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A note on the mean value of the zeta and L-functions. XIII

By Roelof Wichert Bruggeman∗) and Yoichi Motohashi∗∗)

(Communicated by Shokichi Iyanaga, m. j. a., June 11, 2002)

Abstract: Extending the discussion in the previous note [6] of this series, the group
PSL2(C) will be dealt with in place of PSL2(R). We shall indicate that the functional struc-
ture that supports the spectral theory of Kloosterman sums in the complex case is essentially the
same as in the real case, though it is more involved as can be expected.
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1. Introduction. The aim of the present
note is to show that the argument in [6] extends to
the situation G = PSL2(C). Thus, we are going to
prove the complex analogues of Theorems 1 and 2
of [6]. In themselves, these theorems are results in
the analysis on the Lie group G. Our interest stems
from their use in the spectral theory of Kloosterman
sums, as developed in [1]. This application works
for all discrete subgroups of G. It should, however,
be noted that the resulting spectral decomposition of
the fourth power moment of Dedekind zeta-functions
— carried out in [1] — has been obtained so far only
in the case where the underlying imaginary quadratic
number field is of class number one (see Section 14
of [1], Note X [2], and the concluding remark below).
We shall use basic facts on G as a Lie group, which
can be found in [1] with greater details. Otherwise
this paper is essentially self-contained.

2. Basic concepts. We have first to define
a coordinate system on G: Put

n[z] =

[
1 z

1

]
, h[u] =

[
u

1/u

]
, k =

[
α β

−β α

]

for z, u, α, β ∈ C, u �= 0, |α|2 + |β|2 = 1, where the
matrices are understood projectively. Also put

N = {n[z] : z ∈ C}, A = {a[r] : r > 0},
K = PSU(2) = {k[α, β] : α, β ∈ C},
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where a[r] = h[
√
r]. With the Euler angles ϕ, θ, ψ,

we have

k[α, β] = h[eiϕ/2]k[cos(θ/2), i sin(θ/2)]h[eiψ/2].

The Iwasawa decomposition of G is

G = NAK,

which is read as g = nak = n[z]a[r]k[α, β]. The Haar
measures on respective groups are normalized by

dn = dRe z dRez, da = r−1dr,

dk = (8π2)−1 sin θdϕdθdψ

and

dg = r−2dndadk.

Let L2(Γ \G) be the Hilbert space composed of all
left Γ -automorphic functions on G which are square
integrable with respect to the measure dg. We have

L2(Γ \G) = C⊕ 0L2(Γ \G)⊕ eL2(Γ \G).

The cuspidal subspace 0L2(Γ \G) is spanned by all
functions in L2(Γ \G) with vanishing constant terms
in their Fourier expansions relative to the left ac-
tion of N ; and eL2(Γ \G) is generated by integrals
of Eisenstein series. We have the decomposition into
right-irreducible subspaces:

0L2(Γ \G) =
⊕

V .

To classify representations V , we need two Casimir
elements Ω+, Ω− = Ω+, that generate the center of
the universal enveloping algebra of G. We have

Ω+ =
1
2
r2∂z∂z +

1
2
reiϕ cot θ∂z∂ϕ − 1

2
ireiϕ∂z∂θ
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− reiϕ

2 sin θ
∂z∂ψ +

1
8
r2∂2

r −
1
4
ir∂r∂ϕ

− 1
8
∂2
ϕ −

1
8
r∂r +

1
4
i∂ϕ.

They become constant multiplications in each V :
There are p ∈ Z, κ ∈ R such that

Ω±|V = −χ±
V · 1, χ±

V =
1
8
((κ ± ip)2 + 1).

We call the pair (p, κ) the spectral parameter of V .
According to the right action of K, the space V

decomposes into K-irreducible subspaces

V =
⊕
|p|≤l

Vl, dimVl = 2l + 1.

To describe this precisely, let ΩK be a Casimir ele-
ment of the universal enveloping algebra of K:

ΩK =
1

2 sin2 θ

(
∂2
ϕ + sin2 θ∂2

θ + ∂2
ψ

− 2 cos θ∂ϕ∂ψ + sin θ cos θ ∂θ
)
.

Then we have

Vl =
l⊕

q=−l
Vl,q , dimVl,q = 1,

with

Vl,q =
{
f ∈ V : ΩKf = −1

2
l(l + 1), ∂ψf = −iqf

}
.

Any non-zero element of Vl,q is called a left Γ -auto-
morphic form of spectral parameter (p, κ) and K-
type (l, q).

To have a convenient way to exhibit the repre-
sentation V , we introduce functions Φlp,q on K, which
are defined via

Fq(x, k[α, β]) = (αx− β)l−q(βx+ α)l+q

=
l∑

p=−l
Φlp,q(k)xl−p.

The system {Φlp,q : |p|, |q| ≤ l} is a complete orthog-
onal basis of L2(K) with norms

‖Φlp,q‖K

=
1√

l + 1/2

(
Γ(l − q + 1)Γ(l + q + 1)
Γ(l − p+ 1)Γ(l + p+ 1)

)1/2

.

We use the following functions on G:

φl,q(nak) =
Φlp,q(k)
‖Φlp,q‖K

r1+iκ.

Let

ϕ(g) =
∑
ω �=0

Wω(g;ϕ), ω ∈ Z[i]

be the Fourier expansion of ϕ ∈ V with respect to
the left action of N . If ϕ ∈ Vl,q , then Wω(g;ϕ) is a
multiple of the Jacquet transform

Aωφl,q(g)

=
∫
C

exp(−2πiRe(ωλ))φl,q(wn[z]g)dReλd Imλ,

with

w =

[
1

−1

]
.

One can choose generating vectors ϕl,q of the spaces
Vl,q that transforms under the action of the Lie alge-
bra in the same way as the φl,q, so that {ϕl,q : |p| ≤
l, |q| ≤ l} is a complete orthonormal system in V .
Note that p is fixed by V , and l, q run over integers
as indicated. With this, we may put

Wω(g;ϕl,q) = |ω|−iκ�V (ω)Γ(1 + iκ)Aωφl,q(g).

Then �V (ω) depends only on V , ω, and is called the
Fourier coefficient of the representation V .

3. Unitaricity. We are now ready to prove
the complex analogue of Theorem 1 of [6]. This con-
firms the unitary nature of the Kirillov model for
unitary principal series representations of G.

Theorem 1. Let ϕ be an arbitrary smooth
vector in V , and Wω(g;ϕ) its Fourier coefficient with
respect to the left action of N . Then we have∫

C×
|Wω(h[u];ϕ)|2d×u

=
(

π

2|ω|
)2

κ

sinhπκ
|�V (ω)|2‖ϕ‖2

Γ\G,

where C× = C\{0} and d×u = |u|−2dReu d Imu.
Proof. It is sufficient to show the orthogonality

relation:∫
C×

Wω(h[u];ϕl,q)Wω(h[u];ϕl′,q′)d×u

= δl,l′ δq,q′

(
π

2|ω|
)2

κ

sinhπκ
|�V (ω)|2.

To this end we note that from the above definition
follows

Aωφl,q(g) =
exp(2πiReωz)

‖Φlp,q‖K
∑
|m|≤l

vlm(r, ω)Φlm,q(k),
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where

vlm(r, ω) = r1−iκ
∫
C

exp(−2πiReωrλ)
(1 + |z|2)1+iκ

(1)

· Φlp,m
(

k
[

λ√
1 + |λ|2 ,

−1√
1 + |λ|2

])
dReλd Imλ

= 2πr1−iκ
(
iω

|ω|
)−p−m ∫ ∞

0

ξ
Jp+m(2π|ω|rξ)
(1 + ξ2)1+iκ

· Φlp,m
(

k
[

ξ√
1 + ξ2

,
−1√
1 + ξ2

])
dξ,

with Jp being the J-Bessel function of order p (see
Section 5 of [1] for details). The first expression gives

Aωφl,q(h[u]) = ‖Φlp,q‖−1
K

· |ω|iκ−1(ω/|ω|)−p−qvlq(|ω||u|2, 1)(u/|u|)−2q.

Thus∫
C×

Wω(h[u];ϕl,q)Wω(h[u];ϕl′,q′)d×u

= πδq,q′‖Φlp,q‖−1
K ‖Φl′p,q′‖−1

K

· |Γ(1 + iκ)|2|ω|−2|�V (ω)|2
∫ ∞

0

vlq(r)vl
′
q′ (r)

dr

r
,

where vlm(r) = vlm(r, 1).
To compute the last integral, we argue as (9) of

[6]: The functions vlq(r) satisfy the differential equa-
tions

D+
q v

l
q(r) = −4πi(l − q)r−1vlq+1(r),

D−
q v

l
q(r) = 4πi(l + q)r−1vlq−1(r),

where D−
q = D+

−q with

D+
q =

(
d

dr

)2

− (2q + 1)r−1 d

dr

+ r−2(q2 + 2q − 4π2r2 − 8χ+
V ).

This is equivalent to Ω±ϕl,q = −χ±
V ϕl,q (see either

(4.14)–(4.15) of [1] or p. 236 of [4]). Thus the integral
is equal to

− 1
4πi(l − q + 1)

∫ ∞

0

D+
q−1v

l
q(r) · vl′q (r)dr

= − 1
4πi(l − q + 1)

∫ ∞

0

vq−1(r) ·D−
q vl

′
q (r)dr

=
l + q

l− q + 1

∫ ∞

0

vlq−1(r)vl
′
q−1(r)

dr

r
.

This procedure is valid only if vlq(r) tends to 0 suffi-
ciently fast as r tends to either 0 or ∞, which in fact
follows from the first expression in (1). Hence

∫ ∞

0

vlq(r)vl
′
q (r)

dr

r

=
l− q

l + q + 1

∫ ∞

0

vlq+1(r)vl
′
q+1(r)

dr

r

= δl,l′

(
2l

l− q

)−1 ∫ ∞

0

|vll(r)|2
dr

r
.

Via Lemma 5.1 of [1], or directly from the second
expression in (1), we have

|vll(r)| = 2
(πr)l+1

|Γ(l + 1 + iκ)|
(

2l
l − p

)
|Kp+iκ(2πr)|;

thus ∫ ∞

0

|vll(r)|2
dr

r
=

1
4(l + 1

2)

(
2l

l− p

)
.

This ends the proof of Theorem 1.
4. Bessel transform. We are turning to the

complex analogue of Theorem 2 of [6]. We shall carry
out the line set in [6]; that is, a combination of the
Mellin transform and the local functional equation
for the complex case will be employed.

Theorem 2. Let V, ϕ, and Wω be as in the
previous theorem. Then we have

W1(h[u];ϕ(∗ · w)) =
∫
C×

jV (uv)W1(h[v];ϕ)d×v,

with

jV (u) = −2π2 |u|2
sinπiκ

(2)

· [Jiκ,p(2πu)− J−iκ,−p(2πu)] .

Here (p, κ) is the spectral parameter of V , and

Jν,p(u) = |u/2|2ν(u/|u|)−2pJ∗
ν−p(u)J∗

ν+p(u),

with J∗
ν (u) being the branch of Jν(u)(u/2)−ν such

that J∗
ν (0) = 1.

Remark. For arbitrary non-zero ω ∈ Z[i], the
integral representation for Wω(h[u];ϕ(∗ ·w)) follows
from the relation

�V (1)Wω(h[u];ϕ)

=
�V (ω)
ω

(
ω

|ω|
)−p

W1(h[
√
ωu];ϕ).

Also note that the function jV depends only on the
spectral parameter; thus only on the isomorphism
class of the representation V .

Proof. It is enough to treat only the weight vec-
tors ϕ = ϕl,q . According to Theorem 12.1 of [1] (see
also Theorem 3 of [2]), we have, for u = |u|eiϑ, ϑ ∈
R,
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jV (u) = (−1)p4π|u|2(3)

·
∫ ∞

0

y2iκ−1

(
yeiϑ + (yeiϑ)−1

|yeiϑ + (yeiϑ)−1|
)2p

· J2p(2π|u||yeiϑ + (yeiϑ)−1|)dy.
Note that the equality between the right sides of
these two expressions for jV holds for | Imκ| < 1

4 ,
via analytic continuation. We shall prove the asser-
tion of the theorem with this expression for jV . Later
we shall give a simple proof of (3).

Thus, let us consider the integral

Γl,q(s) =
∫ ∞

0

vlq(r)r
2(s−1)dr.

The second expression in (1) gives

Γl,q(s) = i−p−qπ1+iκ−2s(−1)min(0,p+q)

· Γ(s+ 1
2
(|p+ q| − iκ))

Γ(1− s+ 1
2
(|p+ q|+ iκ))

Ll,q(s),

with

Ll,q(s) =
∫ ∞

0

ξ1+iκ−2s

(1 + ξ2)1+iκ

· Φlp,q
(

k
[

ξ√
1 + ξ2

,
−1√
1 + ξ2

])
dξ.

This is a counterpart of Lp of [6]. We have, analo-
gously,

Ll,q(s) = (−1)l+pLl,−q(1 − s),

which is again a result of the change of variable ξ →
ξ−1. Note that we have used the fact Φl−p,−q =
(−1)p+qΦlp,q, which is equivalent to

Fq(x, k) = (−1)l−qx2lF−q(−1/x, k),

with Fq as above. The absolute convergence neces-
sary in these derivations and the meromorphic con-
tinuation to C of Ll,q(s) can be confirmed as before.
Hence we have the local functional equation

(−1)l−qΓl,−q(s) = π2−4s(−1)max(|p|,|q|)Γl,q(1− s)

· Γ(s+ 1
2
(|p+ q|+ iκ))Γ(s+ 1

2
(|p− q| − iκ))

Γ(1−s + 1
2
(|p+ q| −iκ))Γ(1 −s+ 1

2
(|p− q|+ iκ))

(see Theorem 6.4 of [4]). With this, observe that∫ ∞

0

y2ν−1J|p+q|(ry)J|p−q|(r/y)dy ←→

2s−3Γ(1
4
s+ 1

2
(|p+ q|+ ν))Γ(1

4
s+ 1

2
(|p− q| − ν))

Γ(1− 1
4
s+ 1

2
(|p+ q| −ν))Γ(1− 1

4
s+ 1

2
(|p− q|+ν))

is a Mellin pair, provided 2|Reν | < Re s < 1 −
2|Reν |. Thus, denoting the left side by Kν,p(r, q),
we get, by the Mellin-Parseval formula,

(−1)l−qy−2vl−q(y
2) = 8π2(−1)max(|p|,|q|)

·
∫ ∞

0

Kiκ,p(2πyr, q)vlq(r
2)rdr.

This is equivalent to

W1(h[u];ϕl,q(∗ · w)) = 4π|u|2
∫
C×

|v|2W1(h[v];ϕl,q)

·
∑
µ∈Z

(−1)max(|p|,|µ|)Kiκ,p(2π|uv|, µ)
(
uv

|uv|
)2µ

d×v.

We apply Graf’s addition theorem (the formula (1)
on p. 359 of [7]) to the last sum, and conclude the
proof of the theorem. As for the treatment of conver-
gence issues involved in the last steps, see Lemma 4
of [5] and the discussion prior to Lemma 14.1 of [1].

We move to a proof of (3). The proof given
in [1] of the equivalence between (2) and (3) de-
pends on the concept of the Goodman-Wallach op-
erator [3]. We shall supply here a proof which is
conceptually much simpler: The procedure treating
the last sum over µ means in effect that the 2q-th
Fourier coefficient of the right side of (3) is equal to
4π(−1)max(|p|,|q|)|u|2Kiκ,p(2π|u|, q). We are going to
show that the 2q-th Fourier coefficient of the right
side of (2) is equal to this quantity, which should
end the proof.

Thus, the last Mellin pair implies that we have

Kν,p(r, q) =
1

16πi

∫
(η)

Γ(1
4s+ 1

2(ν + |p+ q|))
Γ(1− 1

4s+ 1
2(|p+ q| − ν))

· Γ(1
4
s− 1

2
(ν − |p− q|))

Γ(1− 1
4s+ 1

2(ν + |p− q|))
(r

2

)−s
ds,

with 2|Reν | < η < 1. Take the contour to −∞.
Residue calculus gives that

(−1)max(|p|,|q|) 2
π
Kν,p(r, q)

= −(−1)p+q

sinπν

∞∑
k=0

(r/2)2ν+2|p+q|+4k

Γ(k + 1)Γ(k + 1 + |p+ q|)

· 1
Γ(ν + k + 1 + 1

2(|p+ q|+ |p− q|))
· 1
Γ(ν + k + 1 + 1

2(|p+ q| − |p− q|))

+
(−1)p+q

sinπν

∞∑
k=0

(r/2)−2ν+2|p−q|+4k

Γ(k + 1)Γ(k + 1 + |p− q|)
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· 1
Γ(−ν + k + 1 + 1

2 (|p+ q|+ |p− q|))

· 1
Γ(−ν + k + 1− 1

2
(|p+ q| − |p− q|)) .

This right side coincides with the coefficient of
(u/|u|)2q (|u| = r) that can be read from the power
series expansion of −(Jν,p(u) − J−ν,−p(u))/ sinπν ,
which proves our claim.

Concluding remark. This corresponds to
the ending part of [6], and concerns the spectral
decomposition of the fourth power moment of the
Dedekind zeta-function ζF of the Gaussian number
field: ∫ ∞

−∞
|ζF (1/2 + it)|4g(t)dt,

where g is supposed, for instance, to be entire and of
rapid decay in any fixed horizontal strip. According
to either Theorem 14.1 of [1] or Theorem 5 of [2], the
cuspidal part of the decomposition has the form∑

V

αVHV (1/2)3ΘV (g),

where V is as above, and assumed to be Hecke in-
variant; the HV is the Hecke series associated with
V , and αV a metrical normalization factor. Our in-
terest is in the construction of the functional ΘV .
From the formulas (2.32), (12.26), and (14.1) of [1],
we see, after some elementary manipulation, that

ΘV (g) =
∫
C

ĝ(2 log |1 + 1/u|)
|u(u+ 1)|(4)

· ΞV (u)dReu d Imu

with

(5) ΞV (u) =
1

16π

∫
C×

jV

(√
v/u

)
jE

(√−v) d×v|v| .
Here

ĝ(x) =
∫ ∞

−∞
g(t)eixtdt,

and, for u = |u|eiϑ, ϑ ∈ R,

jE(u) = 4π|u|2
∫ ∞

0

J0(2π|u||yeiϑ + (yeiϑ)−1|)dy
y
,

which is the case (p, κ) = (0, 0) in (3). The formu-
las (4) and (5) correspond, respectively, to (15) and
(13) of [6]. The similarity between them is indeed
remarkable.

Corrigendum to Note XII. In the second
equation on p. 39 of [6], the right side should be mul-
tiplied by the factor |m|−1/2. Also in the adjacent
equations the factors �V (n) and �V (m) are to be
replaced by |n|−1/2�V (|n|) and |m|−1/2�V (|m|), re-
spectively.

References

[ 1 ] Bruggeman, R.W., and Motohashi, Y.: Sum for-
mula for Kloosterman sums and fourth moment
of the Dedekind zeta-function over the Gaussian
number field (submitted).

[ 2 ] Bruggeman, R.W., and Motohashi, Y.: A note on
the mean value of the zeta and L-functions. X.
Proc. Japan Acad., 77A, 111–114 (2001).

[ 3 ] Goodman, R., and Wallach, N.R.: Whittaker vec-
tors and conical vectors. J. Funct. Anal., 39, 199–
279 (1980).

[ 4 ] Jacquet, H., and Langlands, R.P.: Automorphic
Forms on GL(2). Springer Verlag, Berlin, pp. 1–
548 (1970).

[ 5 ] Motohashi, Y.: New analytic problems over imag-
inary quadratic number fields. Number Theory,
in Memory of Kustaa Inkeri (eds. Jutila, M., and
Metsänkylä,T.). de Gruyter, Berlin-New York,
pp. 255–279 (2001).

[ 6 ] Motohashi, Y.: A note on the mean value of the
zeta and L-functions. XII. Proc. Japan Acad.,
78A, 36–41 (2002).

[ 7 ] Watson, G.N.: A Treatise on the Theory of Bessel
Functions. Cambridge Univ. Press, Cambridge,
pp. 1–804 (1944).




