On an ad hoc computability structure in a Hilbert space

By Atsushi Yoshikawa

Faculty of Mathematics, Kyushu University, 10-1, Hakozaki 6-chome, Fukuoka 812-8581 (Communicated by Shigefumi MORI, M. J. A., March 12, 2003)

Abstract: Pour-El & Richards [3] discussed an ad hoc computability structure in an effectively separable Hilbert space taking as an effective generating set a slightly modified one from the original orthonormal basis. We show that an application of the Poincaré-Wigner orthogonalizing procedure to Pour-El & Richards' modified system gives an orthonormal effective generating set which yields a third computability structure.

Key words: Computability structure; effectively separable Hilbert space.

1. Introduction. Pour-El and Richards discussed an *ad hoc* computability structure in an effectively separable Hilbert space \mathbf{X} (over the complex number field) with a computability structure \mathcal{S} , i.e., $\langle \mathbf{X}, \mathcal{S} \rangle$ ([3], Chapter 4, §§5, 6). Recall that a computability structure is the set of all the computable sequences and that computable sequences in \mathbf{X} are specified by a set of three axioms ([3], Chapter 2, $\S1$). Effective separability of **X** means that **X** admits a computable sequence, say \mathcal{E} , called effective generating set, whose linear combinations are dense in **X**. Thus, when a countable basis is designated as a computable sequence, a computability structure is determined (Effective Densnity Lemma. [3], p. 86). In fact, Pour-El & Richards actually worked out the case of $\mathbf{X} = L^2[0,1]$, taking the standard complete orthonormal basis { $e^{2\pi i m x}$, $m = 0, \pm 1, \pm 2, \ldots$ } as an effectively generating set, which determines the standard computability structure of $L^{2}[0, 1]$. Since their crucial arguments were done in the space ℓ^2 , we may replace $L^{2}[0,1]$ by a separable Hilbert space **X** and $\{e^{2\pi imx}\}\$ by any of its complete orthonormal bases $\mathcal{E} = \{\mathbf{e}_n; n = 0, 1, 2, \ldots\}, \text{ and may then consider } \mathcal{E}$ as the *standard* basis of ${\bf X}$ and the computability structure \mathcal{S} generated by it as the *standard* one.

Following [3] faithfully, we then have another computability structure, an *ad hoc* computability structure \mathcal{T} in \mathbf{X} , effectively generated by a sequence $\mathcal{F} = \{\mathbf{f}, \mathbf{e}_1, \mathbf{e}_2, \ldots\}$ with $\mathbf{f} \in \mathbf{X}$, non-computable with respect to \mathcal{S} . To specify \mathbf{f} , Pour-El and Richards took a recursive function $a : \mathbf{N} \to \mathbf{N}$ which enumerates a recursively enumerable non-recursive set A in a one-to-one manner, supposing $0 \notin A$. Then they let

(1)
$$\alpha_n = 2^{-a(n)}, \quad n \ge 1,$$

and

(2)
$$\gamma^2 = 1 - \sum_{n=1}^{\infty} \alpha_n^2, \quad \gamma > 0,$$

whence finally

(3)
$$\mathbf{f} = \gamma \, \mathbf{e}_0 + \sum_{n=1}^{\infty} \, \alpha_n \, \mathbf{e}_n.$$

Notice that $\sqrt{2/3} < \gamma < 1$ and γ is not computable since the convergence (2) is not effective (cf. [3], pp. 16–17). Thus, **f** is not computable in $\langle \mathbf{X}, \mathcal{S} \rangle$. They subsequently applied the Gramm-Schmidt orthogonalization procedure to the system \mathcal{F} to get an orthonormal basis { \mathbf{u}_n ; n = 0, 1, 2, ...} of **X**.

Although their observations occupied only a part of the proof of the Eigenvector Theorem, they thus showed existence of a unitary operator $U: \mathbf{X} \to \mathbf{X}$, which maps \mathcal{S} onto \mathcal{T} . However, they wondered how this operator U could be grasped more explicitly ([3], pp. 139–141). Actually, it is evident that the image \mathcal{E}_V of \mathcal{E} by any unitary operator V in \mathbf{X} defines a computability structure \mathcal{S}_V in \mathbf{X} . If \mathcal{E} is an orthonormal basis, then so is \mathcal{E}_V . Thus, by means of Fourier coefficients, the question, as mentioned earlier, is reduced to a discussion of unitary matrices acting in the space ℓ^2 of square summable series. It is certainly interesting to obtain detailed knowledge about such matrices.

The purpose of the present note is to apply the Poincaré-Wigner orthogonalization procedure to the

²⁰⁰⁰ Mathematics Subject Classification. Primary 03Dxx; Secondary 46Axx.

above \mathcal{F} , which results producing an explit unitary matrix (See §3 below). It turns out that the orthonormal basis thus obtained defines a third computability structure in **X** which coincides neither with the standard one \mathcal{S} nor with the structure \mathcal{T} of Pour-El & Richards mentioned above (See §4).

2. The Poincaré-Wigner procedure. It is well-known that given an orthonormal basis $\mathcal{E} = \{\mathbf{e}_n; n = 0, 1, 2, ...\}$ of a Hilbert space \mathbf{X} , a unitary isomorphism $\Phi_{\mathcal{E}}$ from \mathbf{X} to the Hilbert space ℓ^2 of square summable sequences of complex numbers is determined by the Fourier expansion

(4)
$$\Phi_{\mathcal{E}} : \mathbf{X} \ni \mathbf{x} \mapsto x = (\xi_0, \xi_1, \xi_2, \ldots) \in \ell^2$$
$$\xi_n = (\mathbf{x}, \mathbf{e}_n), \quad n = 0, 1, 2, \ldots,$$

where (,) denotes the scalar product of the Hilbert space **X**. The unitarity is nothing but the Parseval relation

(5)
$$(\mathbf{x}, \mathbf{x}) = \sum_{n=0}^{\infty} |\xi_n|^2.$$

The sequence \mathcal{F} is not orthonormal, but serves as a basis of the space **X** (For Riesz bases and the related materials, see, e.g., Daubechies [1]).

Lemma 2.1. The sequence \mathcal{F} is a Riesz basis in the Hilbert space \mathbf{X} . In other words, \mathcal{F} determines a linear isomorphism $R_{\mathcal{F}}$ from \mathbf{X} onto the Hilbert space ℓ^2 .

Proof. First observe that any $\mathbf{x} \in \mathbf{X}$ is uniquely expressed as

(6)
$$\mathbf{x} = \eta_0 \mathbf{f} + \sum_{n=1}^{\infty} \eta_n \mathbf{e}_n$$

the right-hand side converging in **X**. In fact, in terms of the system $\{\mathbf{e}_n\}$,

(7)
$$\eta_0 \gamma = \xi_0, \quad \eta_0 \alpha_n + \eta_n = \xi_n, \quad n = 1, 2, \dots$$

Note then

(8)
$$(\mathbf{x}, \mathbf{x}) = |\eta_0|^2 + \sum_{n=1}^{\infty} \alpha_n (\eta_0 \overline{\eta_n} + \overline{\eta_0} \eta_n) + \sum_{n=1}^{\infty} |\eta_n|^2$$

since $(\mathbf{f}, \mathbf{f}) = 1$. Since

$$\left|\sum_{n=1}^{\infty} \alpha_n \left(\eta_0 \overline{\eta_n} + \overline{\eta_0} \eta_n\right)\right| \le \frac{1 - \gamma^2}{\epsilon} |\eta_0|^2 + \epsilon \sum_{n=1}^{\infty} |\eta_n|^2$$

for any $\epsilon > 0$, we see

(9)
$$A \sum_{n=0}^{\infty} |\eta_n|^2 \le (\mathbf{x}, \mathbf{x}) \le B \sum_{n=0}^{\infty} |\eta_n|^2$$

for some A > 0 and B > 0. In fact, taking $\epsilon = 1 - (1/2)\gamma^2$, we have

$$A = \min\left\{1 - \frac{1 - \gamma^2}{\epsilon}, 1 - \epsilon\right\} = \frac{1}{2}\gamma^2$$

while by taking $\epsilon = 1$

$$B = \max\left\{1 + \frac{1 - \gamma^2}{\epsilon}, 1 + \epsilon\right\} = 2.$$

Thus, (6) and (9) determine a linear isomorphism

(10)
$$\mathcal{R}_{\mathcal{F}}: \mathbf{x} \mapsto y = (\eta_0, \eta_1, \eta_2, \ldots)$$

from **X** to the Hilbert space ℓ^2 of square summable sequences.

Now we rewrite the computability structure \mathcal{T} in the following way (cf. [3], p. 135).

Proposition 2.1. Let S_2 be the standard computability structure of the Hilbert space ℓ^2 . Then the linear isomorphism $R_{\mathcal{F}}$ maps the computability structure \mathcal{T} of \mathbf{X} onto S_2 .

Remark 2.1. By means of the Fourier expansion $\Phi_{\mathcal{E}}$, we have the linear isomorphism

$$\mathcal{R} = R_{\mathcal{F}} \Phi_{\mathcal{E}}^{-1} : \ell^2 \to \ell^2.$$

In fact, write the Fourier expansion

$$\Phi_{\mathcal{E}}\left(\sum_{n=0}^{\infty} c_n \, \mathbf{e}_n\right) = \sum_{n=0}^{\infty} c_n \, e_{(n)}.$$

Here each $e_{(j)} \in \ell^2$ has only one non-vanishing component, the (j+1)-st, which is 1. Then $\Phi_{\mathcal{E}}(\mathbf{f}) = \gamma e_{(0)} + \sum_{n=1}^{\infty} \alpha_n e_{(n)}$ but $R_{\mathcal{F}}(\mathbf{f}) = e_{(0)}$ and $R_{\mathcal{F}}(\mathbf{e}_n) = e_{(n)}$ for $n \geq 1$. \mathcal{R} is given by an infinite square matrix

(11)
$$\mathcal{R} = I - \frac{1}{\gamma} P_0,$$

where I is the identity matrix in the space ℓ^2 and

(12)
$$P_{0} = \begin{pmatrix} \gamma - 1 & 0 & 0 & \cdots & \cdots \\ \alpha_{1} & 0 & 0 & \ddots & \ddots \\ \alpha_{2} & 0 & 0 & 0 & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \alpha_{n} & & & & \\ \vdots & & & & & \end{pmatrix}.$$

Note that the operator P_0 is nilpotent since the matrix equation

(13)
$$P_0^2 + (1 - \gamma)P_0 = 0$$

is valid. The inverse of ${\mathcal R}$ is then a slightly simpler matrix

(14)
$$\mathcal{R}^{-1} = I + P_0$$

because of (7). The operator \mathcal{R} in fact induces an ad hoc computability structure \mathcal{T}_2 in the space ℓ^2 from the standard computability structure \mathcal{S}_2 in ℓ^2 in the sense $\mathcal{T}_2 = \mathcal{R}^{-1}(\mathcal{S}_2)$.

The following is an ℓ^2 version of Proposition 2.1.

Proposition 2.2. Consider the sequence $\{x_{(n)}\}$, given by $x_{(n)} = \sum_{k=0}^{\infty} a_{nk} e_{(k)}$. $\{x_{(n)}\}$ is a computable sequence in T_2 if and only if the following conditions hold:

a. the sequences $\left\{\frac{1}{\gamma}a_{n0}\right\}$ and $\left\{a_{nk} - \frac{\alpha_k}{\gamma}a_{n0}\right\}$ are computable;

b. $\sum_{k=1}^{\infty} |a_{nk} - \frac{\alpha_k}{\gamma} a_{n0}|^2$ converge effectively in n and k.

Proof. Recall that $\{e_{(n)}\}$ is an effective generating set of S_2 . Thus, just write down the computability criterion of the sequence $\{\mathcal{R}(x_{(n)})\}$ in S_2 (see [3], p. 136, Lemma 1).

Now recall (8). By (10), the right-hand side of (8) is a positive definite quadratic form of $y \in \ell^2$

(15)
$$(\mathbf{x}, \mathbf{x}) = (y, Gy).$$

Here $G: \ell^2 \to \ell^2$ is a self-adjoint operator given by

$$G = (R_{\mathcal{F}}^{-1})^* R_{\mathcal{F}}^{-1}$$

with $Q^* : \mathbf{X} \to \ell^2$ being the adjoint of a linear operator $Q : \ell^2 \to \mathbf{X}$. We obviously have $G = (\mathcal{R}^{-1})^* \mathcal{R}^{-1}$. Therefore, G is represented as an infinite square matrix $G = I + P_0^* + P_0 + P_0^* P_0$.

Lemma 2.2. Let Γ_0 be an infinite square matrix:

(16)
$$\Gamma_{0} = P_{0}^{*} + P_{0} + P_{0}^{*} P_{0}$$
$$= \begin{pmatrix} 0 & \alpha_{1} & \alpha_{2} & \cdots & \cdots \\ \alpha_{1} & 0 & 0 & \cdots & \cdots \\ \alpha_{2} & 0 & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \alpha_{n} & 0 & & & \\ \vdots & \vdots & & & \end{pmatrix}.$$

Then we have

(17)
$$G = I + \Gamma_0, \quad G^{-1} = I - \frac{1}{\gamma^2} \Gamma_0 + \frac{1}{\gamma^2} \Gamma_0^2.$$

$$\Gamma_0^2 = \begin{pmatrix} 1 - \gamma^2 & 0 & 0 & \cdots & \cdots \\ 0 & \alpha_1^2 & \alpha_1 \alpha_2 & \alpha_1 \alpha_3 & \cdots \\ 0 & \alpha_2 \alpha_1 & \alpha_2^2 & \alpha_2 \alpha_3 & \cdots \\ \vdots & \vdots & \ddots & \\ \vdots & & & \ddots & \\ \vdots & & & & & \end{pmatrix}.$$

To compute G^{-1} , observe

(18)
$$\Gamma_0^3 = (1 - \gamma^2) \, \Gamma_0$$

by a simple computation.

Remark 2.2. We also have

$$(P_0 - P_0^*)^2 + \Gamma_0^2 = 0,$$

and

$$(P_0 - P_0^*) \Gamma_0^2 = \Gamma_0^2 (P_0 - P_0^*)$$

= $(1 - \gamma^2) (P_0 - P_0^*)$

Note G^{-1} is a bounded, positive definite selfadjoint operator. Hence, we may talk of its square root $G^{-1/2}$ which we will compute shortly (See §3).

Now the Poincaré-Wigner orthogonalization procedure reads as follows:

Proposition 2.3. Let $e_{(0)} = R_{\mathcal{F}}(\mathbf{f})$ and $e_{(n)} = R_{\mathcal{F}}(\mathbf{e}_n)$, $n = 1, 2, \ldots$ Let

(19)
$$\mathbf{v}_j = R_{\mathcal{F}}^{-1} (G^{-1/2} e_{(j)}), \quad j = 0, 1, 2, \dots$$

Then the system $\mathcal{V} = \{\mathbf{v}_j; j = 0, 1, 2, ...\}$ is an orthonormal basis.

Proof. Recall that each $e_{(j)}$ has only one non-vanishing component 1 at the j + 1-st place. Let $j, k = 0, 1, 2, \ldots$ Then

$$(\mathbf{v}_j, \mathbf{v}_k) = \left(R_{\mathcal{F}}^{-1}(G^{-1/2} e_{(j)}), R_{\mathcal{F}}^{-1}(G^{-1/2} e_{(k)}) \right)$$
$$= \left(G^{-1/2} e_{(j)}, G G^{-1/2} e_{(k)} \right).$$

Here the third term is due to (15). But

$$(G^{-1/2} e_{(j)}, G G^{-1/2} e_{(k)}) = (e_{(j)}, e_{(k)})$$
$$= \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

Thus, \mathcal{V} is orthonormal. Completeness is obvious from Lemma 2.1.

3. The inverse square root $G^{-1/2}$. Recall the following formula.

Lemma 3.1. Let H be a bounded self-adjoint positive definite linear operator in a Hilbert space. Then its inverse square root $H^{-1/2}$ is given by

No. 3]

A. Yoshikawa

(20)
$$H^{-1/2} = \frac{2}{\pi} \int_0^{+\infty} \sqrt{t} \, (t \, I + H)^{-2} \, dt$$

Proof. Here we sketch its derivation using the spectral decomposition of H:

$$H = \int_a^b s \, dE(s), \quad 0 < a < b,$$

with the spectral projection operators $\{E(s)\}$. Then the right-hand side of (20) turns out

$$\int_{a}^{b} \frac{2}{\pi} \int_{0}^{+\infty} \frac{\sqrt{t}}{(t+s)^{2}} dt \, dE(s) = \int_{a}^{b} \frac{1}{\sqrt{s}} \, dE(s)$$

which is nothing but the left-hand side of (20). Note (20) is actually valid for general non-negative closed linear operators (See Komatsu [2]).

Now we compute the inverse square root $G^{-1/2}$. Lemma 3.2. We have

(21) $G^{-1/2} = I + \beta_1 \, \Gamma_0 + \beta_2 \, \Gamma_0^2,$

where

$$\beta_{1} = -\frac{1}{2} \frac{1}{\gamma} \sqrt{\frac{2}{1+\gamma}},$$

$$\beta_{2} = \frac{1}{2} \frac{1}{1-\gamma} \frac{1}{\gamma} \sqrt{\frac{2}{1+\gamma}} - \frac{1}{1-\gamma^{2}}.$$

Proof. We apply the formula (20) to the operator G. Note

$$(t I + G)^{-1} = \frac{1}{t+1} I - \frac{1}{t^2 + 2t + \gamma^2} \Gamma_0 + \frac{1}{(t+1)(t^2 + 2t + \gamma^2)} \Gamma_0^2,$$

whence

(22)

$$(t I + G)^{-2} = \frac{1}{(t+1)^2} I - \frac{2(t+1)}{(t^2 + 2t + \gamma^2)^2} \Gamma_0 + \left\{ -\frac{1}{1 - \gamma^2} \frac{1}{(t+1)^2} + \frac{1}{1 - \gamma^2} \frac{1}{t^2 + 2t + \gamma^2} + \frac{2}{(t^2 + 2t + \gamma^2)^2} \right\} \Gamma_0^2$$

for t > 0. Note

$$\int_{0}^{+\infty} \frac{\sqrt{t}}{(t+1)^2} dt = \frac{\pi}{2} ,$$
$$\int_{0}^{+\infty} \frac{\sqrt{t}}{t^2 + 2t + \gamma^2} dt = \frac{\pi}{2} \sqrt{\frac{2}{1+\gamma}} ,$$

$$\int_{0}^{+\infty} \frac{\sqrt{t}}{(t^{2}+2t+\gamma^{2})^{2}} dt = \frac{\pi}{8} \frac{1}{\gamma(1+\gamma)} \sqrt{\frac{2}{1+\gamma}},$$
$$\int_{0}^{+\infty} \frac{(t+1)\sqrt{t}}{(t^{2}+2t+\gamma^{2})^{2}} dt = \frac{\pi}{8} \frac{1}{\gamma} \sqrt{\frac{2}{1+\gamma}}.$$

Hence, computing the right-hand side of (20) for H = G, we get (21).

Corollary 3.1. The square root $G^{1/2}$ is given by the formula

$$G^{1/2} = I - \beta_1 \gamma \Gamma_0 + (\beta_1 + \beta_2) \Gamma_0^2.$$

Proof. Employ (17) and (18). \Box

To get some idea about the system $\mathcal{V} = {\mathbf{v}_j}$ (Proposition 2.3), we state the following.

Proposition 3.1. Let $v_{(j)} = \mathcal{R}^{-1}G^{-1/2}(e_{(j)}),$ $j = 0, 1, 2, \dots$ We have

$$v_{(0)} = -\frac{1}{2\beta_1\gamma} e_{(0)} + \beta_1\gamma \ (0, \alpha_1, \alpha_2, \ldots)$$

and

 $v_{(n)} = e_{(n)} + \alpha_n \beta_1 \gamma e_{(0)} + \alpha_n (\beta_1 + \beta_2) (0, \alpha_1, \alpha_2, \ldots)$

for $n \geq 1$. The system $\{v_{(n)}; n = 0, 1, 2, ...\}$ is complete and orthonormal in the Hilbert space ℓ^2 .

Remark 3.1. $\beta_1 \gamma$ and $\beta_1 + \beta_2$ are not computable. To see this, note that γ is expressible as algebraic functions either of $\beta_1 \gamma$ from

$$\beta_1 \gamma = -\frac{1}{2} \sqrt{\frac{2}{1+\gamma}}, \text{ i.e., } \gamma = \frac{1}{2(\beta_1 \gamma)^2} - 1,$$

or of $\beta_1 + \beta_2$ from

$$\beta_1 + \beta_2 = \frac{1}{1 - \gamma^2} \left(\sqrt{\frac{1 + \gamma}{2}} - 1 \right)$$

i.e., γ now is a somewhat involved algebraic function of $\beta_1 + \beta_2$. Thus, if $\beta_1 \gamma$ or $\beta_1 + \beta_2$ were computable, then so would be γ , contradicting its noncomputability. Similarly, β_1 and β_2 are shown to be not computable.

Here is another interpretation of Lemma 3.2 and Proposition 3.1.

Proposition 3.2. $\mathcal{R}^{-1}G^{-1/2}$ is a unitary operator from the Hilbert space ℓ^2 onto itself. $\mathcal{R}^{-1}G^{-1/2}$ is explicitly given as

$$\mathcal{R}^{-1}G^{-1/2} = I + \frac{1}{2}\sqrt{\frac{2}{1+\gamma}} \left(P_0 - P_0^*\right) + \left(\beta_1 + \beta_2\right)\Gamma_0^2.$$

 ${\it Proof.}~$ Obvious from the meaning. Note also that

[Vol. 79(A),

68

$$G^{1/2} \mathcal{R} = I - \frac{1}{2} \sqrt{\frac{2}{1+\gamma}} \left(P_0 - P_0^* \right) + \left(\beta_1 + \beta_2 \right) \Gamma_0^2$$

by an explicit computation.

4. The computability structure generated by \mathcal{V} . Let $\mathcal{S}_{\mathcal{V}}$ be the computability structure in **X** effectively generated by the orthonormal basis \mathcal{V} . Let $\{\mathbf{x}_m\}$ be a sequence in **X**, given by

$$\mathbf{x}_m = \sum_{k=0}^{\infty} c_{mk} \, \mathbf{v}_k.$$

The sequence $\{\mathbf{x}_m\}$ is computable with respect to $\mathcal{S}_{\mathcal{V}}$ if and only if

- (i) the double sequence $\{c_{mk}\}$ is computable;
- (ii) the series $\sum_{k=0}^{\infty} |c_{mk}|^2$ converges effectively in k and m.
- (See [3], p. 136).

In passing, we have the following observation.

Lemma 4.1. Let c_{mn} be a computable double sequence as in the above. Then the sequence $\{\sum_{n=1}^{\infty} \alpha_n c_{mn}\}$ is computable.

Proof. We show that $\{\sum_{n=1}^{k} \alpha_n c_{mn}\}$ effectively converges in m and k as $k \to \infty$. We have a recursive function e(m, N) such that $\sum_{n \ge k} |c_{mn}|^2 \le 2^{-2N}$ for $k \ge e(m, N)$. Then

$$\left|\sum_{n\geq k} \alpha_n c_{mn}\right| \leq \sqrt{\sum_{n\geq k} |\alpha_n|^2} \sqrt{\sum_{n\geq k} |c_{mn}|^2}$$
$$\leq \sqrt{\sum_{n\geq k} |c_{mn}|^2} \leq 2^{-N}$$

for $k \ge e(m, N)$.

We show that the computability structure $S_{\mathcal{V}}$ is different from the structures S and \mathcal{T} .

Proposition 4.1. f is not computable in the structure $S_{\mathcal{V}}$. Thus, \mathcal{T} and $S_{\mathcal{V}}$ are different.

Proof. Note $\mathbf{f} = \sum_{n=0}^{\infty} \varphi_n \mathbf{v}_n$, where

$$\varphi_n = (\mathbf{f}, \mathbf{v}_n) = (e_{(0)}, G^{1/2} e_{(n)})$$
$$= \begin{cases} -\frac{1}{2\beta_1 \gamma}, & n = 0\\ -\alpha_n \beta_1 \gamma + (\beta_1 + \beta_2)\alpha_n^2, & n \ge 1 \end{cases}$$

by virtue of Poposition 2.3 and Corollary 3.1. $\hfill \Box$

Proposition 4.2. The computability structure S_V in **X** is different from the standard computability structure S.

Proof. Let us check how this computability criterion is related to the standard computability struc-

ture S of **X**. To do so, we export the question to the space ℓ^2 and compare computability structures respectively induced by $\{v_{(j)}\}$ and by $\{e_{(j)}\}$. Thus, the above criterion ensures that the sequence $\{x_{(m)}\}$, given by

(23)
$$x_{(m)} = \sum_{k=0}^{\infty} c_{mk} v_{(k)},$$

is computable with respect to the structure corresponding to $\{v_{(j)}\}$. Rewriting (23) in terms of $\{e_{(j)}\}$, we have

$$x_{(m)} = \sum_{n=0}^{\infty} \tilde{c}_{mn} \, e_{(n)}$$

where $\tilde{c}_{m0} = -1/(2\beta_1\gamma) c_{m0} + \beta_1\gamma \sum_{k=1}^{\infty} \alpha_k c_{mk}$ and $\tilde{c}_{mn} = c_{mn} + \alpha_n\beta_1\gamma c_{m0} + \alpha_n(\beta_1 + \beta_2) \sum_{k=1}^{\infty} \alpha_k c_{mk}$ for $n \ge 1$. Thus, by virtue of Lemma 4.1 and Remark 3.1, \tilde{c}_{m0} is not computable unless $c_{m0} = 0$ and $\sum_{k=1}^{\infty} \alpha_k c_{mk} = 0$. When $c_{m0} = 0$, \tilde{c}_{mn} , $n \ge 1$, are not computable unless $\sum_{k=1}^{\infty} \alpha_k c_{mk} = 0$. This shows that the sequence $\{x_{(n)}\} \notin S_2$ at least when $\sum_{k=1}^{\infty} \alpha_k c_{mk} \neq 0$ (for some m).

Remark 4.1. In a similar manner, it can be shown that $\{x_{(n)}\} \notin \mathcal{T}_2$ when $\sum_{k=1}^{\infty} \alpha_k c_{mk} \neq 0$ for some *m* while $c_{n0} = 0$ for all *n* (See Proposition 2.2. See also Stability Lemma, [3], p. 79).

5. The Pour-El & Richards' operator T. Pour-El and Richards originally considered the following self-adjoint opertor T defined by

(24)
$$T \mathbf{e}_0 = 0, \quad T \mathbf{e}_n = 2^{-n} \mathbf{e}_n, \ n \ge 1.$$

Its matrix representation in ℓ^2 in the basis $\{e_{(n)}\}$ is given by

$$\Phi_{\mathcal{E}} T \Phi_{\mathcal{E}}^{-1} = \begin{pmatrix} 0 & 0 & \cdots & & \\ 0 & 2^{-1} & 0 & & \\ 0 & 0 & 2^{-2} & \ddots & \\ \vdots & & \ddots & \ddots & \end{pmatrix}.$$

To obtain the matrix representation in the basis $\{v_{(n)}\}$, we have to compute

$$\tilde{T} = \mathcal{R}^{-1} G^{-1/2} \Phi_{\mathcal{E}} T \Phi_{\mathcal{E}}^{-1} G^{1/2} \mathcal{R}.$$

Let $\rho = \sum_{n=1}^{\infty} 2^{-n} \alpha_n^2$. Then $\tilde{T} = (t_{ij})$ $(i, j = 0, 1, 2, \ldots)$ is given by

$$t_{00} = \frac{1}{2} \frac{1}{1+\gamma} \rho$$

$$t_{0i} = t_{i0} = \beta_1 \gamma \left(\frac{1}{2^i} + (\beta_1 + \beta_2)\rho\right) \alpha_i,$$

69

No. 3]

 $i \ge 1$, and, for $i, j \ge 1$,

$$t_{ij} = t_{ji}$$

= $(\beta_1 + \beta_2) \left\{ \frac{1}{2^i} + \frac{1}{2^j} + (\beta_1 + \beta_2)\rho \right\} \alpha_i \alpha_j$
+ $\frac{1}{2^i} \delta_{ij}$

where δ_{ij} is Kronecker's delta. Thus, none of the components are computable.

However, any eigenvector corresponding to the eigenvalue 0 is a multiple of $v_{(0)}$. Recall $v_{(0)}$ is computable in the computability structure $S_{\mathcal{V}}$.

Remark 5.1. ρ is computable. In fact,

$$\sum_{n=N}^{\infty} \frac{\alpha_n^2}{2^n} \le 2^{-N} \left(1 - \gamma^2\right) \le 2^{-N}$$

for any positive integer N.

References

- Daubechies, I.: Ten Lectures on Wavelets (CBMS-NSF Regional Conference Series in Applied Mathematics, no. 61). Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992).
- [2] Komatsu, H.: Fractional powers of operators. Pacific J. Math., 19, 285–346 (1966).
- [3] Pour-El, Marian B., and Richards, J. Ian: Computability in Analysis and Physics. Springer-Verlag, Berline-Heidelberg (1989).