$L_{p}(1, \chi) \bmod p$

By Jangheon OH

Department of Applied Mathematics, College of Natural Sciences, Sejong University 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Korea
(Communicated by Shigefumi Mori, M. J. A., Jan. 14, 2003)

Abstract

In this paper, we compute $L_{p}(1, \chi) \bmod p$ when χ is the nontrivial character of a real quadratic field. As a result, we give a sufficient condition for Iwasawa invariants $\mu_{p}(k)$, $\lambda_{p}(k)$ to vanish when p splits in a real quadratic field k.

Key words: Greenberg's conjecture; Iwasawa invariants; special value of p-adic L-function. 1. Introduction. Let k be a number field and p a prime number. For a \mathbf{Z}_{p}-extension $k=$ $k_{0} \subset k_{1} \subset \cdots \subset k_{n} \subset \cdots \subset k_{\infty}$ with Galois groups $\operatorname{Gal}\left(k_{n} / k\right) \simeq \mathbf{Z} / p^{n} \mathbf{Z}$, let A_{n} be the p-Sylow subgroup $$
\begin{aligned} & v_{p}\left(\sum_{t=1}^{p-1}\left(1+\cdots+\frac{1}{t}\right)(\chi(r t)+\cdots+\chi(r t+r-1))\right) \\ & \quad=0 \quad \Rightarrow \mu_{p}(\mathbf{Q}(\sqrt{D}))=\lambda_{p}(\mathbf{Q}(\sqrt{D}))=0 \end{aligned}
$$

of the ideal class group of k_{n}. Then, by Iwasawa, there exists integers $\mu_{p}(k), \lambda_{p}(k)$ and $\nu_{p}(k)$ such that $\left|A_{n}\right|=p^{\lambda_{p}(k) n+\mu_{p}(k) p^{n}+\nu_{p}(k)}$ for sufficiently large n. Greenberg's conjecture [2] claims that both $\mu_{p}(k)$, $\lambda_{p}(k)$ vanishes for the cyclotomic \mathbf{Z}_{p}-extension of any totally real number field k. Several authors studied Greenberg's conjecture when k is a real quadratic field and p is a small prime. But little is known in the case of large primes. In this paper, we give a sufficient condition for the Iwasawa invariants $\mu_{p}(k)$, $\lambda_{p}(k)$ to vanish when k is real quadratic, so that we can determine whether Greenberg's conjecture holds for large primes. The followings are the main results of this paper.

Theorem 1. Let χ be an even Dirichlet character of conductor Δ, and p be an odd prime relatively prime to Δ. Let $L_{p}(s, \chi)$ be the p-adic L function associated with χ. Then

$$
\begin{aligned}
& \chi(p)^{-1} L_{p}(1, \chi) \stackrel{\bmod p}{\equiv} \sum_{t=1}^{p-1}\left(1+\frac{1}{2}+\cdots+\frac{1}{t}\right) \\
& \quad(\chi(r t)+\chi(r t+1) \cdots+\chi(r t+r-1))
\end{aligned}
$$

where r and s are integers such that $r p+s \Delta=1$.
Corollary 1. Let D be a square free integer, $k=\mathbf{Q}(\sqrt{D})$ a real quadratic field, and χ the nontrivial character of k. Let Δ be the discriminant of k and p an odd prime which splits in k. Then
where v_{p} is the valuation of \mathbf{C}_{p}^{*} normalized by $|p|_{v_{p}}=$ $(1 / p)$.
2. Proof of theorems. First we prove Theorem 1.

Proof. Let ζ_{Δ} be a primitive Δ-th root of unity. By Proposition 2 in [3], we see that

$$
\begin{aligned}
& L_{p}(1, \chi) \stackrel{\bmod p}{\equiv} \\
& \left.\frac{\chi(p)}{\Delta} \sum_{i=1}^{\Delta} \frac{-\left(1-X^{r i}\right)^{p}+\left(1-X^{r i p}\right)}{p\left(1-X^{i}\right)} \sum_{j=1}^{\Delta} \chi(j) X^{i j}\right|_{X=\zeta_{\Delta}} .
\end{aligned}
$$

So

$$
L_{p}(1, \chi) \equiv \frac{\chi(p)}{\Delta p}\left(A\left(\zeta_{\Delta}\right)-B\left(\zeta_{\Delta}\right)\right)
$$

where $A(X)=\sum_{i=1}^{\Delta} \frac{1-X^{\text {rip }}}{1-X^{i}} \sum_{j=1}^{\Delta} \chi(j) X^{i j}, B(X)=$ $\sum_{i=1}^{\Delta} \frac{\left(1-X^{r i}\right)^{p}}{1-X^{i}} \sum_{j=1}^{\Delta} \chi(j) X^{i j}$. First we compute the value of $A\left(\zeta_{\Delta}\right)$:

$$
\begin{aligned}
A(X) & =\sum_{i=1}^{\Delta} \frac{1-X^{r i p}}{1-X^{i}} \sum_{j=1}^{\Delta} \chi(j) X^{i j} \\
& =\sum_{i=1}^{\Delta}\left(1+X^{i}+\cdots+X^{(r p-1) i}\right) \sum_{j=1}^{\Delta} \chi(j) X^{i j} \\
& =\sum_{i=1}^{\Delta} \sum_{t=0}^{r p-1} \sum_{j=1}^{\Delta} \chi(j) X^{(j+t) i} \\
& =\sum_{t=0}^{r p-1} \sum_{j=1}^{\Delta} \chi(j) \sum_{i=1}^{\Delta} X^{(j+t) i} .
\end{aligned}
$$

So,

$$
A\left(\zeta_{\Delta}\right)=\sum_{t=0}^{r p-1} \chi(t) \Delta=0
$$

Next we compute the value of $B\left(\zeta_{\Delta}\right)$:
Let $(1-T)^{p-1}=\sum_{t=0}^{p-1} C_{t} T^{t}$. Then

$$
\begin{aligned}
& B(X) \\
&= \sum_{i=1}^{\Delta} \frac{\left(1-X^{r i}\right)^{p}}{1-X^{i}} \sum_{j=1}^{\Delta} \chi(j) X^{i j} \\
&= \sum_{i=1}^{\Delta} \frac{\left(1-X^{r i}\right)}{1-X^{i}}\left(1-X^{r i}\right)^{p-1} \sum_{j=1}^{\Delta} \chi(j) X^{i j} \\
&= \sum_{i=1}^{\Delta}\left(1+\cdots+X^{(r-1) i}\right) \sum_{t=0}^{p-1} C_{t} X^{r i t} \sum_{j=1}^{\Delta} \chi(j) X^{i j} \\
&= \sum_{i=1}^{\Delta} \sum_{t=0}^{p-1} \sum_{j=1}^{\Delta} \chi(j) X^{(r t+j) i} C_{t} \\
&+\sum_{i=1}^{\Delta} \sum_{t=0}^{p-1} \sum_{j=1}^{\Delta} \chi(j) X^{(r t+j+1) i} C_{t} \\
&+\cdots+\sum_{i=1}^{\Delta} \sum_{t=0}^{p-1} \sum_{j=1}^{\Delta} \chi(j) X^{(r t+j+r-1) i} C_{t} \\
&= \sum_{t=0}^{p-1} \sum_{j=1}^{\Delta} \chi(j) C_{t} \sum_{i=1}^{\Delta} X^{(r t+j) i} \\
&+\sum_{t=0}^{p-1} \sum_{j=1}^{\Delta} \chi(j) C_{t} \sum_{i=1}^{\Delta} X^{(r t+j+1) i} \\
&+\cdots+\sum_{t=0}^{p-1} \sum_{j=1}^{\Delta} \chi(j) C_{t} \sum_{i=1}^{\Delta} X^{(r t+j+r-1) i} .
\end{aligned}
$$

So
$B\left(\zeta_{\Delta}\right)=\Delta \sum_{t=0}^{p-1} C_{t}(\chi(r t)+\chi(r t+1)+\cdots+\chi(r t+r-1))$.
Hence

$$
\begin{aligned}
& L_{p}(1, \chi) \equiv \frac{\chi(p)}{\Delta p}\left(A\left(\zeta_{\Delta}\right)-B\left(\zeta_{\Delta}\right)\right) \\
& \stackrel{\bmod p}{\equiv}\left(-\frac{\chi(p)}{p} \sum_{t=0}^{p-1} C_{t}(\chi(r t)\right.+\chi(r t+1)+\cdots \\
&+\chi(r t+r-1)))
\end{aligned}
$$

Note that $C_{t} \equiv 1(\bmod p)$. By using $C_{0}=1$ and for $t \geq 1$

$$
\begin{aligned}
C_{t} & =\frac{(p-1)!}{(p-1-t)!t!}(-1)^{t} \\
& \equiv 1-\left(1+\frac{1}{2}+\cdots+\frac{1}{t}\right) p \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

we conclude that
$L_{p}(1, \chi) \stackrel{\bmod p}{\equiv}-\frac{\chi(p)}{p} \sum_{t=0}^{p-1}(\chi(r t)+\cdots+\chi(r t+r-1))$
$+\chi(p) \sum_{t=1}^{p-1}\left(1+\cdots+\frac{1}{t}\right)(\chi(r t)+\cdots+\chi(r t+r-1))$
$=\chi(p) \sum_{t=1}^{p-1}\left(1+\cdots+\frac{1}{t}\right)(\chi(r t)+\cdots+\chi(r t+r-1))$.
This completes the proof.
Let D_{n} be the subgroup of A_{n} consisting of ideal classes represented by products of prime ideals of k_{n} lying above p. Taya [4] proved the following theorem using a theorem of Greenberg [2].

Theorem 2. Let k be a totally real number field and p an odd prime number. Assume that p splits completely in k and also that Lepoldt's conjecture is valid for k and p. Then the following are equivalent.
(1) $\lambda_{p}(k)=\mu_{p}(k)=0$.
(2) $\left|D_{n}\right|=\left|A_{0}\right| p^{v_{p}\left(R_{p}(k)\right)-[k: \mathbf{Q}]+1}$ for some $n \geq 0$.

Here $R_{p}(k)$ is the p-adic regulator of k. When k is a real abelian number field, we can compute $v_{p}\left(R_{p}(k)\right)$ by the theorem of Colmez [1]:

$$
\begin{aligned}
& \lim _{s \rightarrow 1}(s-1) \zeta_{p}(s, k) \\
& \quad=\frac{2^{[k: \mathbf{Q}]-1} h_{k} R_{p}(k)}{\sqrt{d_{k}}} \prod_{\mathfrak{p} \mid p}\left(1-N(\mathfrak{p})^{-1}\right) .
\end{aligned}
$$

When p splits completely in k, then it follows from the above formula that

$$
\begin{aligned}
& \prod_{1 \neq \chi \in \operatorname{Gal}(k / \mathbf{Q})} L_{p}(1, \chi) \\
= & \frac{2^{[k: \mathbf{Q}]-1} h_{k} R_{p}(k)\left(1-p^{-1}\right)^{[k: \mathbf{Q}]-1}}{\sqrt{d_{k}}} .
\end{aligned}
$$

Note that $v_{p}\left(R_{p}(k)\right) \geq[k: \mathbf{Q}]-1$, hence if the left hand side of the above formula is a p adic unit, we see that $p \nmid h_{k}$. Note also that Leopoldt's conjecture holds for any real abelian extension over \mathbf{Q}. Now the proof of Corollary 1 follows directly from Theorem 1, Theorem 2 and discussion above.

Remark 1. Note that $\chi(t)=(\Delta / t)$, and $\chi(t)=(t / D)$ when $D \equiv 1 \bmod 4$. Here $\left({ }^{*}\right)$ is a

Kronecker symbol. For $p, \Delta<200$ with $p \equiv 1(\Delta)$,
$L_{p}(1, \chi) \equiv \sum_{t=1}^{p-1}\left(1+\frac{1}{2}+\cdots+\frac{1}{t}\right) \chi(t) \not \equiv 0 \quad(\bmod p)$
except for $p=181, \Delta=60$. Hence $\mu_{p}(\mathbf{Q}(\sqrt{D}))=$ $\lambda_{p}(\mathbf{Q}(\sqrt{D}))=0$ except for $\mathbf{Q}(\sqrt{15})$ and $p=181$ when $p, \Delta<200$. We do not know whether the Greenberg's conjecture holds for $k=\mathbf{Q}(\sqrt{15})$ and $p=181$.
3. The case of conductor \boldsymbol{p}. In this section we turn our attention to the evaluation of $\left(L_{p}(1, \chi) \bmod p\right)$ when the conductor of a Dirichlet character χ is p. Let ω be the Teichmuller character of conductor p.

Theorem 3. Let $p \equiv 1(\bmod 4)$ be a prime number, $\chi=\omega^{(p-1) / 2}$ be the nontrivial character for $\mathbf{Q}(\sqrt{p})$. Then we have

$$
\begin{aligned}
L_{p}(1, \chi) & \equiv 2 B_{(p-1) / 2} \\
& \equiv \sum_{a=1}^{(p-1) / 2}\left(\frac{p}{a}\right)\left(\frac{2}{p} a^{p-1}+a^{p-2}\right) \quad(\bmod p) .
\end{aligned}
$$

Here (:) is a Kronecker symbol and B_{n} is a n-th Bernoulli number.

Proof. The first equality is already known (see the proof of Theorem 5.37 in Washington [5]). By Corollary 5.15 [5], $B_{1, \omega^{(p-3) / 2}} \equiv$ $B_{(p-1) / 2} /(p-1) / 2 \equiv-2 B_{(p-1) / 2}(\bmod p)$. From the decomposition $a=\omega(a)\langle a\rangle$,

$$
\begin{aligned}
& \frac{1}{p} \sum_{a=1}^{p-1}\left(\frac{p}{a}\right) a^{p-1} \\
& =\frac{1}{p} \sum_{a=1}^{p-1} \chi(a) a^{p-1}=\frac{1}{p} \sum_{a=1}^{p-1} \chi(a)\langle a\rangle^{p-1} \\
& =\frac{1}{p} \sum_{a=1}^{p-1} \chi(a)\left(\langle a\rangle^{p-1}-1\right) \\
& =\frac{1}{p} \sum_{a=1}^{p-1} \chi(a)(\langle a\rangle-1)\left(\langle a\rangle^{p-2}+\cdots+\langle a\rangle+1\right) \\
& \equiv(p-1) \frac{1}{p} \sum_{a=1}^{p-1} \chi(a)(\langle a\rangle-1)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv-\frac{1}{p} \sum_{a=1}^{p-1} \chi(a)\langle a\rangle=-\frac{1}{p} \sum_{a=1}^{p-1} \omega^{(p-1) / 2}(a) \omega^{-1}(a) a \\
& =-B_{1, \omega^{(p-3) / 2}} \equiv 2 B_{(p-1) / 2}(\bmod p)
\end{aligned}
$$

and
$\frac{1}{p} \sum_{a=1}^{p-1}\left(\frac{p}{a}\right) a^{p-1}$
$=\frac{1}{p} \sum_{a=1}^{(p-1) / 2}\left(\frac{p}{a}\right) a^{p-1}+\frac{1}{p} \sum_{a=1}^{(p-1) / 2}\left(\frac{p}{p-a}\right)(p-a)^{p-1}$
$\equiv \frac{2}{p} \sum_{a=1}^{(p-1) / 2}\left(\frac{p}{a}\right) a^{p-1}+\sum_{a=1}^{(p-1) / 2}\left(\frac{p}{a}\right) a^{p-2} \quad(\bmod p)$,
which completes the proof.
Remark 2. Let $p \equiv 1(\bmod 4)$ be a prime number, $h, \epsilon=(t+u \sqrt{p}) / 2>1$ be the class number and fundamental unit for $\mathbf{Q}(\sqrt{p})$. Then, by Ankeny-Artin-Chowla,

$$
\frac{u}{t} h \equiv B_{(p-1) / 2} \quad(\bmod p)
$$

Since $h<\sqrt{p}$, the above congruence actually determines h if $p \nmid B_{(p-1) / 2}$. For $p<6,270,713$, no examples of $p \nmid B_{(p-1) / 2}$ are known (See p. 82 for details in [5]).

Acknowledgements. This work was supported by grant R01-2002-000-00032-0 from the Basic Research Program of the Korea Science \& Engineering Foundation.

References

[1] Colmez, P.: Residu en $s=1$ des functions zeta p-adiques. Invent. Math., 91, 371-389 (1988).
[2] Greenberg, R.: On the Iwasawa invariants of totally real fields. Amer. J. Math., 98, 263-284 (1976).
[3] Oh, J.: ℓ-adic L-functions and rational function measures. Acta Arith., 83, 369-379 (1998).
[4] Taya, H.: On p-adic zeta functions and $\mathbf{Z}_{p^{-}}$ extensions of certain totally real number fields. Tohoku Math. J., 51, 21-33 (1999).
[5] Washington, L.: Introduction to Cyclotomic Fields. Grad. Texts in Math., 83, SpringerVerlag, New York (1982).

