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On certain exact sequences for Γ0(m)
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Abstract: We consider cohomology sets and exact sequences of groups with involutions.
In particular,we study congruence subgroups of type Γ0(m) which are acted by the group generated
either by the map z → (−1/mz) of the upper half plane or by the map x → (1/mx) of the set of
irrational real numbers.
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1. Groups with involutions. Let G be a
group and ∗ be an involution on it: (ab)∗ = b∗a∗,
a∗∗ = a, a, b ∈ G. Consider the subgroup of unitary
elements of G

U(G) := {a ∈ G; a∗a = 1}
and a subset of symmetric elements of G

S(G) := {a ∈ G; a∗ = a}.
The group G acts on S(G) to the right: a → a◦ g :=
g∗ag. We denote the orbit space of this action by

H(G) := S(G)/G.

The orbit 1G ◦G is the origin of the space H(G).
Let G′ be another group with an involution ∗ . A

homomorphismG→ G′ commuting with involutions
induces following maps with obvious nice properties:

U(G) → U(G′), S(G) → S(G′), H(G) → H(G′).

Now let N be a normal subgroup of G stable under
an involution ∗ of G : N∗ = N . Then one can speak
of an involution ∗ of G/N : (aN)∗ = a∗N . The short
exact sequence

1 → N −→ G −→ G/N → 1

induces naturally the exact sequence of spaces with
origins:

1 −→ U(N) −→ U(G) −→ U(G/N) δ−→ H(N)

−→ H(G) −→ H(G/N),

where the map δ is given by

U(G/N) � aN → (a∗a) ◦N ∈ H(N).

2000 Mathematics Subject Classification. 11F75.

The exactness can be checked easily. [If one lets the
group g = 〈 s 〉 of order 2 act on a group G with ∗ by
as = a−∗ := (a∗)−1, then the exactness follows from
a basic theorem of nonabelian cohomology ([3]). In
case of involutions, however, one needs only geomet-
ric language like orthogonality and symmetry instead
of cocycles etc.]

Every group G has a built-in involution ι : a →
a−1. Any involution ∗ of G can be written ∗ = σι

with an automorphism σ of G. For that matter, any
pair (α, β) of involutions of a group determines an
automorphism σ so that α = σβ.

2. Groups Γν(m). Here is a scenario where
G is a group of matrices whose involution ∗ is closely
related to the transposition of matrices. To be more
precise, let R be a subring of a field Ω containing 1 =
1Ω. Consider a matrix U ∈ GLn(Ω) and a subgroup
G ⊂ SLn(R) such that

U t = U, U−1GU = Gt := {At : A ∈ G}.
Then we set

A∗ = UAtU−1, A ∈ G.

Since the map A → A∗ is an involution of G, we can
speak of U(G), S(G) and H(G) as in Section 1.

Now, let R = Z,Ω = Q and n = 2. For a
nonzero integer m and an integer ν ≥ 0 we set

Γν(m) =
{
A =

[
a b

mc d

]
; a, b, c, d ∈ Z,

detA = 1, aν ≡ 1 (mod m)
}
.

Note that, when m > 0, Γ0(m), Γ1(m) are compat-
ible with the conventional notation for congruence
groups. Each Γν(m) is normal in Γ0(m). Needless
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to say, the group Γν(m) depends only on the class of
ν modulo ϕ(|m|). As for the matrix U , we put

U =
[

1 0
0 −m

]
∈ GL2 (Q).

Then, we find that

U−1Γν(m)U = Γν(m) := Γν(m)t.

Consequently

A → A∗ = UAtU−1 =
[

a −c
−mb d

]
defines an involution of Γν(m).

Here are descriptions of U(G), S(G), H(G) for
G = Γν(m).

(i) U(Γν(m)). One verifies that

U(Γν(m)) =
{
A =

[
a b

mb a

]
,

a2 −mb2 = 1, aν ≡ 1 (mod m)
}
.

So if m < 0 or square, U(Γν(m)) is a finite group and
if m > 0 and nonsquare, it is an infinite group iso-
morphic to the group of Pell’s equation a2 −mb2 =
1 (ν even) or its subgroup with a ≡ 1 (mod m)
(ν odd).

(ii) S(Γν(m)). One verifies that

S(Γν(m)) =
{
A =

[
a b

−mb d

]
,

ad+ mb2 = 1, aν ≡ 1 (mod m)
}
.

(iii) H(Γν(m)) = S(Γν(m))/Γν (m) = {A ◦
Γν(m)}, where A ◦ T = T ∗AT , A ∈ S(Γν(m)),
T ∈ Γν(m).

3. A reduction theorem. As an applica-
tion of the exact sequence in Section 1, we shall prove
a theorem on the group Γν(m) introduced in Sec-
tion 2. Let us start with a short exact sequence:

1 → N −→ G −→ G′ → 1

where G = Γ0(m), N = Γν(m), G′ = ((Z/mZ)×)ν .
The involution ∗ introduced in Section 2 for G in-
duces the one on the normal subgroup N and so on
G/N ≈ G′. We have

U(G′) = {α ∈ G′ : α2 = 1},
S(G′) = G′, H(G′) = G′/(G′)2

and the exact sequence

1 −→ U(N) β−→ U(G) γ−→ U(G′) δ−→ H(N)
ε−→ H(G) η−→ H(G′).

By the reduction we mean to find an N so that β :
U(N) ∼= U(G) and ε : H(N) ∼= H(G). As for U , the
matter is trivial because

U(N) ∼= U(G) ⇐⇒ ν ≡ 0 (mod 2).

So we will search even ν so that H(N) ∼= H(G).
Actually it turns out that the choice

ν = 2g, with ϕ(|m|) = 2g·h, h ≡ 1 (mod 2)

is good to make ε bijective. [Note that g = 0 only
when m = ±1, or ±2 and the matter is trivial in
these cases.]

(i) ε is injective. By definition, ε : H(N) →
H(G) is given by

A ◦N → A ◦G, A =
[

a b

−mb d

]
,

ad+ mb2 = 1, aν ≡ 1 (mod m).

So we need to show that, for A,A′ ∈ S(N), A′ ◦G =
A ◦G implies A′ ◦N = A ◦N . Now the assumption
means that

A′ = T ∗AT, T =
[

t u

mv w

]
, tw −muv = 1.

Reducing the relation T ∗A = A′T−1 modulo m, we
find ta ≡ wa′ (mod m) where a′ is the (1, 1) com-
ponent of A′. Since aν ≡ a′ν ≡ 1 (mod m) we have
tν ≡ wν (mod m). We have also t2ν ≡ 1 (mod m).
As ϕ(m) = ν ·h with h odd, we conclude that tν ≡ 1
(mod m), which means that T ∈ N , q.e.d.

(ii) ε is surjective. Since Im ε = Ker η it is
enough to prove that η is trivial. In other words,
having

A =
[

a b

−mb d

]
, ad+ mb2 = 1, A ∈ S(G)

in mind, we shall show that:
For any a ∈ Z, (a,m) = 1, there is an integer x

so that aν ≡ x2ν (mod m).
In fact, one reduces the proof of this to the case

where |m| = pe a power of a prime p. If p = 2, then
ϕ(2e) = 2e−1 = ν , with h = 1, i.e., N = G and the
matter is trivial. If p �= 2, then, with a primitive
root r modulo pe, write a ≡ rα (mod pe), x ≡ rξ

(mod pe). Then one has to solve

να ≡ 2νξ (mod ϕ(pe)).
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As ϕ(pe) = pe−1(p − 1) = νh, h odd, where ν = 2g,
with g ≥ e, we are reduced to solve

α ≡ 2ξ (mod h)

which has certainly a solution because h is odd,
q.e.d.

Summing up our arguments:
Theorem. Notation being as in Section 3, let

ϕ(|m|) = 2gh, h odd. Then

U(Γ0(m)) ∼= U(Γ2g(m)), H(Γ0(m)) ∼= H(Γ2g(m)).

4. Certain real quadratic fields. To avoid
technical complications, we shall assume from now
on that m is a positive squarefree integer such that
m ≡ 3 (mod 4). Let k = Q(

√
m), the quadratic field

corresponding to m. Since m ≡ 3 (mod 4), 1,
√
m

form the standard basis of the ring ok of integers of
k with the discriminant 4m. The assumption implies
also that the group ok

× of units of k is identical with
the solutions of Pell’s equation x2−my2 = 1. Denote
by H+

k the ideal class group in the narrow sense of
k. There is a well-known bijection

ik : H+
k
∼= Φ(4m)/ SL2(Z),

Φ(4m) := {f = ax2 + bxy + cy2;

a, b, c ∈ Z, b2 − 4ac = 4m}.
Now back to materials in Section 2, for the integer
m above, put

U =
[

1 0
0 −m

]
, A =

[
a b

mc d

]
∈ Γ0(m),

A∗ = UAtU−1.

Then we have three sets

U(Γ0(m)), S(Γ0(m)), H(Γ0(m)).

First of all, we have U(Γ0(m)) ∼= ok
×.

Next, observe that there is a map from
∗-symmetric matrices to quadratic forms:
S(Γ0(m)) −→ Φ(4m) defined by

S(Γ0(m)) � A =
[

a b

−mb d

]
→ AU : ax2 − 2mbxy −mdy2 ∈ Φ(4m).

This map then induces a bijection:

π : H(Γ0(m)) ∼= Hk
+.

The proof of this important fact on real quadratic
fields follows mutatis mutandis from that of theorems
on imaginary quadratic fields in [1, 2].

5. Γ0(�) and Γ1(�). The reduction theorem
in Section 3 cannot compare Γ0(m) with Γ1(m) ex-
cept m = ±1,±2. Here we shall compare their U and
H in a special case. So let 	 be a prime ≡ 3 (mod 4).
Let k = Q(

√
	). As for U , we have

U(Γ0(	)) ∼= ok
×.

By definition

Γ1(	) =
{
A =

[
a b

	c d

]
, a ≡ 1 (mod 	)

}
⊂ Γ0(	).

Hence, from (i) in Section 2, we have

U(Γ1(	))
∼= {(a, b) ∈ Z2; a2 − 	b2 = 1, a ≡ 1 (mod 	)}.
If (a, b), a solution to the Pell’s equation, is such

that a ≡ −1 (mod 	), then (−a,−b) is one in the
subgroup U(Γ1(	)). This means that

U(Γ0(	)) ∼= Z/2Z×U(Γ1(	)).

As for H, using the Legendre character a → (a/	),
we split the set S(Γ0(	)) into two disjoint parts:

S(Γ0(	)) = S+(Γ0(	)) ∪ S−(Γ0(	)),

S±(Γ0(	))

=
{
A =

[
a b

−	b d

]
∈ S(Γ0(	)),

(a
	

)
= ±1

}
.

Since (at2/	) = (a/	), a, t ∈ (Z/	Z)×, we see easily
that S±(Γ0(	)) are stable under the action of Γ0(	).
Consequently, we obtain the following natural split-
ting:

H(Γ0(	)) = H+(Γ0(	)) ∪H−(Γ0(	)),

where H±(Γ0(	)) := S±(Γ0(	))/Γ0(	).

For a ∈ (Z/	Z)× we have(−a
	

)
=

(−1
	

)(
a

	

)
= −

(
a

	

)
because 	 ≡ 3 (mod 4). Therefore A ∈ S+(Γ0(	)) if
and only if −A ∈ S−(Γ0(	)). Hence �H+(Γ0(	)) =
�H−(Γ0(	)). The basic bijection π in Section 4 im-
plies that �H(Γ0(	)) = �Hk

+ = hk
+. If we put hk =

�Hk, then we have hk+ = 2hk when 	 ≡ 3 (mod 4).
Consequently we obtain

�H+(Γ0(	)) = hk.

Since (a/	) = 1 when a ≡ 1 (mod 	), we have
S(Γ1(	)) ⊂ S+(Γ0(	)). This induces naturally the
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following map

ε+ : H(Γ1(	)) −→ H+(Γ0(	)).

We claim that ε+ is bijective.
(i) ε+ is injective. Let

A =
[

a b

−	b d

]
, A′ =

[
a′ b′

−	b′ d′

]
be matrices in S(Γ1(	)) such that

A′ = T ∗AT, T =
[
t u

	v w

]
∈ Γ0(	).

Reducing the relation T ∗A = A′T−1 modulo 	, we
obtain t ≡ w (mod 	) since a ≡ a′ ≡ 1 (mod 	). On
the other hand, we have tw − 	uv = 1, so tw ≡ 1
(mod 	). Hence t2 ≡ 1 (mod 	) or t ≡ ±1. If t ≡ −1
(mod 	), then, on replacing T by −T , we can assume
that t ≡ 1 (mod 	). This means T ∈ Γ1(	); in other
words, ε+ is injective.

(ii) ε+ is surjective.
Take a matrix

A =
[

a b

−	b d

]
∈ S+(Γ0(	)).

We should find an A′ ∈ S(Γ1(	)) so that A′ = T ∗AT
for some T ∈ Γ0(	). Now, by the assumption on A,
there is a t ∈ (Z/	Z)× such that at2 ≡ 1 (mod 	).

Next, find u, w so that tw − 	u = 1 and put

T =
[
t u

	 w

]
∈ Γ0(	).

Then we find

T ∗AT ≡
[
t −1
0 w

] [
a b

0 d

] [
t u

0 w

]

≡
[
at2 ∗
0 ∗

]
≡

[
1 ∗
0 1

]
(mod 	),

i.e., T ∗AT = A′ ∈ Γ1(	), q.e.d.
Summarizing, we have proved
Theorem. Let 	 be a prime �= 2, ≡ 3

(mod 4), k = Q(
√
	) and hk the class number of k.

Then we have

�H(Γ1(	)) = hk.
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