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Canonical curves of genus eight

By Manabu IDE® and Shigeru MUKAI**)
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Abstract:

A non-tetragonal curve of genus 8 is a complete intersection of divisors in either

P2 x P2, a 6-dimensional weighted Grassmannian or the 8-dimensional Grassmannian.

Key words:

Let C = C14 C P7 be a canonical curve of
genus 8 over an algebraically closed field k. If C has
no g%, then C14 C P7 is a transversal linear section
[G(2,6) C PN HyN---N Hy of the 8-dimensional
Grassmannian ([M2]). This is the case (8) of the
Flowchart below. In this article we study the case
where C has a g a. The system of defining equa-
tions of C14 is easily found from the following: ([M1]
Prop. 5)

Theorem. (i) Assume that C has no gi. If
a? = K¢, then C is the complete intersection of the
6-dimensional weighted Grassmannian w-G(2,5) C
P (13 : 25 : 3) with a subspace P (11122), where w =
(1,1,1,3,3)/2 (Case (7)). Otherwise C is the com-
plete intersection of three divisors of bidegree (1,1),
(1,2) and (2,1) in P2 x P2 (Case (6)).

(ii) Assume that C has a gj but no gz. Then C
is the complete intersection of four divisors of bide-
gree (1,1), (1,1), (0,2) and (1,2) in P! x P* (Case
(5)).

Here a g} is a line bundle of degree d and h° >
r+1.

Corollary. C is a complete intersection of di-
visors in a vartety X which is either a non-singular
toric variety or a weighted Grassmannian:

Case | (1) (2) (3) | (4)
X Fo | PLxPLF, | W. | Bl, P3
clifc | o 1 2
(5) (6) (7) (8)
Pl xP* [ P2xP? | w-G(2,5) | G(2,6)
3
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Here W7 is the P*-bundle P(Os®Os(—K)) over Sy,
the blow-up of P? at two points. The bottom row
indicates the Clifford index of C.

This is applied to the K3-extension problem in

1.
no
yes yes
{7) Flowchart (3)
1. Cases of small Clifford index. The
cases (1), ...,(4) are casy.

Case (1). C is a double covering y?> =
fis(wo, 1) of P! in the weighted projective space
P(1:1:9), whose minimal resolution Fy is the toric
variety X.

Case (2). X, a 2-dimensional rational scroll of
degree 6, is the quadric hull of C14 € P7 ([ACGH]
11T §3).

Case (3). Ciy C P7 is contained in the cone
over an elliptic curve E; C P® of degree 7. Er is
a hyperplane section of a smooth del Pezzo surface
S7 C P7 of degree 7. Let B be the branch locus
of the double covering C' — E7. Then there exists
a member D € | — 2Kg| with DN C = B. In the
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Pl-bundle W%, C is the intersection of the double
covering of S with branch D and the inverse image
of Er.

Case (4). Let a be a non-bielliptic g2, and 3
its Serre adjoint Kca ™!, which is a g§ by Riemann-
Roch. Then both a and 3 are base point free. @4
is a birational morphism onto a plane sextic Cg with
two nodes, one of which may be infinitely near. Let
7:8 2 8" 5% P2 be the composite of the blowing-
ups at these nodes, h the pull-back of a line, e¢; and e5
the total transform of the exceptional divisors. Since
—Kg ~3h—e; —ey and C ~ 6h—2e1 —2e5, we have
a=hlc, B=(2h—e1 —e2)|c and Ba~! = (h—e; —
eg)lc.

The morphism @ g is birational onto a space
curve Cg C P3 of degree 8. &3 extends to the mor-
phism f = Ppop_c;—e,| : S — P3 onto a quadric
surface Q. f contracts the strict transform L € |h —
e1 — ez of the line passing through the two nodes of
Cs to a nonsingular point p of Q. Since L.C =2, p
is a double point of Cg. (g is a complete intersection
of @ and a quartic surface since C' + 2L ~ 4(2h —
e1 — ez). C itself is the complete intersection of two
divisors in the blow-up X of P3 at p. One is the
strict transform ~ S of ) and the other belongs to
| — K.

Case (5). Let a be a g} and 3 its Serre adjoint.
Then || is base point free since C' is not trigonal.
B is a g}, by Riemann-Roch and very ample by as-
sumption since C has no g2 or g3.

Lemma 1.1. The multiplication map

w: H (o) @ HO(B) — HY(K(¢) is surjective.

Proof. By the base point free pencil trick
([ACGH)), the kernel of u is H(a~13). If p is not
surjective, then a~!f3 is a g2. This is a contradiction.

O

There is a commutative diagram of embeddings

Segre
IR

P! x P* P% = P*(H(a) ® H°(3))

‘P\MX‘P\B\T Tu*

C canonical P7 _ P*Ho(wc),

where p* is the linear embedding associated with the
surjection . By the lemma, the number of linearly
independent (1, 1)-forms vanishing on C is equal to
2. Therefore, C is contained in the intersection Y
of two divisors of bidegree (1,1) in X = P! x P%.
Since every divisor of bidegree (1,1) containing C
is smooth, Y is smooth of dimension 3. Moreover
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PicY = Z? by Lefschetz theorem. By easy dimen-
sion count, there exists a divisor of bidegree (1,2)
and (0,2) on Y which contain C. Since the degree of
the complete intersection Y N (1,2) N (0,1) is

(a+b)%.(a+2b).(2b).(a +b) = 14ab® = 14 = deg C,

it coincides with C, where a = priOpi(1) and b =
priOpa(1).

2. Linear net of degree 7. Assume that
C has a g2 a but no g}. Let C C P? be the im-
age of the morphism ®|,. Then C' is of degree 7
and has no triple points. By the genus formula, C'
has 7 double points, some of which may be infinitely
near. Therefore, there is a composition 7 of seven
one-point-blowing-ups

S = 5(7) —)S(G) —_— - —)S(l) —)S(O) :P2

such that @\, : C — P2 lifts to C — S. Let E; C S,
1 <i <7, be the total transform of the exceptional
divisor of the blow-up S;; — S(;—1) and h the pull
back of a line. Then C' C S belongs to the linear
system |Th — 221-7:1 E;|. Since the canonical class
Ksof Sis —3h+Y_, Ej,

o (05((n —T)h+ iE))

is the dual of H2~%(Og((4 — n)h)). Hence we have

Lemma 2.1. The restriction map

HO (S, Os (nh - éE))
L HO (C, (’)C(nh _ z; E)>

is surjective for every n. Moreover, it is an isomor-
phism for n < 6.
By the adjunction formula

7
Ko = (Ks+C)lc = hlo+ <3h - ZE) fe2
i=1
the Serre adjoint 3 = Kca~! is isomorphic to
Oc(3h— 21'7:1 E;). By Lemma 2.1, « is self adjoint,
i.e., « = B, if and only if |2h — 21'7:1 E;| # 0. We
discuss the case a = [ in the next section, and now
assume that o 2 .
Proposition 2.2. The multiplication map
Ha)®@ H(B) — H%(aB) = H°(K¢) is surjective.
Proof. Assume the contrary. Then there are
two independent (1,1)-forms on P2 x P? vanishing
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on C. Let P be the pencil generated by them, and
X = Xp its base locus. If P contains a form of
rank 1, then the image of @|, is a line, which is a
contradiction. Therefore P contains no (1,1)-forms
of rank 1.

If P is regular, then Xp is irreducible (Propo-
sition 4.1). Let m : Xp — P2 be the first pro-
jection. Then there is an effective divisor E such
that Kx = n*Kp2 + E. On one hand, since Kx =
Ox(-1,-1) and 7*Kp2 = Ox(-3,0), we have
E.C =deg Oc(2,—1) = 7. On the other hand, since
Ip is of colength 3 (Proposition 4.2), we have a com-
position series Ip = I3 C I C I; C Op2 of ideal
sheaves and a composition

Xy Box, B x, 8P

of three one-point-blow-ups. X3 is smooth and its
canonical class is ¢* Kp2 + E1 + F2 4+ E3, where E; is
the total transform of the exceptional divisors of ;.
By the universal property of the blow-up ([H] I 7.14),
there is a natural birational morphism ¢ : X3 —
Xp = Blj, P2. Since Xp is a complete linear section
of P2 x P2, it has at worst rational double points as
its singularities. Thus ¢ is a crepant resolution, and
we have F1 4+ Fo + E3 = ¢*E. Therefore, for some 1,
we have F;.C' > 3, and ¢*Op2(1) — E; restricts to a
g}i with d < 4 on C. This is a contradiction.

If P is singular, then Xp is either

I) AUP'xPY, or I) Fz,U(pxP?)

by the table in §4. In the former case C is contained
in either the diagonal A or P! x P!. This means
that « is isomorphic to 3 or that the image of @4
is a line. In the latter case we have either that the
image of @/ is a conic or that the image of ®| is
a point. Thus we have a contradiction.

Now, we consider the multiplication map

7
H°(S,h) ® H° (S, 3h—> Ez->

i=1

7
—>HO<S,4h—ZEi>.
i=1
This is not injective since h°(3h — Si_, Ei) =
hO(B) = 3 and hO(S,4h — I_, E;) = h9(K¢) = 8
by Lemma 2.1. Similarly the dimension of the kernel
of
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7
H(S,2h) @ H° (S, 3h—> Ez->
i=1
7
— H° (S, 5h — ZEi>
i=1
is at least 6 x 3 — h?(aK¢) = 4. Hence the image of
the rational map

(P> Pian—x ) : S —— P? x P

is contained in a divisor W of bidegree (1,1) and W’
of bidegree (2,1) such that dimW N W' = 2. The
pull-back of the divisor class of bidegree (1,2) to S
ish+2(3h—31_, E;) = 7Th—23_, E; and linearly
equivalent to C'.

We now look at the 15 quadrics which vanish
on the canonical model C14 C P7 of C. First, Ci4 is
contained in a hyperplane section of the Segre variety

(WcP | =[P’xP cP¥nH,

and there are 9 quadrics vanishing on W. Next,
there are 3 quadrics which cut out W N W’ from
W. Finally, since the pull-back of Opr(2) to S is
Os (2(4h_2i7=1 E;)) = Os(C+h), there are 3 more
independent quadrics vanishing on C'. Thus we have
found 9 + 3 4+ 3 = 15 independent quadrics vanish-
ing on C. By Noether’s theorem, they form a basis
of H*(P7,Z¢(2)), and by the Enriques-Petri theo-
rem ([GH], Chap. 4), they define the canonical model
C14 C P7 scheme-theoretically. Thus C' is the com-
plete intersection of divisors (1,2) and (2,1) in W
(Case (6) of Theorem).

3. Curves with a self adjoint net. We as-
sume that a? ~ Ko. Let A € S = Sy be the
unique member of [2h — 3°7_, E;| and A ¢ P? its
image. Then A is an irreducible conic. We choose
homogeneous coordinates of A =2 A = P! and P?
such that the morphism A — P? is given by

(5:t) = (wg: w1 : w0) = (8% : st : t2).

The surface S is the blow-up at seven points on
A. Let f(s,t) = 0 be the equation of degree 7
over A whose solutions are the seven points. We
shall construct a polynomial F(z) € H°(S, Og(7h —
2 21.7:1 E;)) which is determinantal in a certain
sense. This will imply that the system of equations
of C C P(11122) is 5 x 5 Pfaffian.

We start with a pair of ternary quartic polyno-
mials A(x) and B(x) such that A(s?, st,t?) = sf(s,t)
and B(s?,st,t?) = tf(s,t). Such polynomials exist
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by the exact sequence
(1)
H°(Op (2)) — H(Op(4)) — H*(A,04(4)) = 0
IR
H(P!, 0p1(8)).

Since tA(s?, st,t?) — sB(s?, st, t?) is zero, the quintic

polynomials 21 A(x) — o B(x) and 22 A(x) — 21 B(x)

are divisible by (), the equation of A C P2, We

put

@) { —zoB(z) +11A(2) = 0(z)D(x)
—x1B(x) +x2A(x) = 6(z)E(x),

where D(x) and E(x) are cubic forms. Put

{ D(x) = qo(z)x0 + q1(z)x1 + g2(x)22
E(z) =ro(x)xo + ri(x)z1 + ro(z)zs

for quadratic forms g;(z)’s and r;(z)’s. Then by
Cramer’s rule we have

(3)
A+ q0 q20 q20 B+ qo
B+4+1ri6 —A+1ry0 _ —A+ryd 700
ts) N x1
‘B +qod —A+ q16
) B+ri6
L nel._ F(z).
T2

Here F(z) is a form of degree 7 since z;F(z) is a
form of degree 8 for i = 0,1,2. Let yg, y1 and z be
new indeterminates which are algebraically indepen-
dent over the field k(zg, x1, x2). We consider the ring
homomorphism

1

@5+ klzo, x1, 2,50, Y1, 2] — k|20, T1, T2, 5(30)],
A(z) B(x) F(z)
P T @) T e

and its kernel Ig. Then Ig is a (quasi-)homogeneous
ideal under the grading degz; = 1, degy; = 2 and
deg z = 3. By the equation (2), two cubic forms

aO(xa y)$0 + a1($, y)xl + a2($, y)an and

4
) bo(z,y)xo + bi(z, y)x1 + ba2(z, y)22

belong to Ig, where we put

ao(®,y) = y1 + qo(), ar(z,y) = —yo + q1(x), - -
L bi(myy) =y i), ba(x,y) = —yo + r2(x).

By (3), three quartic forms
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a2(xa y) a0($, y)
bQ(xa y) bo($, y)

ao(x, y) al(xa y)‘
bo($, y) bl(xa y)

also belong to Is. These five relations (4) and (5) are
the five 4 x 4 Pfaffians of the skew-symmetric matrix

‘ — X1z,

XrozZ —

0 2z ao(z,y) ailz,y) a(z,y)
0 bo ($, y) b1 ($, y) bg($, y)
0 T2 —ZI1
S 0 Zo
0

Now we relate the ideal Ig with the anti-
canonical ring of a weak log del Pezzo surface. Let

R:=(PH (S, [n(n+ 3A)J>
© 3

be the homogeneous coordinate ring of the Q-divisor
h + (2/3)A, which is linearly equivalent to —Kg —
(1/3)A. For a global section s € H%(S,n(h +
(2/3)n)) = HY(S,nh + aA) = H°((n + 2a)h —
azzzl E;), a = [(2/3)n], its push-forward m.s €
HO(P? Op2(n + 2a)) is a homogeneous polynomial
of degree n 4+ 2a. We identify R with the image
of the injective ring homomorphism ¢ : R —
klxo, 1,22, 1/0(x)] defined by

HY(S,nh+aA) > s— msa € k:[xo,xl,xg,

1

6(x) 5(30)]"'

The degree 1 part HY(S,h) is spanned by the
homogeneous coordinates g, 1, £2. The degree 2
part H°(S,2h + A) contains S?(xg, z1, T2) as a sub-
space. The pull-back of the quartic forms A(x)
and B(z) to S belong to H°(S,4h — 21-7:1 E;) and
{A(x)/6(x), B(x)/d(x)} is a complementary basis of
S%(wg, w1, 22) C H(S, Og(2h + A)) by the exact se-
quence (1).

Consider the multiplication map

(6) H(S,h)® H°(S,2h + A) — H(S,3h + A)

from degree 1 and 2 to degree 3. Since the restric-
tion maps H°(S, h) — H°(Oa(h)) and HO(S, 2h +
A) — HY(Oa(2h + A)) are surjective, so is this
multiplication map. By the exact sequence

7
0—>05<5h—ZE1-> — O5(3h+2A) = Ox =0

i=1
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and Lemma 2.1, the degree 3 part H%(S, 3h + 2A) is
generated by the image of (6) and F(z)/6(z)?.

Now we relate the ideal Ig with C € |7h -
221.7:1 Ej|. Since C is disjoint from A and since
Oc¢(h) = «, we have the restriction maps

(1) HO (s, [n(n+ gA)D L HY(C, ™)

and R — R(C,a) :=@,~, H(C, ™). Since (7) is
an isomorphism for n = 1 and 2, the ring homomor-
phisms ¢g and 1 induce that

pc : klxo, 1,22, Y0, 1] — R(C, )

to the semi-canonical ring.

The equation of C ¢ P2, or C C S, is of the
form F(z) + §(z)G(x) for a quintic form G(z) €
HO(S,5h — 21.7:1 E;). There exist a cubic form
e(x,yo,y1) such that c(x, A(z)/d(x), B(x)/é(x)) =
G(r)/§(x)? and a commutative diagram

¥s
klxo, 1,22, Y0, Y1,2] — R
l !
klzo, z1,22,90,41) — R(C,a),
('Ze)

where the left vertical map is the specialization of z
to the degree 3 element c¢(z,y). Hence the five 4 x 4
Pfaffians of

0 c(@,y) aolz,y) ailz,y) azz,y)
0 bo (x, y) b1 (xa y) b2 ($, y)
(8) 0 T2 —x
© 0 Zo
0

belongs to the kernel of ¢¢.

Now we prove Theorem in Case (7). Let C' C
P” = P*H(K¢) be the canonical model of C. Since
Sym? H(a) € H°(K¢), C is contained in the join of
the Veronese surface and a line. This join is nothing
but the weighted projective space P(11122) whose
coordinates are xg, 1, T2, Yo, Y1. 1Two polynomi-
als (4) vanish on C. Multiplying these by zg, 21
and z2, we obtain 6 relations of degree 4, which
are linearly independent. Together with 3 relations
(5) of degree 4, the five Pfaffians of (8) generate 9
quartic forms on P(11122) vanishing on C. On the
other hand there are 6 quadratic forms vanishing on
P(11122) c P”. Hence we have 15 quadratic forms
vanishing on C' C P7. These are all quadratic forms
vanishing on C. Hence the five Pfaffians cut out C
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scheme-theoretically from P (11122) by the Enriques-
Petri theorem. Case (7) of Theorem follows since
w-G(2.5) is 5 x 5 Pfaffian in P (13 : 25 : 3).

4. Pencil of matrices. For a 3 x 3 matrix
A = (a45)o<i,j<2, we denote the divisor fa(z,y) :=
> o<ij<2@ijTiy; = 0 in the Segre variety P2x P? C
P? by X4, where (zo : 1 : 22) and (yo : y1 : yo) are
the homogeneous coordinates. Then X 4 is reducible,
singular at one point and smooth according as A is
of rank 1, 2 and 3.

Let P be a 2-dimensional space of 3 x 3 matrices
and {A, B} be its basis. We classify Xp := XaNXp.
We call P regular if it contains an invertible matrix
and singular otherwise. Let

fa(z,y) = ao(®)yo + a1 (z)y1 + az(z)ys,
fB(2,y) = bo(x)yo + b1 (x)y1 + ba2(2)y2,

be the (1, 1)-forms corresponding to A and B and Ip
the ideal sheaf of Op2 generated by the minors

a1 az
b1 bo

a2 aop
ba b

ag ai

D:
0 bo by

) D1: ’ D2:

)

of the coefficient matrix. Then the zero locus
V(Ip) C P? is the locus where the first projection
m: Xp — P2 is not isomorphic.

If P is regular, then the divisor Y correspond-
ing to an invertible matrix in P is nonsingular and
the projections Y — P? are P'-bundles. By the
Lefshetz Theorem, the Picard number of Y is equal
to 2 and the Picard group is generated by Oy (1,0)
and Oy (0,1). Thus if Xp is reducible, it must be
a sum of divisors of bidegree (1,0) and (0,1) on Y,
i.e., a section of Y by (1, 1)-forms of rank 1. Xp is
the union of two cubic scrolls Fa 1 UF; 5. So we have

Proposition 4.1. If P is regular and contains
no member of rank 1, then Xp is irreducible.

It is well known that 7 is the blow-up at three
points if Xp is smooth.

Proposition 4.2. Let P and Xp be as in the
above proposition. Then V(Ip) is of dimension 0,
and Ip C Op2 is of colength 3. Moreovern : Xp —
P2 is the blowing-up with center Ip.

Proof. Tf dimV (Ip) > 0, then the inverse im-
age 71V (Ip) is a surface. This is impossible since
Xp isirreducible of dimension 2. The colength of Ip
is equal to 3 since it is so if Xp is smooth.

The blow-up Bl;,P? with center V(Ip) has a
natural embedding ¢ into P2 x P2. ¢ is an isomor-
phism onto X p since agDg + a1 D1 + as Dy = bgDg +
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biD1 + by Dy = 0 and since Xp is irreducible and
reduced. O

If P is singular, then by Kronecker’s classifica-
tion ([Ga] Chap. XII), P is either

0 1 0 0 0 1
type I < -1 0 0,0 0 O >,
0 0 O -1 0 0
1 0 0 01 0
type I < 0O -1 0],10 0 -1 >, or
0 0 0 0 0 O
x 0 * x 0
type I < * 0),* % O >
0 0 0 0 O

modulo suitable linear transformations and modulo
transpose.
If P is of type I, then the defining equation of
Xp is
Toy1 — T1Yo = Toy2 — T2yo = 0,

and Xp is the union of the diagonal A and P! x P!.
If P is of type II, then the equation is

ZToYo — T1Yy1 = ToYo — T1y2 = 0,
and Xp is the union of

{T: X)) x (N2 A1) |\ pek},

a quintic scroll F3 2, and a plane p x P2. All non-zero
members are of rank 2 in these cases.

If P is of type I, then by the Jordan normal
form of 2 x 2-matrices, the defining equation of Xp
is either

ToYo + T1y1 = x;y; =0 forsome 0<i<j5<1,0r

ToYo = ToY1 — 0.
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So we have the following table:

P rank 1 Xp degree
A Bl P? 6
reg.
3 F271 U FLQ 343
2 AU (P! x Pt 442
. F372 U (p X P2) 5+1
sing.
5 2PZU2(P! x PY) | 1+1+2+2
(P! x P?)U (P2 x p) (3)+1
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