On certain exact sequences for $\Gamma_{0}(m)$

By Takashi Ono
Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland, 21218-2689, U. S. A.
(Communicated by Shokichi Iyanaga, m. J. A., June 11, 2002)

Abstract

We consider cohomology sets and exact sequences of groups with involutions. In particular, we study congruence subgroups of type $\Gamma_{0}(m)$ which are acted by the group generated either by the map $z \mapsto(-1 / m z)$ of the upper half plane or by the map $x \mapsto(1 / m x)$ of the set of irrational real numbers.

Key words: Congruence subgroups of level m; involutions; cohomology sets; quadratic fields; Pell's equations; ideal class groups.

1. Groups with involutions. Let G be a group and $*$ be an involution on it: $(a b)^{*}=b^{*} a^{*}$, $a^{* *}=a, a, b \in G$. Consider the subgroup of unitary elements of G

$$
\mathcal{U}(G):=\left\{a \in G ; a^{*} a=1\right\}
$$

and a subset of symmetric elements of G

$$
\mathcal{S}(G):=\left\{a \in G ; a^{*}=a\right\}
$$

The group G acts on $\mathcal{S}(G)$ to the right: $a \mapsto a \circ g:=$ $g^{*} a g$. We denote the orbit space of this action by

$$
\mathcal{H}(G):=\mathcal{S}(G) / G
$$

The orbit $1_{G} \circ G$ is the origin of the space $\mathcal{H}(G)$.
Let G^{\prime} be another group with an involution $*$. A homomorphism $G \rightarrow G^{\prime}$ commuting with involutions induces following maps with obvious nice properties:

$$
\mathcal{U}(G) \rightarrow \mathcal{U}\left(G^{\prime}\right), \quad \mathcal{S}(G) \rightarrow \mathcal{S}\left(G^{\prime}\right), \quad \mathcal{H}(G) \rightarrow \mathcal{H}\left(G^{\prime}\right)
$$

Now let N be a normal subgroup of G stable under an involution $*$ of $G: N^{*}=N$. Then one can speak of an involution $*$ of $G / N:(a N)^{*}=a^{*} N$. The short exact sequence

$$
1 \rightarrow N \longrightarrow G \longrightarrow G / N \rightarrow 1
$$

induces naturally the exact sequence of spaces with origins:

$$
\begin{aligned}
1 & \longrightarrow \mathcal{U}(N) \\
& \longrightarrow \mathcal{H}(G) \longrightarrow \mathcal{U}(G / N) \xrightarrow{\delta} \mathcal{H}(N) \\
& \mathcal{H}(G / N)
\end{aligned}
$$

where the map δ is given by

$$
\mathcal{U}(G / N) \ni a N \mapsto\left(a^{*} a\right) \circ N \in \mathcal{H}(N) .
$$

[^0]The exactness can be checked easily. [If one lets the group $g=\langle s\rangle$ of order 2 act on a group G with $*$ by $a^{s}=a^{-*}:=\left(a^{*}\right)^{-1}$, then the exactness follows from a basic theorem of nonabelian cohomology ([3]). In case of involutions, however, one needs only geometric language like orthogonality and symmetry instead of cocycles etc.]

Every group G has a built-in involution $\iota: a \mapsto$ a^{-1}. Any involution $*$ of G can be written $*=\sigma \iota$ with an automorphism σ of G. For that matter, any pair (α, β) of involutions of a group determines an automorphism σ so that $\alpha=\sigma \beta$.
2. Groups $\boldsymbol{\Gamma}_{\boldsymbol{\nu}}(\boldsymbol{m})$. Here is a scenario where G is a group of matrices whose involution $*$ is closely related to the transposition of matrices. To be more precise, let R be a subring of a field Ω containing $1=$ 1_{Ω}. Consider a matrix $U \in \operatorname{GL}_{n}(\Omega)$ and a subgroup $G \subset \mathrm{SL}_{n}(R)$ such that

$$
U^{t}=U, \quad U^{-1} G U=G^{t}:=\left\{A^{t}: A \in G\right\} .
$$

Then we set

$$
A^{*}=U A^{t} U^{-1}, \quad A \in G
$$

Since the map $A \mapsto A^{*}$ is an involution of G, we can speak of $\mathcal{U}(G), \mathcal{S}(G)$ and $\mathcal{H}(G)$ as in Section 1.

Now, let $R=\mathbf{Z}, \Omega=\mathbf{Q}$ and $n=2$. For a nonzero integer m and an integer $\nu \geq 0$ we set

$$
\begin{aligned}
\Gamma_{\nu}(m)=\{A= & {\left[\begin{array}{cc}
a & b \\
m c & d
\end{array}\right] ; a, b, c, d \in \mathbf{Z} } \\
& \left.\operatorname{det} A=1, a^{\nu} \equiv 1 \quad(\bmod m)\right\}
\end{aligned}
$$

Note that, when $m>0, \Gamma_{0}(m), \Gamma_{1}(m)$ are compatible with the conventional notation for congruence groups. Each $\Gamma_{\nu}(m)$ is normal in $\Gamma_{0}(m)$. Needless
to say, the group $\Gamma_{\nu}(m)$ depends only on the class of ν modulo $\varphi(|m|)$. As for the matrix U, we put

$$
U=\left[\begin{array}{cc}
1 & 0 \\
0 & -m
\end{array}\right] \in \mathrm{GL}_{2}(\mathbf{Q})
$$

Then, we find that

$$
U^{-1} \Gamma_{\nu}(m) U=\Gamma^{\nu}(m):=\Gamma_{\nu}(m)^{t}
$$

Consequently

$$
A \mapsto A^{*}=U A^{t} U^{-1}=\left[\begin{array}{cc}
a & -c \\
-m b & d
\end{array}\right]
$$

defines an involution of $\Gamma_{\nu}(m)$.
Here are descriptions of $\mathcal{U}(G), \mathcal{S}(G), \mathcal{H}(G)$ for $G=\Gamma_{\nu}(m)$.
(i) $\mathcal{U}\left(\Gamma_{\nu}(m)\right)$. One verifies that

$$
\begin{aligned}
\mathcal{U}\left(\Gamma_{\nu}(m)\right)= & \left\{A=\left[\begin{array}{cc}
a & b \\
m b & a
\end{array}\right]\right. \\
& \left.a^{2}-m b^{2}=1, a^{\nu} \equiv 1 \quad(\bmod m)\right\}
\end{aligned}
$$

So if $m<0$ or square, $\mathcal{U}\left(\Gamma_{\nu}(m)\right)$ is a finite group and if $m>0$ and nonsquare, it is an infinite group isomorphic to the group of Pell's equation $a^{2}-m b^{2}=$ $1(\nu$ even $)$ or its subgroup with $a \equiv 1(\bmod m)$ (ν odd).
(ii) $\mathcal{S}\left(\Gamma_{\nu}(m)\right)$. One verifies that

$$
\begin{aligned}
& \mathcal{S}\left(\Gamma_{\nu}(m)\right)=\left\{A=\left[\begin{array}{cc}
a & b \\
-m b & d
\end{array}\right]\right. \\
&\left.a d+m b^{2}=1, a^{\nu} \equiv 1 \quad(\bmod m)\right\}
\end{aligned}
$$

(iii) $\mathcal{H}\left(\Gamma_{\nu}(m)\right)=\mathcal{S}\left(\Gamma_{\nu}(m)\right) / \Gamma_{\nu}(m)=\{A \circ$ $\left.\Gamma_{\nu}(m)\right\}, \quad$ where $A \circ T=T^{*} A T, \quad A \in \mathcal{S}\left(\Gamma_{\nu}(m)\right)$, $T \in \Gamma_{\nu}(m)$.
3. A reduction theorem. As an application of the exact sequence in Section 1, we shall prove a theorem on the group $\Gamma_{\nu}(m)$ introduced in Section 2. Let us start with a short exact sequence:

$$
1 \rightarrow N \longrightarrow G \longrightarrow G^{\prime} \rightarrow 1
$$

where $G=\Gamma_{0}(m), N=\Gamma_{\nu}(m), G^{\prime}=\left((\mathbf{Z} / m \mathbf{Z})^{\times}\right)^{\nu}$. The involution $*$ introduced in Section 2 for G induces the one on the normal subgroup N and so on $G / N \approx G^{\prime}$. We have

$$
\begin{aligned}
\mathcal{U}\left(G^{\prime}\right) & =\left\{\alpha \in G^{\prime}: \alpha^{2}=1\right\} \\
\mathcal{S}\left(G^{\prime}\right) & =G^{\prime}, \quad \mathcal{H}\left(G^{\prime}\right)=G^{\prime} /\left(G^{\prime}\right)^{2}
\end{aligned}
$$

and the exact sequence

$$
\begin{aligned}
& 1 \longrightarrow \mathcal{U}(N) \\
& \xrightarrow{\beta} \mathcal{U}(G) \xrightarrow{\gamma} \mathcal{U}\left(G^{\prime}\right) \xrightarrow{\delta} \mathcal{H}(N) \\
& \mathcal{H}(G)
\end{aligned} \xrightarrow{\eta} \mathcal{H}\left(G^{\prime}\right) .
$$

By the reduction we mean to find an N so that β : $\mathcal{U}(N) \cong \mathcal{U}(G)$ and $\epsilon: \mathcal{H}(N) \cong \mathcal{H}(G)$. As for \mathcal{U}, the matter is trivial because

$$
\mathcal{U}(N) \cong \mathcal{U}(G) \Longleftrightarrow \nu \equiv 0 \quad(\bmod 2)
$$

So we will search even ν so that $\mathcal{H}(N) \cong \mathcal{H}(G)$. Actually it turns out that the choice

$$
\nu=2^{g}, \quad \text { with } \varphi(|m|)=2^{g} \cdot h, \quad h \equiv 1 \quad(\bmod 2)
$$

is good to make ϵ bijective. [Note that $g=0$ only when $m= \pm 1$, or ± 2 and the matter is trivial in these cases.]
(i) ϵ is injective. By definition, $\epsilon: \mathcal{H}(N) \rightarrow$ $\mathcal{H}(G)$ is given by

$$
\begin{aligned}
& A \circ N \mapsto A \circ G, \quad A=\left[\begin{array}{cc}
a & b \\
-m b & d
\end{array}\right], \\
& a d+m b^{2}=1, \quad a^{\nu} \equiv 1 \quad(\bmod m)
\end{aligned}
$$

So we need to show that, for $A, A^{\prime} \in \mathcal{S}(N), A^{\prime} \circ G=$ $A \circ G$ implies $A^{\prime} \circ N=A \circ N$. Now the assumption means that

$$
A^{\prime}=T^{*} A T, \quad T=\left[\begin{array}{cc}
t & u \\
m v & w
\end{array}\right], \quad t w-m u v=1
$$

Reducing the relation $T^{*} A=A^{\prime} T^{-1}$ modulo m, we find $t a \equiv w a^{\prime}(\bmod m)$ where a^{\prime} is the $(1,1)$ component of A^{\prime}. Since $a^{\nu} \equiv a^{\prime \nu} \equiv 1(\bmod m)$ we have $t^{\nu} \equiv w^{\nu}(\bmod m)$. We have also $t^{2 \nu} \equiv 1(\bmod m)$. As $\varphi(m)=\nu \cdot h$ with h odd, we conclude that $t^{\nu} \equiv 1$ $(\bmod m)$, which means that $T \in N$, q.e.d.
(ii) ϵ is surjective. Since $\operatorname{Im} \epsilon=\operatorname{Ker} \eta$ it is enough to prove that η is trivial. In other words, having

$$
A=\left[\begin{array}{cc}
a & b \\
-m b & d
\end{array}\right], \quad a d+m b^{2}=1, \quad A \in \mathcal{S}(G)
$$

in mind, we shall show that:
For any $a \in \mathbf{Z},(a, m)=1$, there is an integer x so that $a^{\nu} \equiv x^{2 \nu}(\bmod m)$.

In fact, one reduces the proof of this to the case where $|m|=p^{e}$ a power of a prime p. If $p=2$, then $\varphi\left(2^{e}\right)=2^{e-1}=\nu$, with $h=1$, i.e., $N=G$ and the matter is trivial. If $p \neq 2$, then, with a primitive root r modulo p^{e}, write $a \equiv r^{\alpha}\left(\bmod p^{e}\right), x \equiv r^{\xi}$ $\left(\bmod p^{e}\right)$. Then one has to solve

$$
\nu \alpha \equiv 2 \nu \xi \quad\left(\bmod \varphi\left(p^{e}\right)\right)
$$

As $\varphi\left(p^{e}\right)=p^{e-1}(p-1)=\nu h, h$ odd, where $\nu=2^{g}$, with $g \geq e$, we are reduced to solve

$$
\alpha \equiv 2 \xi \quad(\bmod h)
$$

which has certainly a solution because h is odd, q.e.d.

Summing up our arguments:
Theorem. Notation being as in Section 3, let $\varphi(|m|)=2^{g} h, h$ odd. Then
$\mathcal{U}\left(\Gamma_{0}(m)\right) \cong \mathcal{U}\left(\Gamma_{2^{g}}(m)\right), \quad \mathcal{H}\left(\Gamma_{0}(m)\right) \cong \mathcal{H}\left(\Gamma_{2^{g}}(m)\right)$.
4. Certain real quadratic fields. To avoid technical complications, we shall assume from now on that m is a positive squarefree integer such that $m \equiv 3(\bmod 4)$. Let $k=\mathbf{Q}(\sqrt{m})$, the quadratic field corresponding to m. Since $m \equiv 3(\bmod 4), 1, \sqrt{m}$ form the standard basis of the ring o_{k} of integers of k with the discriminant $4 m$. The assumption implies also that the group $\mathrm{o}_{k}{ }^{\times}$of units of k is identical with the solutions of Pell's equation $x^{2}-m y^{2}=1$. Denote by H_{k}^{+}the ideal class group in the narrow sense of k. There is a well-known bijection

$$
\begin{aligned}
& i_{k}: H_{k}^{+} \cong \Phi(4 m) / \mathrm{SL}_{2}(\mathbf{Z}) \\
& \Phi(4 m):=\left\{f=a x^{2}+b x y+c y^{2}\right. ; \\
&\left.\quad a, b, c \in \mathbf{Z}, b^{2}-4 a c=4 m\right\}
\end{aligned}
$$

Now back to materials in Section 2, for the integer m above, put

$$
\begin{gathered}
U=\left[\begin{array}{cc}
1 & 0 \\
0 & -m
\end{array}\right], \quad A=\left[\begin{array}{cc}
a & b \\
m c & d
\end{array}\right] \in \Gamma_{0}(m), \\
A^{*}=U A^{t} U^{-1} .
\end{gathered}
$$

Then we have three sets

$$
\mathcal{U}\left(\Gamma_{0}(m)\right), \quad \mathcal{S}\left(\Gamma_{0}(m)\right), \quad \mathcal{H}\left(\Gamma_{0}(m)\right)
$$

First of all, we have $\mathcal{U}\left(\Gamma_{0}(m)\right) \cong \mathrm{o}_{k}{ }^{\times}$.
Next, observe that there is a map from *-symmetric matrices to quadratic forms: $\mathcal{S}\left(\Gamma_{0}(m)\right) \longrightarrow \Phi(4 m)$ defined by

$$
\begin{aligned}
& \mathcal{S}\left(\Gamma_{0}(m)\right) \ni A=\left[\begin{array}{cc}
a & b \\
-m b & d
\end{array}\right] \\
& \quad \mapsto A U: a x^{2}-2 m b x y-m d y^{2} \in \Phi(4 m)
\end{aligned}
$$

This map then induces a bijection:

$$
\pi: \mathcal{H}\left(\Gamma_{0}(m)\right) \cong H_{k}^{+}
$$

The proof of this important fact on real quadratic fields follows mutatis mutandis from that of theorems on imaginary quadratic fields in $[1,2]$.
5. $\Gamma_{0}(\ell)$ and $\Gamma_{\mathbf{1}}(\ell)$. The reduction theorem in Section 3 cannot compare $\Gamma_{0}(m)$ with $\Gamma_{1}(m)$ except $m= \pm 1, \pm 2$. Here we shall compare their \mathcal{U} and \mathcal{H} in a special case. So let ℓ be a prime $\equiv 3(\bmod 4)$. Let $k=\mathbf{Q}(\sqrt{\ell})$. As for \mathcal{U}, we have

$$
\mathcal{U}\left(\Gamma_{0}(\ell)\right) \cong \mathrm{o}_{k}{ }^{\times}
$$

By definition

$$
\Gamma_{1}(\ell)=\left\{A=\left[\begin{array}{cc}
a & b \\
\ell c & d
\end{array}\right], a \equiv 1 \quad(\bmod \ell)\right\} \subset \Gamma_{0}(\ell)
$$

Hence, from (i) in Section 2, we have

$$
\begin{aligned}
& \mathcal{U}\left(\Gamma_{1}(\ell)\right) \\
& \cong\left\{(a, b) \in \mathbf{Z}^{2} ; a^{2}-\ell b^{2}=1, a \equiv 1 \quad(\bmod \ell)\right\}
\end{aligned}
$$

If (a, b), a solution to the Pell's equation, is such that $a \equiv-1(\bmod \ell)$, then $(-a,-b)$ is one in the subgroup $\mathcal{U}\left(\Gamma_{1}(\ell)\right)$. This means that

$$
\mathcal{U}\left(\Gamma_{0}(\ell)\right) \cong \mathbf{Z} / 2 \mathbf{Z} \times \mathcal{U}\left(\Gamma_{1}(\ell)\right)
$$

As for \mathcal{H}, using the Legendre character $a \mapsto(a / \ell)$, we split the set $\mathcal{S}\left(\Gamma_{0}(\ell)\right)$ into two disjoint parts:

$$
\begin{gathered}
\mathcal{S}\left(\Gamma_{0}(\ell)\right)=\mathcal{S}^{+}\left(\Gamma_{0}(\ell)\right) \cup \mathcal{S}^{-}\left(\Gamma_{0}(\ell)\right), \\
\mathcal{S}^{ \pm}\left(\Gamma_{0}(\ell)\right) \\
=\left\{A=\left[\begin{array}{cc}
a & b \\
-\ell b & d
\end{array}\right] \in \mathcal{S}\left(\Gamma_{0}(\ell)\right),\left(\frac{a}{\ell}\right)= \pm 1\right\} .
\end{gathered}
$$

Since $\left(a t^{2} / \ell\right)=(a / \ell), a, t \in(\mathbf{Z} / \ell \mathbf{Z})^{\times}$, we see easily that $\mathcal{S}^{ \pm}\left(\Gamma_{0}(\ell)\right)$ are stable under the action of $\Gamma_{0}(\ell)$. Consequently, we obtain the following natural splitting:

$$
\mathcal{H}\left(\Gamma_{0}(\ell)\right)=\mathcal{H}^{+}\left(\Gamma_{0}(\ell)\right) \cup \mathcal{H}^{-}\left(\Gamma_{0}(\ell)\right),
$$

where $\mathcal{H}^{ \pm}\left(\Gamma_{0}(\ell)\right):=\mathcal{S}^{ \pm}\left(\Gamma_{0}(\ell)\right) / \Gamma_{0}(\ell)$.
For $a \in(\mathbf{Z} / \ell \mathbf{Z})^{\times}$we have

$$
\left(\frac{-a}{\ell}\right)=\left(\frac{-1}{\ell}\right)\left(\frac{a}{\ell}\right)=-\left(\frac{a}{\ell}\right)
$$

because $\ell \equiv 3(\bmod 4)$. Therefore $A \in \mathcal{S}^{+}\left(\Gamma_{0}(\ell)\right)$ if and only if $-A \in \mathcal{S}^{-}\left(\Gamma_{0}(\ell)\right)$. Hence $\sharp \mathcal{H}^{+}\left(\Gamma_{0}(\ell)\right)=$ $\sharp \mathcal{H}^{-}\left(\Gamma_{0}(\ell)\right)$. The basic bijection π in Section 4 implies that $\sharp \mathcal{H}\left(\Gamma_{0}(\ell)\right)=\sharp H_{k}{ }^{+}=h_{k}{ }^{+}$. If we put $h_{k}=$ $\sharp H_{k}$, then we have $h_{k}{ }^{+}=2 h_{k}$ when $\ell \equiv 3(\bmod 4)$. Consequently we obtain

$$
\sharp \mathcal{H}^{+}\left(\Gamma_{0}(\ell)\right)=h_{k} .
$$

Since $(a / \ell)=1$ when $a \equiv 1(\bmod \ell)$, we have $\mathcal{S}\left(\Gamma_{1}(\ell)\right) \subset \mathcal{S}^{+}\left(\Gamma_{0}(\ell)\right)$. This induces naturally the
following map

$$
\epsilon^{+}: \mathcal{H}\left(\Gamma_{1}(\ell)\right) \longrightarrow \mathcal{H}^{+}\left(\Gamma_{0}(\ell)\right)
$$

We claim that ϵ^{+}is bijective.
(i) ϵ^{+}is injective. Let

$$
A=\left[\begin{array}{cc}
a & b \\
-\ell b & d
\end{array}\right], \quad A^{\prime}=\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
-\ell b^{\prime} & d^{\prime}
\end{array}\right]
$$

be matrices in $\mathcal{S}\left(\Gamma_{1}(\ell)\right)$ such that

$$
A^{\prime}=T^{*} A T, \quad T=\left[\begin{array}{cc}
t & u \\
\ell v & w
\end{array}\right] \in \Gamma_{0}(\ell)
$$

Reducing the relation $T^{*} A=A^{\prime} T^{-1}$ modulo ℓ, we obtain $t \equiv w(\bmod \ell)$ since $a \equiv a^{\prime} \equiv 1(\bmod \ell)$. On the other hand, we have $t w-\ell u v=1$, so $t w \equiv 1$ $(\bmod \ell)$. Hence $t^{2} \equiv 1(\bmod \ell)$ or $t \equiv \pm 1$. If $t \equiv-1$ $(\bmod \ell)$, then, on replacing T by $-T$, we can assume that $t \equiv 1(\bmod \ell)$. This means $T \in \Gamma_{1}(\ell)$; in other words, ϵ^{+}is injective.
(ii) ϵ^{+}is surjective.

Take a matrix

$$
A=\left[\begin{array}{cc}
a & b \\
-\ell b & d
\end{array}\right] \in \mathcal{S}^{+}\left(\Gamma_{0}(\ell)\right)
$$

We should find an $A^{\prime} \in \mathcal{S}\left(\Gamma_{1}(\ell)\right)$ so that $A^{\prime}=T^{*} A T$ for some $T \in \Gamma_{0}(\ell)$. Now, by the assumption on A, there is a $t \in(\mathbf{Z} / \ell \mathbf{Z})^{\times}$such that $a t^{2} \equiv 1(\bmod \ell)$.

Next, find u, w so that $t w-\ell u=1$ and put

$$
T=\left[\begin{array}{cc}
t & u \\
\ell & w
\end{array}\right] \in \Gamma_{0}(\ell)
$$

Then we find

$$
\begin{aligned}
T^{*} A T & \equiv\left[\begin{array}{cc}
t & -1 \\
0 & w
\end{array}\right]\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]\left[\begin{array}{cc}
t & u \\
0 & w
\end{array}\right] \\
& \equiv\left[\begin{array}{cc}
a t^{2} & * \\
0 & *
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right](\bmod \ell)
\end{aligned}
$$

i.e., $T^{*} A T=A^{\prime} \in \Gamma_{1}(\ell), \quad$ q.e.d.

Summarizing, we have proved
Theorem. Let ℓ be a prime $\neq 2, \equiv 3$ $(\bmod 4), k=\mathbf{Q}(\sqrt{\ell})$ and h_{k} the class number of k. Then we have

$$
\sharp \mathcal{H}\left(\Gamma_{1}(\ell)\right)=h_{k} .
$$

References

[1] Ono, T.: On certain cohomology set for $\Gamma_{0}(N)$. Proc. Japan Acad., 77A, 39-41 (2001).
[2] Ono, T.: On certain cohomology set for $\Gamma_{0}(N)$. II. Proc. Japan Acad., 77A, 108-110 (2001).
[3] Serre, J.-P.: Galois Cohomology. Springer-Verlag, Berlin-Heidelberg-New York (1997).

[^0]: 2000 Mathematics Subject Classification. 11F75.

