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Abstract: In this paper, we compute Lp(1, χ) mod p when χ is the nontrivial character
of a real quadratic field. As a result, we give a sufficient condition for Iwasawa invariants µp(k),
λp(k) to vanish when p splits in a real quadratic field k.
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1. Introduction. Let k be a number field
and p a prime number. For a Zp-extension k =
k0 ⊂ k1 ⊂ · · · ⊂ kn ⊂ · · · ⊂ k∞ with Galois groups
Gal(kn/k) 	 Z/pnZ, let An be the p-Sylow subgroup
of the ideal class group of kn. Then, by Iwasawa,
there exists integers µp(k), λp(k) and νp(k) such that
|An| = pλp(k)n+µp(k)pn+νp(k) for sufficiently large n.
Greenberg’s conjecture [2] claims that both µp(k),
λp(k) vanishes for the cyclotomic Zp-extension of any
totally real number field k. Several authors studied
Greenberg’s conjecture when k is a real quadratic
field and p is a small prime. But little is known in
the case of large primes. In this paper, we give a
sufficient condition for the Iwasawa invariants µp(k),
λp(k) to vanish when k is real quadratic, so that we
can determine whether Greenberg’s conjecture holds
for large primes. The followings are the main results
of this paper.

Theorem 1. Let χ be an even Dirichlet char-
acter of conductor ∆, and p be an odd prime rel-
atively prime to ∆. Let Lp(s, χ) be the p-adic L-
function associated with χ. Then

χ(p)−1Lp(1, χ)
mod p≡

p−1∑
t=1

(
1 +

1
2

+ · · ·+ 1
t

)
(χ(rt) + χ(rt + 1) · · ·+ χ(rt + r − 1)),

where r and s are integers such that rp + s∆ = 1.

Corollary 1. Let D be a square free integer,
k = Q(

√
D) a real quadratic field, and χ the non-

trivial character of k. Let ∆ be the discriminant of
k and p an odd prime which splits in k. Then
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vp

(
p−1∑
t=1

(
1 + · · ·+ 1

t

)
(χ(rt) + · · ·+ χ(rt + r − 1))

)
= 0 ⇒ µp(Q(

√
D)) = λp(Q(

√
D)) = 0,

where vp is the valuation of C∗
p normalized by |p|vp =

(1/p).
2. Proof of theorems. First we prove The-

orem 1.
Proof. Let ζ∆ be a primitive ∆-th root of unity.

By Proposition 2 in [3], we see that

Lp(1, χ)
mod p≡

χ(p)
∆

∆∑
i=1

−(1−Xri)p+(1−Xrip)
p(1−Xi)

∆∑
j=1

χ(j)Xij |X=ζ∆ .

So

Lp(1, χ) ≡ χ(p)
∆p

(A(ζ∆)−B(ζ∆)),

where A(X) =
∑∆

i=1
1−Xrip

1−Xi

∑∆
j=1 χ(j)Xij , B(X) =∑∆

i=1
(1−Xri)p

1−Xi

∑∆
j=1 χ(j)Xij . First we compute the

value of A(ζ∆) :

A(X) =
∆∑

i=1

1−Xrip

1−Xi

∆∑
j=1

χ(j)Xij

=
∆∑

i=1

(1 + Xi + · · ·+ X(rp−1)i)
∆∑

j=1

χ(j)Xij

=
∆∑

i=1

rp−1∑
t=0

∆∑
j=1

χ(j)X(j+t)i

=
rp−1∑
t=0

∆∑
j=1

χ(j)
∆∑

i=1

X(j+t)i.
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So,

A(ζ∆) =
rp−1∑
t=0

χ(t)∆ = 0.

Next we compute the value of B(ζ∆):
Let (1− T )p−1 =

∑p−1
t=0 CtT

t. Then

B(X)

=
∆∑

i=1

(1−Xri)p

1−Xi

∆∑
j=1

χ(j)Xij

=
∆∑

i=1

(1−Xri)
1−Xi

(1−Xri)p−1
∆∑

j=1

χ(j)Xij

=
∆∑

i=1

(1 + · · ·+ X(r−1)i)
p−1∑
t=0

CtX
rit

∆∑
j=1

χ(j)Xij

=
∆∑

i=1

p−1∑
t=0

∆∑
j=1

χ(j)X(rt+j)iCt

+
∆∑

i=1

p−1∑
t=0

∆∑
j=1

χ(j)X(rt+j+1)iCt

+ · · ·+
∆∑

i=1

p−1∑
t=0

∆∑
j=1

χ(j)X(rt+j+r−1)iCt

=
p−1∑
t=0

∆∑
j=1

χ(j)Ct

∆∑
i=1

X(rt+j)i

+
p−1∑
t=0

∆∑
j=1

χ(j)Ct

∆∑
i=1

X(rt+j+1)i

+ · · ·+
p−1∑
t=0

∆∑
j=1

χ(j)Ct

∆∑
i=1

X(rt+j+r−1)i.

So

B(ζ∆) = ∆
p−1∑
t=0

Ct(χ(rt)+χ(rt+1)+· · ·+χ(rt+r−1)).

Hence

Lp(1, χ) ≡ χ(p)
∆p

(A(ζ∆)−B(ζ∆))

mod p≡
(
−χ(p)

p

p−1∑
t=0

Ct(χ(rt) + χ(rt + 1) + · · ·

+ χ(rt + r − 1))
)

.

Note that Ct ≡ 1 (mod p). By using C0 = 1 and for
t ≥ 1

Ct =
(p− 1)!

(p− 1− t)!t!
(−1)t

≡ 1−
(

1 +
1
2

+ · · ·+ 1
t

)
p (mod p2)

we conclude that

Lp(1, χ)
mod p≡ −χ(p)

p

p−1∑
t=0

(χ(rt) + · · ·+ χ(rt + r−1))

+ χ(p)
p−1∑
t=1

(
1 + · · ·+ 1

t

)
(χ(rt) + · · ·+ χ(rt + r−1))

= χ(p)
p−1∑
t=1

(
1 + · · ·+ 1

t

)
(χ(rt) + · · ·+ χ(rt + r−1)).

This completes the proof.
Let Dn be the subgroup of An consisting of ideal

classes represented by products of prime ideals of kn

lying above p. Taya [4] proved the following theorem
using a theorem of Greenberg [2].

Theorem 2. Let k be a totally real number
field and p an odd prime number. Assume that p

splits completely in k and also that Lepoldt’s conjec-
ture is valid for k and p. Then the following are
equivalent.
(1) λp(k) = µp(k) = 0.
(2) |Dn| = |A0|pvp(Rp(k))−[k:Q]+1 for some n ≥ 0.

Here Rp(k) is the p-adic regulator of k. When
k is a real abelian number field, we can compute
vp(Rp(k)) by the theorem of Colmez [1]:

lim
s→1

(s− 1)ζp(s, k)

=
2[k:Q]−1hkRp(k)√

dk

∏
p|p

(1−N(p)−1).

When p splits completely in k, then it follows from
the above formula that∏

1=χ∈Gal(k/Q)

Lp(1, χ)

=
2[k:Q]−1hkRp(k)(1− p−1)[k:Q]−1

√
dk

.

Note that vp(Rp(k)) ≥ [k : Q] − 1, hence if the left
hand side of the above formula is a p adic unit, we
see that p� | hk. Note also that Leopoldt’s conjecture
holds for any real abelian extension over Q. Now the
proof of Corollary 1 follows directly from Theorem 1,
Theorem 2 and discussion above.

Remark 1. Note that χ(t) = (∆/t), and
χ(t) = (t/D) when D ≡ 1 mod 4. Here (∗ ) is a
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Kronecker symbol. For p,∆ < 200 with p ≡ 1(∆),

Lp(1, χ) ≡
p−1∑
t=1

(
1 +

1
2

+ · · ·+ 1
t

)
χ(t) �≡ 0 (mod p)

except for p = 181, ∆ = 60. Hence µp(Q(
√

D)) =
λp(Q(

√
D)) = 0 except for Q(

√
15) and p = 181

when p,∆ < 200. We do not know whether the
Greenberg’s conjecture holds for k = Q(

√
15) and

p = 181.
3. The case of conductor p. In this sec-

tion we turn our attention to the evaluation of
(Lp(1, χ) mod p) when the conductor of a Dirichlet
character χ is p. Let ω be the Teichmuller character
of conductor p.

Theorem 3. Let p ≡ 1 (mod 4) be a prime
number, χ = ω(p−1)/2 be the nontrivial character for
Q(
√

p). Then we have

Lp(1, χ) ≡ 2B(p−1)/2

≡
(p−1)/2∑

a=1

(p

a

)(2
p
ap−1 + ap−2

)
(mod p).

Here ( . ) is a Kronecker symbol and Bn is a n-th
Bernoulli number.

Proof. The first equality is already known
(see the proof of Theorem 5.37 in Washing-
ton [5]). By Corollary 5.15 [5], B1,ω(p−3)/2 ≡
B(p−1)/2/(p− 1)/2 ≡ −2B(p−1)/2 (mod p). From
the decomposition a = ω(a)〈a〉,

1
p

p−1∑
a=1

(p

a

)
ap−1

=
1
p

p−1∑
a=1

χ(a)ap−1 =
1
p

p−1∑
a=1

χ(a)〈a〉p−1

=
1
p

p−1∑
a=1

χ(a)(〈a〉p−1 − 1)

=
1
p

p−1∑
a=1

χ(a)(〈a〉 − 1)(〈a〉p−2 + · · ·+ 〈a〉+ 1)

≡ (p− 1)
1
p

p−1∑
a=1

χ(a)(〈a〉 − 1)

≡ −1
p

p−1∑
a=1

χ(a)〈a〉 = −1
p

p−1∑
a=1

ω(p−1)/2(a)ω−1(a)a

= −B1,ω(p−3)/2 ≡ 2B(p−1)/2 (mod p),
and

1
p

p−1∑
a=1

(p

a

)
ap−1

=
1
p

(p−1)/2∑
a=1

(p

a

)
ap−1 +

1
p

(p−1)/2∑
a=1

( p

p− a

)
(p− a)p−1

≡ 2
p

(p−1)/2∑
a=1

(p

a

)
ap−1 +

(p−1)/2∑
a=1

(p

a

)
ap−2 (mod p),

which completes the proof.
Remark 2. Let p ≡ 1 (mod 4) be a prime

number, h, ε = (t + u
√

p)/2 > 1 be the class number
and fundamental unit for Q(

√
p). Then, by Ankeny-

Artin-Chowla,
u

t
h ≡ B(p−1)/2 (mod p).

Since h <
√

p, the above congruence actually deter-
mines h if p� | B(p−1)/2. For p < 6, 270, 713, no exam-
ples of p� | B(p−1)/2 are known (See p. 82 for details
in [5]).
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