matrix

$$
\begin{equation*}
\mathcal{R}^{-1}=I+P_{0} \tag{14}
\end{equation*}
$$

because of (7). The operator \mathcal{R} in fact induces an ad hoc computability structure \mathcal{T}_{2} in the space ℓ^{2} from the standard computability structure \mathcal{S}_{2} in ℓ^{2} in the sense $\mathcal{T}_{2}=\mathcal{R}^{-1}\left(\mathcal{S}_{2}\right)$.

The following is an ℓ^{2} version of Proposition 2.1.
Proposition 2.2. Consider the sequence $\left\{x_{(n)}\right\}$, given by $x_{(n)}=\sum_{k=0}^{\infty} a_{n k} e_{(k)} .\left\{x_{(n)}\right\}$ is a computable sequence in \mathcal{T}_{2} if and only if the following conditions hold:
a. the sequences $\left\{\frac{1}{\gamma} a_{n 0}\right\}$ and $\left\{a_{n k}-\frac{\alpha_{k}}{\gamma} a_{n 0}\right\}$ are computable;
b. $\sum_{k=1}^{\infty}\left|a_{n k}-\frac{\alpha_{k}}{\gamma} a_{n 0}\right|^{2}$ converge effectively in n and k.

Proof. Recall that $\left\{e_{(n)}\right\}$ is an effective generating set of \mathcal{S}_{2}. Thus, just write down the computability criterion of the sequence $\left\{\mathcal{R}\left(x_{(n)}\right)\right\}$ in \mathcal{S}_{2} (see [3], p. 136, Lemma 1).

Now recall (8). By (10), the right-hand side of (8) is a positive definite quadratic form of $y \in \ell^{2}$

$$
\begin{equation*}
(\mathbf{x}, \mathbf{x})=(y, G y) \tag{15}
\end{equation*}
$$

Here $G: \ell^{2} \rightarrow \ell^{2}$ is a self-adjoint operator given by

$$
G=\left(R_{\mathcal{F}}^{-1}\right)^{*} R_{\mathcal{F}}^{-1}
$$

with $Q^{*}: \mathbf{X} \rightarrow \ell^{2}$ being the adjoint of a linear operator $Q: \ell^{2} \rightarrow \mathbf{X}$. We obviously have $G=$ $\left(\mathcal{R}^{-1}\right)^{*} \mathcal{R}^{-1}$. Therefore, G is represented as an infinite square matrix $G=I+P_{0}^{*}+P_{0}+P_{0}^{*} P_{0}$.

Lemma 2.2. Let Γ_{0} be an infinte square matrix:
(16)

$$
\begin{aligned}
\Gamma_{0} & =P_{0}^{*}+P_{0}+P_{0}^{*} P_{0} \\
& =\left(\begin{array}{ccccc}
0 & \alpha_{1} & \alpha_{2} & \cdots & \cdots \\
\alpha_{1} & 0 & 0 & \cdots & \cdots \\
\alpha_{2} & 0 & \cdots & \cdots & \cdots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
\alpha_{n} & 0 & & & \\
\vdots & \vdots & & &
\end{array}\right) .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
G=I+\Gamma_{0}, \quad G^{-1}=I-\frac{1}{\gamma^{2}} \Gamma_{0}+\frac{1}{\gamma^{2}} \Gamma_{0}^{2} \tag{17}
\end{equation*}
$$

Proof. Note

$$
\Gamma_{0}^{2}=\left(\begin{array}{ccccc}
1-\gamma^{2} & 0 & 0 & \cdots & \cdots \\
0 & \alpha_{1}^{2} & \alpha_{1} \alpha_{2} & \alpha_{1} \alpha_{3} & \cdots \\
0 & \alpha_{2} \alpha_{1} & \alpha_{2}^{2} & \alpha_{2} \alpha_{3} & \cdots \\
\vdots & \vdots & & \ddots & \\
\vdots & & & &
\end{array}\right)
$$

To compute G^{-1}, observe

$$
\begin{equation*}
\Gamma_{0}^{3}=\left(1-\gamma^{2}\right) \Gamma_{0} \tag{18}
\end{equation*}
$$

by a simple computation.
Remark 2.2. We also have

$$
\left(P_{0}-P_{0}^{*}\right)^{2}+\Gamma_{0}^{2}=0
$$

and

$$
\begin{aligned}
\left(P_{0}-P_{0}^{*}\right) \Gamma_{0}^{2} & =\Gamma_{0}^{2}\left(P_{0}-P_{0}^{*}\right) \\
& =\left(1-\gamma^{2}\right)\left(P_{0}-P_{0}^{*}\right)
\end{aligned}
$$

Note G^{-1} is a bounded, positive definite selfadjoint operator. Hence, we may talk of its square root $G^{-1 / 2}$ which we will compute shortly (See $\S 3$).

Now the Poincaré-Wigner orthogonalization procedure reads as follows:

Proposition 2.3. Let $e_{(0)}=R_{\mathcal{F}}(\mathbf{f})$ and $e_{(n)}=$ $R_{\mathcal{F}}\left(\mathbf{e}_{n}\right), n=1,2, \ldots$ Let

$$
\begin{equation*}
\mathbf{v}_{j}=R_{\mathcal{F}}^{-1}\left(G^{-1 / 2} e_{(j)}\right), \quad j=0,1,2, \ldots \tag{19}
\end{equation*}
$$

Then the system $\mathcal{V}=\left\{\mathbf{v}_{j} ; j=0,1,2, \ldots\right\}$ is an orthonormal basis.

Proof. Recall that each $e_{(j)}$ has only one nonvanishing component 1 at the $j+1$-st place. Let $j, k=0,1,2, \ldots$ Then

$$
\begin{aligned}
\left(\mathbf{v}_{j}, \mathbf{v}_{k}\right) & =\left(R_{\mathcal{F}}^{-1}\left(G^{-1 / 2} e_{(j)}\right), R_{\mathcal{F}}^{-1}\left(G^{-1 / 2} e_{(k)}\right)\right) \\
& =\left(G^{-1 / 2} e_{(j)}, G G^{-1 / 2} e_{(k)}\right)
\end{aligned}
$$

Here the third term is due to (15). But

$$
\begin{aligned}
\left(G^{-1 / 2} e_{(j)}, G G^{-1 / 2} e_{(k)}\right) & =\left(e_{(j)}, e_{(k)}\right) \\
& = \begin{cases}1, & j=k \\
0, & j \neq k\end{cases}
\end{aligned}
$$

Thus, \mathcal{V} is orthonormal. Completeness is obvious from Lemma 2.1.
3. The inverse square $\operatorname{root} G^{-1 / 2}$. Recall the following formula.

Lemma 3.1. Let H be a bounded self-adjoint positive definite linear operator in a Hilbert space. Then its inverse square root $H^{-1 / 2}$ is given by

$$
\begin{equation*}
H^{-1 / 2}=\frac{2}{\pi} \int_{0}^{+\infty} \sqrt{t}(t I+H)^{-2} d t \tag{20}
\end{equation*}
$$

Proof. Here we sketch its derivation using the spectral decomposition of H :

$$
H=\int_{a}^{b} s d E(s), \quad 0<a<b
$$

with the spectral projection operators $\{E(s)\}$. Then the right-hand side of (20) turns out

$$
\int_{a}^{b} \frac{2}{\pi} \int_{0}^{+\infty} \frac{\sqrt{t}}{(t+s)^{2}} d t d E(s)=\int_{a}^{b} \frac{1}{\sqrt{s}} d E(s)
$$

which is nothing but the left-hand side of (20). Note (20) is actually valid for general non-negative closed linear operators (See Komatsu [2]).

Now we compute the inverse square root $G^{-1 / 2}$.
Lemma 3.2. We have

$$
\begin{equation*}
G^{-1 / 2}=I+\beta_{1} \Gamma_{0}+\beta_{2} \Gamma_{0}^{2}, \tag{21}
\end{equation*}
$$

where

$$
\begin{gathered}
\beta_{1}=-\frac{1}{2} \frac{1}{\gamma} \sqrt{\frac{2}{1+\gamma}} \\
\beta_{2}=\frac{1}{2} \frac{1}{1-\gamma} \frac{1}{\gamma} \sqrt{\frac{2}{1+\gamma}}-\frac{1}{1-\gamma^{2}} .
\end{gathered}
$$

Proof. We apply the formula (20) to the operator G. Note

$$
\begin{aligned}
(t I+G)^{-1}= & \frac{1}{t+1} I-\frac{1}{t^{2}+2 t+\gamma^{2}} \Gamma_{0} \\
& +\frac{1}{(t+1)\left(t^{2}+2 t+\gamma^{2}\right)} \Gamma_{0}^{2}
\end{aligned}
$$

whence
(22)

$$
\begin{aligned}
(t I+G)^{-2}= & \frac{1}{(t+1)^{2}} I-\frac{2(t+1)}{\left(t^{2}+2 t+\gamma^{2}\right)^{2}} \Gamma_{0} \\
+ & \left\{-\frac{1}{1-\gamma^{2}} \frac{1}{(t+1)^{2}}\right. \\
& +\frac{1}{1-\gamma^{2}} \frac{1}{t^{2}+2 t+\gamma^{2}} \\
& \left.\quad+\frac{2}{\left(t^{2}+2 t+\gamma^{2}\right)^{2}}\right\} \Gamma_{0}^{2}
\end{aligned}
$$

for $t>0$. Note

$$
\begin{gathered}
\int_{0}^{+\infty} \frac{\sqrt{t}}{(t+1)^{2}} d t=\frac{\pi}{2} \\
\int_{0}^{+\infty} \frac{\sqrt{t}}{t^{2}+2 t+\gamma^{2}} d t=\frac{\pi}{2} \sqrt{\frac{2}{1+\gamma}}
\end{gathered}
$$

$$
\begin{gathered}
\int_{0}^{+\infty} \frac{\sqrt{t}}{\left(t^{2}+2 t+\gamma^{2}\right)^{2}} d t=\frac{\pi}{8} \frac{1}{\gamma(1+\gamma)} \sqrt{\frac{2}{1+\gamma}} \\
\int_{0}^{+\infty} \frac{(t+1) \sqrt{t}}{\left(t^{2}+2 t+\gamma^{2}\right)^{2}} d t=\frac{\pi}{8} \frac{1}{\gamma} \sqrt{\frac{2}{1+\gamma}}
\end{gathered}
$$

Hence, computing the right-hand side of (20) for $H=$ G, we get (21).

Corollary 3.1. The square root $G^{1 / 2}$ is given by the formula

$$
G^{1 / 2}=I-\beta_{1} \gamma \Gamma_{0}+\left(\beta_{1}+\beta_{2}\right) \Gamma_{0}^{2} .
$$

Proof. Employ (17) and (18).
To get some idea about the system $\mathcal{V}=\left\{\mathbf{v}_{j}\right\}$ (Proposition 2.3), we state the following.

Proposition 3.1. Let $v_{(j)}=\mathcal{R}^{-1} G^{-1 / 2}\left(e_{(j)}\right)$, $j=0,1,2, \ldots$. We have

$$
v_{(0)}=-\frac{1}{2 \beta_{1} \gamma} e_{(0)}+\beta_{1} \gamma\left(0, \alpha_{1}, \alpha_{2}, \ldots\right)
$$

and
$v_{(n)}=e_{(n)}+\alpha_{n} \beta_{1} \gamma e_{(0)}+\alpha_{n}\left(\beta_{1}+\beta_{2}\right)\left(0, \alpha_{1}, \alpha_{2}, \ldots\right)$
for $n \geq 1$. The system $\left\{v_{(n)} ; n=0,1,2, \ldots\right\}$ is complete and orthonormal in the Hilbert space ℓ^{2}.

Remark 3.1. $\beta_{1} \gamma$ and $\beta_{1}+\beta_{2}$ are not computable. To see this, note that γ is expressible as algebraic functions either of $\beta_{1} \gamma$ from

$$
\beta_{1} \gamma=-\frac{1}{2} \sqrt{\frac{2}{1+\gamma}}, \text { i.e., } \gamma=\frac{1}{2\left(\beta_{1} \gamma\right)^{2}}-1
$$

or of $\beta_{1}+\beta_{2}$ from

$$
\beta_{1}+\beta_{2}=\frac{1}{1-\gamma^{2}}\left(\sqrt{\frac{1+\gamma}{2}}-1\right)
$$

i.e., γ now is a somewhat involved algebraic function of $\beta_{1}+\beta_{2}$. Thus, if $\beta_{1} \gamma$ or $\beta_{1}+\beta_{2}$ were computable, then so would be γ, contradicting its noncomputability. Similarly, β_{1} and β_{2} are shown to be not computable.

Here is another interpretation of Lemma 3.2 and Proposition 3.1.

Proposition 3.2. $\mathcal{R}^{-1} G^{-1 / 2}$ is a unitary operator from the Hilbert space ℓ^{2} onto itself. $\mathcal{R}^{-1} G^{-1 / 2}$ is explicitly given as
$\mathcal{R}^{-1} G^{-1 / 2}=I+\frac{1}{2} \sqrt{\frac{2}{1+\gamma}}\left(P_{0}-P_{0}^{*}\right)+\left(\beta_{1}+\beta_{2}\right) \Gamma_{0}^{2}$.
Proof. Obvious from the meaning. Note also that

$$
G^{1 / 2} \mathcal{R}=I-\frac{1}{2} \sqrt{\frac{2}{1+\gamma}}\left(P_{0}-P_{0}^{*}\right)+\left(\beta_{1}+\beta_{2}\right) \Gamma_{0}^{2}
$$

by an explicit computation.
4. The computability structure generated by \mathcal{V}. Let $\mathcal{S}_{\mathcal{V}}$ be the computability structure in \mathbf{X} effectively generated by the orthonormal basis \mathcal{V}. Let $\left\{\mathbf{x}_{m}\right\}$ be a sequence in \mathbf{X}, given by

$$
\mathbf{x}_{m}=\sum_{k=0}^{\infty} c_{m k} \mathbf{v}_{k}
$$

The sequence $\left\{\mathbf{x}_{m}\right\}$ is computable with respect to $\mathcal{S}_{\mathcal{V}}$ if and only if
(i) the double sequence $\left\{c_{m k}\right\}$ is computable;
(ii) the series $\sum_{k=0}^{\infty}\left|c_{m k}\right|^{2}$ converges effectively in k and m.
(See [3], p. 136).
In passing, we have the following observation.
Lemma 4.1. Let $c_{m n}$ be a computable double sequence as in the above. Then the sequence $\left\{\sum_{n=1}^{\infty} \alpha_{n} c_{m n}\right\}$ is computable.

Proof. We show that $\left\{\sum_{n=1}^{k} \alpha_{n} c_{m n}\right\}$ effectively converges in m and k as $k \rightarrow \infty$. We have a recursive function $e(m, N)$ such that $\sum_{n \geq k}\left|c_{m n}\right|^{2} \leq$ $2^{-2 N}$ for $k \geq e(m, N)$. Then

$$
\begin{aligned}
\left|\sum_{n \geq k} \alpha_{n} c_{m n}\right| & \leq \sqrt{\sum_{n \geq k}\left|\alpha_{n}\right|^{2}} \sqrt{\sum_{n \geq k}\left|c_{m n}\right|^{2}} \\
& \leq \sqrt{\sum_{n \geq k}\left|c_{m n}\right|^{2}} \leq 2^{-N}
\end{aligned}
$$

for $k \geq e(m, N)$.
We show that the computability structure $\mathcal{S}_{\mathcal{V}}$ is different from the structures \mathcal{S} and \mathcal{T}.

Proposition 4.1. \mathbf{f} is not computable in the structure $\mathcal{S}_{\mathcal{V}}$. Thus, \mathcal{T} and $\mathcal{S}_{\mathcal{V}}$ are different.

Proof. Note $\mathbf{f}=\sum_{n=0}^{\infty} \varphi_{n} \mathbf{v}_{n}$, where

$$
\begin{aligned}
\varphi_{n} & =\left(\mathbf{f}, \mathbf{v}_{n}\right)=\left(e_{(0)}, G^{1 / 2} e_{(n)}\right) \\
& = \begin{cases}-\frac{1}{2 \beta_{1} \gamma}, & n=0 \\
-\alpha_{n} \beta_{1} \gamma+\left(\beta_{1}+\beta_{2}\right) \alpha_{n}^{2}, & n \geq 1\end{cases}
\end{aligned}
$$

by virtue of Poposition 2.3 and Corollary 3.1.
Proposition 4.2. The computability structure $\mathcal{S}_{\mathcal{V}}$ in \mathbf{X} is different from the standard computability structure \mathcal{S}.

Proof. Let us check how this computability criterion is related to the standard computability struc-
ture \mathcal{S} of \mathbf{X}. To do so, we export the question to the space ℓ^{2} and compare computability structures respectively induced by $\left\{v_{(j)}\right\}$ and by $\left\{e_{(j)}\right\}$. Thus, the above criterion ensures that the sequence $\left\{x_{(m)}\right\}$, given by

$$
\begin{equation*}
x_{(m)}=\sum_{k=0}^{\infty} c_{m k} v_{(k)} \tag{23}
\end{equation*}
$$

is computable with respect to the structure corresponding to $\left\{v_{(j)}\right\}$. Rewriting (23) in terms of $\left\{e_{(j)}\right\}$, we have

$$
x_{(m)}=\sum_{n=0}^{\infty} \tilde{c}_{m n} e_{(n)}
$$

where $\tilde{c}_{m 0}=-1 /\left(2 \beta_{1} \gamma\right) c_{m 0}+\beta_{1} \gamma \sum_{k=1}^{\infty} \alpha_{k} c_{m k}$ and $\tilde{c}_{m n}=c_{m n}+\alpha_{n} \beta_{1} \gamma c_{m 0}+\alpha_{n}\left(\beta_{1}+\beta_{2}\right) \sum_{k=1}^{\infty} \alpha_{k} c_{m k}$ for $n \geq 1$. Thus, by virtue of Lemma 4.1 and Remark 3.1, $\tilde{c}_{m 0}$ is not computable unless $c_{m 0}=0$ and $\sum_{k=1}^{\infty} \alpha_{k} c_{m k}=0$. When $c_{m 0}=0, \tilde{c}_{m n}, n \geq 1$, are not computable unless $\sum_{k=1}^{\infty} \alpha_{k} c_{m k}=0$. This shows that the sequence $\left\{x_{(n)}\right\} \notin \mathcal{S}_{2}$ at least when $\sum_{k=1}^{\infty} \alpha_{k} c_{m k} \neq 0$ (for some m).

Remark 4.1. In a similar manner, it can be shown that $\left\{x_{(n)}\right\} \notin \mathcal{T}_{2}$ when $\sum_{k=1}^{\infty} \alpha_{k} c_{m k} \neq 0$ for some m while $c_{n 0}=0$ for all n (See Proposition 2.2. See also Stability Lemma, [3], p. 79).
5. The Pour-El \& Richards' operator T. Pour-El and Richards originally considered the following self-adjoint opertor T defined by

$$
\begin{equation*}
T \mathbf{e}_{0}=0, \quad T \mathbf{e}_{n}=2^{-n} \mathbf{e}_{n}, n \geq 1 \tag{24}
\end{equation*}
$$

Its matrix representation in ℓ^{2} in the basis $\left\{e_{(n)}\right\}$ is given by

$$
\Phi_{\mathcal{E}} T \Phi_{\mathcal{E}}^{-1}=\left(\begin{array}{cccc}
0 & 0 & \cdots & \\
0 & 2^{-1} & 0 & \\
0 & 0 & 2^{-2} & \ddots \\
\vdots & & \ddots & \ddots
\end{array}\right)
$$

To obtain the matrix representation in the basis $\left\{v_{(n)}\right\}$, we have to compute

$$
\tilde{T}=\mathcal{R}^{-1} G^{-1 / 2} \Phi_{\mathcal{E}} T \Phi_{\mathcal{E}}^{-1} G^{1 / 2} \mathcal{R}
$$

Let $\rho=\sum_{n=1}^{\infty} 2^{-n} \alpha_{n}^{2}$. Then $\tilde{T}=\left(t_{i j}\right)(i, j=$ $0,1,2, \ldots$) is given by

$$
\begin{gathered}
t_{00}=\frac{1}{2} \frac{1}{1+\gamma} \rho \\
t_{0 i}=t_{i 0}=\beta_{1} \gamma\left(\frac{1}{2^{i}}+\left(\beta_{1}+\beta_{2}\right) \rho\right) \alpha_{i}
\end{gathered}
$$

$i \geq 1$, and, for $i, j \geq 1$,

$$
\begin{aligned}
t_{i j}= & t_{j i} \\
= & \left(\beta_{1}+\beta_{2}\right)\left\{\frac{1}{2^{i}}+\frac{1}{2^{j}}+\left(\beta_{1}+\beta_{2}\right) \rho\right\} \alpha_{i} \alpha_{j} \\
& +\frac{1}{2^{i}} \delta_{i j}
\end{aligned}
$$

where $\delta_{i j}$ is Kronecker's delta. Thus, none of the components are computable.

However, any eigenvector corresponding to the eigenvalue 0 is a multiple of $v_{(0)}$. Recall $v_{(0)}$ is computable in the computability structure $\mathcal{S}_{\mathcal{V}}$.

Remark 5.1. ρ is computable. In fact,

$$
\sum_{n=N}^{\infty} \frac{\alpha_{n}^{2}}{2^{n}} \leq 2^{-N}\left(1-\gamma^{2}\right) \leq 2^{-N}
$$

for any positive integer N.

References

[1] Daubechies, I.: Ten Lectures on Wavelets (CBMSNSF Regional Conference Series in Applied Mathematics, no.61). Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992).
[2] Komatsu, H.: Fractional powers of operators. Pacific J. Math., 19, 285-346 (1966).
[3] Pour-El, Marian B., and Richards, J. Ian: Computability in Analysis and Physics. SpringerVerlag, Berline-Heidelberg (1989).

[^0]: 2000 Mathematics Subject Classification. Primary 03Dxx; Secondary 46Axx.

