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On two questions of Ono

By Qiang LIN*) and Takashi ONO**)

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 2002)

Abstract:

We answer two questions on Pell’s equations and periods of quadratic irrationals

raised by the second author while computing some cohomology groups.

Key words:

1. Question one on fundamental unit.
In [4, §5], Ono compared certain non-abelian co-
homology groups of congruence group I'g(¢) with
that of IT';(¢), where ¢ is a prime = 3 mod 4. Dur-
ing the investigation, he suspected that U(Ty(¢)) =
U(T1(¢)), which is, if stated in plainer language and
more completely,

Theorem. Let (xg,y0) be the fundamental so-
lution to the Pell’s equation:

(1) v -y =1,

where £ is a prime number. Then xg = 1 mod { &
£ =2 or{=7mod 8.

Note that since 22 — 1 = 0 mod ¢, we have z =
41 mod ¢. It turns out that the above beautiful the-
orem has been discovered before. See for example,
[8]. Here we present an elementary proof:

Without loss of generality, the values of vari-
ables and each component of solutions we will refer
to are positive integers.

“«<": The case when ¢ = 2 is trivial. Now we
will prove for any £ = 7 mod 8, not necessarily prime,
(1) has no solution with 2 = —1 mod ¢. Suppose
otherwise that we have x = mf—1 for some (positive)
integer m. Upon substitution we have

(2) y? =m(ml —2).

There are two cases.

Case one: m is odd. Then (m,mf —2) = 1,
which implies both m and mf — 2 are squares. Then
m = 1 mod 8 and hence, m¢ —2 = 5 mod 8, which is
impossible as mf — 2 is a square.
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Pell’s equation; continued fraction.

Case two: m = 2n for some integer n. Upon
substitution, we have y? = 4n(nf—1). Since (n,nf —
1) = 1, both n and nf — 1 are squares. Then n =
0,1,4mod 8 and hence, nf{ — 1 = —1,6,3 mod 8,
which is again impossible as nf — 1 is a square. Thus
we complete the “if” part.

“=7: An
group structure of solutions of the Pell’s equation
tells that if zg = 1 mod ¢, so are all other solutions.
So it suffices to show that there exists at least one

inspection on the multiplicative

(positive) solution to (1) with 2 = —1 mod ¢ when
£ %2 and ¢ # 7 mod 8.

There are two cases.

Case one: ¢ =1mod 4. Let (a,b) be such that
a? — b%( = —1. For example, by the elementary the-
ory of continued fractions, (a, b) can be the (k—1)-th
convergent of the continued fraction of v/¢, where k
is the period of that continued fraction. Setting m =
20%, y = 2ba, we obtain a solution to (2) and hence
also a desired solution to (1).

Case two: ¢ =3 mod 8. Note that

(zo +1)(z0 — 1) = y3¢-

We claim that xq is an even number. Otherwise sup-
pose zg is odd. Then (zg+ 1,29 — 1) = 2 and hence,
20+ 1 = 2a%¢ and z¢ F 1 = 2b? for some a, b. The
upper signs can not hold as it would imply b2 =
—1 mod ¢, a contradiction to £ = 3 mod 8 by reci-
procity law. As for the lower signs, we would find
b? — a®¢ = 1, i.e., a solution (a,b) that is smaller
than (x,y0), which is impossible as (xg,yo) is the
smallest solution.

Now that xg is an even number, (z¢ + 1,29 —
1) =1. Soxg£1 = a?l and zg F 1 = b? for some
a, b. The lower signs can not hold as it would imply
b?> = 2 mod ¢, again a contradiction to £ = 3 mod 8
by reciprocity law. So the upper signs must hold.
That is to say, b> — a?¢ = —2. We then obtain a
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solution to (2), namely, m = a?, y = ab, and hence
also a desired solution to (1). This completes the
“only if” part.

2. Question two on period length of con-
tinued fraction. The (simple) continued fraction
of an irrational number is (eventually) periodic if and
only if that number is a quadratic irrational, i.e., an
irrational number in a real quadratic extension of Q
(Lagrange, 1770). Ono was initially interested in the
length k = k(£) of the (shortest) periods of the con-
tinued fraction of v/¢, where ¢ is a prime number. In
[5] he suggested that

k=0mod4 if {=7modS§,
k=2mod4 if ¢ =3 modS.

In fact, the following is already proved by Lagrange
(1770).

k isodd if /=2 or /=1 mod4.

As we expected this basic result was not news.
See [2, Corollary 1] or [1]. However, we would like
to present a proof that suggests a little more in this
case.

Let k be even so k = 2n + 2 for some n > 0. By
[6, Problem 7.20], we can write

1
» 415 40, 7Z

Note that throughout this article partial quotients
of a continued fraction is indexed beginning with 0

(3)  Vi=|qaq,.-.

y4nyqn+1,4n, - - -

which signifies the integral part of it.

Suppose n = 0, i.e., V£ = [qo; T, 2qo], where go =
||, then ¢ = g2 +2qo/r. So r | 2qo. Since k # 1,
r # 2qg. Since ¢ is prime, (go,2go/r) = 1 and hence
go = r. Being an odd number, ¢ = ¢ 42 = 3 mod 8.

Now let n > 0. Let [go,q1,---,qn] = an/bn,
[90,G1; - -y @n-1] = @n—1/bn—1. Tt is well-known that:

(4) Anbp_1 —bpan_1 = (—1)" 1.

We also know by [6, Problem 7.7] that [gp,...,
q1,90] = an/an—1, [qn,---,q1] = bn/bn—1. So,

1 %an + b,
dny--->41:,490, —(= | = 747 5 -
Ve J7n—1+bn1

The right hand side of equality (3) becomes
(%an + bn) (Qn—i-lan + an—l) +(%an—1 + bn—l)an
(%an + bn) (qn+lbn + bn—l) +(%an—1 + bn—l)bn .

Hence (3) implies two equalities, one being trivial
and the other one being:

[Vol. 78(A),

(5) an(Qn+1an + 2an—1) = Ebn(Qn—an + 2bn—1)-

Suppose £ | an. As (an, Gnan+2an-1) = (an,2) |
2, we know £ t gny1an + 2a,. Since by (gni1an +
2an—1)_an(Qn+1bn+2bn—1) = 2(bnan—1_anbn—1) =
2(=1)™, we know (gn4+16n +2an-1, Gny1bn +2bp_1) |
2. Hence, from (5), we have

Gn+10n + 2an_1 | 2by,.

Then a,/b, < 2. However, a, /b, is a best approx-
imation to /. Hence, v/ < 2. That is, £ = 2 or
3 which is impossible as k(2) = 1 and k(3) = 2. So
1 ay.

We know that (an,b,) = 1.
have

So from (5), we

Qn | Gnt1bn + 205 1.

By [6, Problem 7.20], ¢, 41 < v/¢. Furthermore, a,, >
\/an —1 as ay /by, is a best approximation to V0. So
if £ > 16, we must have 2a,, > ¢p41b, + 2b,—1 and
hence from the divisibility above:

(6) (n = Qni1bn + 20,1,

which can be easily verified for £ < 16. Then com-
bining with (5), we also have:

(7) lhy, = Gn410n + 2apn_1.
Hence,
(8) aZ — b = 2(anby_1 — bpa,_1) = 2(=1)""%

We know ¢ # 2. If n is even, then (—2/¢) = 1 and
hence ¢ = 1,3 mod 8 by reciprocity law. Checking
(8) module 8, we see £ = 1 mod 8 is not possible.
Hence, ¢ = 3 mod 8. Likewise, £ = 7 mod 8 if n is
odd. This concludes our proof.

Readers may note that for £ = 3 mod 8, the pair
(an, by) here is the same as the (a, b) in the last para-
graph of the proof of the previous theorem.

We see that the equations (6) and (7) lead to
(8), whose right hand side is determined by the class
of k mod 4. In fact, there are stronger links among
them as reflected by part of the following theorem.
To set up, let £ be a non-square (positive) integer, not
necessarily prime. V¢ = [q0, q1, - -] = g0, Q15 - - -5 GKl,
where qo = [V//] and q1, . .., g is the first (shortest)
period. Let a;/b; be its i-th convergent, ¢ > 0. Set
a—1 =1andb_; = 0. Then they satisfy (4) forn >0
and

a; = qia;—1 +a;—2 and b; = q;bj_1 + b0,
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for ¢ > 0. More over, a;/b; is a best approximation
to V¢ for i > 0.

The following theorem can be viewed as a vari-
ant of the celebrated theorem of Lagrange on the
solution of 2% — 3%/ = +1.

Theorem.
equivalent for € # 2.
(A) 22 — 9?0 = £2 is solvable.

(B) a2 — b2l = £2 for some n.
(C) k is even and (an,t) =1 where n = k/2—1+tk

for some t > 0.

(D) an = qnit1bn + 2bp—1 = byy1 + bp_1 for some

n > 0.

(E) &by, = qni1an + 2an—1 = ani1 + an—1 for some

n > 0.

(F) by | an —2b,—1 for some n >

The following statements are

log(5¢)
2log((1+v5)/2)
(G) ayp, | by, — 2ay,—1 for some n > 0.
log(5¢)
(H) bn—l | Qp, _bn—',-l fO?” some n > m
and 1 < qn41 7# 2qo if € # 3,7.
(I) an—1 | €by, — apny1 for some n > 0 and 1 <
qn+1 # 2qo if L # 3,7.
(J) there is 2\/@/3 < Gn+1 7 2qo for some n >0 or
0=3,7,14,23.
Proof. To prepare for the proof, we recall the
continued fraction algorithm applied to v/¢: Let Py =

+1.

+1

0, Qo = 1 and recursively compute for i > 0:

9) 0= [(P, +V1)/Qil,
(10) Py =qQi — P
(11) Qit1 = (5 - PiQ—i-l)/Qi-

Then P;, Q;, q; are positive integers except for Py
and, moreover, the values of ¢;’s are actually the
same as before. These three sequences are pure pe-
riodic with period length k if we ignore Py and qq.
Q; = 1 if and only if ¢ = tk for some integer t,
which in turn, if and only if i = 0 or g; = 2qo, which
is the largest value of ¢;’s. We know a? — b?{ =
(—=1)"*1 Q44 for all i and:

(12) max(0, V{ — Q;) < P; < V1 for i>0.
Note that (12) and (9) implies that:

(13) —2 < g —2V1/Q; <.

We also have the following two equalities that are
fundamental to our proof.

(14)
(15)

i+10i + Qip1bi—1 for i >0,
bb; = Pi+1ai + Qi+1ai_1 for 7> 0.

a; =
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All above can be found in [3, §2.1]. In particular,
(14) and (15) are special cases of [3, Exer. 2.1.2(g)].
To facilitate the proof, we introduce two more con-
ditions (K) and (L):

(K) Qn41 =2 for some n > 0.
(L) Pnt1 = qn41 for some n and it is greater than 1
if ¢ #£3,7.

(A)e(B): If £ > 4, this is an application of the
often-called Legendre’s theorem [3, Exer. 2.1.10 (b)].
Check directly for £ = 3 using 12 — 12-3 = —2 and
22-12.3=1.

(B)&(K): because a? — b0 = (—1)"1Q;41.

(B)<(C): The “«<” part is the essence of
what we have proved as above with n replaced by
ap/2—1+tk- The “=7 part is a special case of [3, Thm.
6.1.4, p. 193] and in fact, |ai/2_1+tk - bi/2_1+tk€| =
2 for all t > 0. Also see [7, §4 Lemma 1].

(K)=(J): By (13), gny1 > V{ — 2, which is
greater than 2v/¢/3 if £ > 36. Check directly for
¢ < 36.

(J)=(K): Check directly for ¢ = 3,7,14,23.
Now assume 2v/¢ /3 < Gn+1 # 2qo. The last inequal-
ity implies Q11 # 1. By (13), Qny1 < 2\/Z/Qn+1 <
3. So Qn—i—l = 2.

(K)=(L): (12) becomes —2 < P,,1 — vV < 0.
Hence by (9), gnt1 = Pnt1. Verify that if £ < 9,
then £ =2,3,5,7and Qn4+1 = ¢nt1 = 2 for even n if
¢ = 6. Furthermore, by (13), gn41 > V€ —2 > 1 for
£>9.

(L)=(K): @1,Q3 =2 for £ = 3,7, respectively.
Now we assume P,y1 = go1 > 1. By (12), v/ =
Pi1+ ¢Qpyq for some 0 < ¢ < 1. By (9),

Poy1 <2Ppi1/Qny1 +¢ < Por + 1.

Hence, 1 < Qp41 < 4. If Qni1 = 2, we are done.
Now assume @Qn+1 = 3. Then P,11/3 < ¢ < 1.
Hence, P,11 = 2. By (10), P,y2 = 4. By (11),
l= Pg_ﬂ + Qn+1Qni2 = 16 + 3Q,42. On the other
hand, £ < (P11 + Qny1)? = 25. So £ = 19,22. For
£=19,22, Q3 = 2.

(K)=(D), (E), (F),(G),(H), (I): By the period-
icity of P’s and ¢’s, we can assume n is sufficiently
large and hence we are done as we have (14) and
(15).

(F)=(K): By induction, b; > F; for ¢ > 0,
where F; is the Fibonacci numbers. The condition
on n is to ensure that F,,_1 > [V/]. Sob,_1 > |VZ].
Note that b, and b,,_1 are coprime as we have (4).
So the Diophantine equation
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(16) an = Tby +ybp_1

has only one solution such that 0 < z < /2.

Since n > 2, b, > b,_1. Hence (F) and (14)
implies that Qn4+1 # 1. So (14) shows that a, —
2b,—1 > 0, i.e., the assumption (F) provides one such
solution. Since we also have (14), Qn4+1 = 2.

(G)=(K): Note that a,_; > ap = |V¥]. The
rest is similar to that of (F)=(K).

(H), (I)=(K): Note that an+1 = ¢nt1an+an—1,
bpn+1 = Gn+1bn + bn—1. We obtain (L) by argument
similar to the previous ones. Hence (K).

(D)=(K): Check directly for n = 0. Now let
n>0. g1 < (an —1)/bs < V0 < 2go. The middle
inequality holds as a, /by, is a best approximation to
Ve IEn =1, guy1 +2 > an/b, > V0 if n > 1,
Gn+1 + 2 > an /b, and again ¢p41 + 2 > V/¢. Hence
Qn+1 > 2\/2/3 for £ > 36, which implies (K) through
(J). For ¢ < 36, it suffices to check for n < 6 by (F).

(E)=(K): Check directly if n = 0. If n > 0,
then (E)=(G)=(K).

This concludes the proof of the theorem. Read-
ers could try finding another two equivalent condi-
tions similar to (H) and (I).

Note that the extra conditions to exclude small
n can not be discarded. For example, let ¢ = 29.
Then we have b | az — 2by however 22 —y?-29 = 42
is not solvable.

Also note the dummy index n throughout the
statements and proof of the theorem is meant to be
the same except for the extra conditions. For ex-
ample, the proof of (B) = (C) actually shows that if
aZ — b2¢ = £2 for some n, then k is even and the
same n = k/2 — 1+ tk for some t > 0. Since a;/b; <
V0 for even i and a;/b; > V1 for odd i, we have the
following link alluded before: if 22 — %/ = ¢-2 is
solvable, then k = € — 1 mod 4, where £ # 2 and € =
+1.

The general picture of our theorem is that when

[Vol. 78(A),

we have (A) for £ # 2, then k is even and if n = k/2—
1 + tk for some ¢t > 0, then we have (B), (D), (E),
(K) and P,11 = Phi2 = ¢nt1 = the largest integer
less than v/ and having the same parity as £. The
last equality can be observed, say, from [6, Table 3,
p-339] and its proof is left to the readers. Among
the many families of £’s that (A) holds, we list here
four: m? —2 for m > 2, m? +2 for m > 1, 2p’ and
p%~1 for prime p = 3 mod 4 and positive i. ]

A similar theorem can be established for a non-
square even ¢ # 12 such that z?> — y?¢ = +4 has a
primitive solution, i.e., y is odd. We exclude odd ¢
to make sure that k is even. For ¢ = 12, there is
a solution x = 4, y = 1 that is not a convergent of
the continued fraction of v/12. Note that the above
condition for ¢ is satisfied if 4 | £ and 2% —y?(/4 = —1
has a solution. Among the many families of such £’s,
we list here two: m? — 4 for even m > 3, 4p?*~! for
prime p and positive 4.

References

[1] Friesen, C.: Legendre symbols and continued frac-
tions. Acta Arith., 59 (4), 365-379 (1991).

[2] Halter-Koch, F.: Uber Pellsche Gleichungen und
Kettenbriiche. Arch. Math. (Basel), 49 (1), 29-
37 (1987).

[3] Mollin, R. A.: Quadratics. CRC Press, Boca
Raton-New York-London-Tokyo (1996).

[4] Ono, T.: On certain exact sequences for I'g(m).

Proc. Japan Acad., 78A, 83-86 (2002).
[5] Ono, T.: An email to H. Stark. August 10 (2002).
[6] Rose, H. E.: A Course in Number Theory. Oxford
Univ. Press, Oxford (1988).

[ 7] Williams, H. C.: Some results concerning the near-
est integer continued fraction expansion of v/D.
J. Reine Angew. Math., 315, 1-15 (1980).

[8] Yamamoto, Y.: On the class number problem

of quadratic fields. Sugaku, 40, 167-174 (1988).
(In Japanese).





