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Abstract: In this paper, we deal with the problem of uniqueness of meromorphic functions
sharing three values, and prove some results which are improvements and extensions of many known
theorems. Examples are provided to show that the results in this paper are sharp.
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1. Introduction and main results. In this
paper, a meromorphic function means meromorphic
in the complex plane. We use the usual notations
of Nevanlinna theory of meromorphic functions as
explained in [1]. For any nonconstant meromorphic
function f(z), we denote by S(r, f) any quantity sat-
isfying S(r, f) = o(T (r, f)) for r → ∞ except pos-
sibly a set of r of finite linear measure. Let k be a
positive integer, we denote by Nk)(r, a, f) the count-
ing function of a-points of f with multiplicity ≤ k,

and denote by N(k(r, a, f) the counting function of
a-points of f with multiplicity≥ k (see [2]).

Let f and g be two nonconstant meromorphic
functions. We say that f and g share the value a
CM if f and g have the same a-points with the same
multiplicities (see [3]).

R. Nevanlinna [4], M. Ozawa [5], H. Ueda [6, 7],
G. Brosch [8], E. Mues [9], H.X. Yi [10–13], P. Li [14],
Q.C. Zhang [15] and other authors (see [2]) dealt with
the problem of uniqueness of meromorphic functions
that share three distinct values. Without loss of gen-
erality we may assume that 0, 1, ∞ are the shared
values.

M. Ozawa [5] proved the following result.

Theorem A. Let f and g be two distinct non-
constant entire functions of finite order such that f
and g share 0 and 1 CM. If δ(0, f) > 1/2, then f ·
g ≡ 1.

H. Ueda [6] removed the order restriction in
Theorem A, and proved the following theorem.

Theorem B. Let f and g be two distinct non-
constant meromorphic functions sharing 0, 1 and ∞
CM. If
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lim sup
r→∞

N(r, f) +N(r, 0, f)
T (r, f)

<
1
2
,

then f · g ≡ 1.
G. Brosch [8] proved the following result, which

is an improvement of Theorem B.

Theorem C. Let f and g be two distinct non-
constant meromorphic functions sharing 0, 1 and ∞
CM. If

lim sup
r→∞

N(r, f) +N(r, 0, f)− 1
2m(r, 1, g)

T (r, f)
<

1
2
,

then f · g ≡ 1.
In this paper, we prove the following theorem,

which is improvement and extension of the above
results.

Theorem 1. Let f and g be two distinct non-
constant meromorphic functions sharing 0, 1 and ∞
CM. If there exists a set I of infinite linear measure
such that

(1)

lim sup
r→∞
r∈I

N1)(r, f) +N1)(r, 0, f)−m(r, 1, g)
T (r, f)

< 1,

then f and g satisfy one of the following relations:

(i) f =
esγ − 1

e−(k+1−s)γ − 1
, g =

e−sγ − 1
e(k+1−s)γ − 1

,

(ii) f =
e(k+1)γ − 1
esγ − 1

, g =
e−(k+1)γ − 1
e−sγ − 1

,

(iii) f =
esγ − 1

e(k+1)γ − 1
, g =

e−sγ − 1
e−(k+1)γ − 1

,

where s and k are positive integers such that 1 ≤ s ≤
k, s and k+1 are relatively prime, γ is a nonconstant
entire function, and
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N1)(r, f) +N1)(r, 0, f) −m(r, 1, g)(2)

=
(
1 − 1

k

)
T (r, f) + S(r, f).

Example 1. Let

f(z) =
ez − 1
ez + 1

, g(z) =
e−z − 1
e−z + 1

,

Example 2. Let

f(z) =
ez − 1

−e2z − 1
, g(z) =

e−z − 1
−e−2z − 1

.

Example 3. Let

f(z) =
ez − 1

−e−z − 1
, g(z) =

e−z − 1
−ez − 1

.

It is easy to show, from the above examples, that
the assumption (1) in Theorem 1 is sharp.

As an immediate consequence of Theorem 1, we
have

Corollary 1. Let f and g be two distinct non-
constant meromorphic functions sharing 0, 1 and ∞
CM. If there exists a set I of infinite linear measure
such that
(3)

lim sup
r→∞
r∈I

N1)(r, f) +N1)(r, 0, f) −m(r, 1, g)
T (r, f)

<
1
2
,

then f is a Möbius transformation of g,

N1)(r, f) +N1)(r, 0, f) −m(r, 1, g) = S(r, f),

and f and g satisfy one of the following relations:
(i) f g ≡ 1; (ii) (f − 1) (g − 1) ≡ 1;
(iii) f + g ≡ 1.
2. Some lemmas. The following lemmas

will be needed in the proof of our theorems.
Lemma 1 ([12, Lemma 4]). Let f and g be

two nonconstant meromorphic functions sharing 0,
1 and ∞ CM. If f �≡ g, then

N(2(r, f) +N(2(r, 0, f) +N(2(r, 1, f) = S(r, f).

Lemma 2 ([15, Lemma 7]). Let f and g be
two distinct nonconstant meromorphic functions
sharing 0, 1 and ∞ CM. If f is a Möbius transfor-
mation of g, then f and g satisfy one of the following
relations:

(i) f g ≡ 1, (ii) (f − 1)(g − 1) ≡ 1,
(iii) f + g ≡ 1, (iv) (f − c) (g+ c− 1) ≡ c(1− c),
(v) f ≡ cg, (vi) f + (c− 1)g ≡ c,

where c (�= 0, 1) is a constant.
Let f and g be two distinct nonconstant mero-

morphic functions sharing 0, 1 and ∞ CM. We use

N0(r) to denote the counting function of the zeros of
f − g that are not zeros of f, f − 1 and 1/f .

The following lemma is essentially due to Q.C.
Zhang [15].

Lemma 3 (see [15, Proof of Theorem 1 and
Theorem 2]). Let f and g be two distinct noncon-
stant meromorphic functions sharing 0, 1 and ∞
CM, and let N0(r) �= S(r, f). If f is a Möbius trans-
formation of g, then

N0(r) = T (r, f) + S(r, f).

If f is not any Möbius transformation of g, then

N0(r) ≤
1
2
T (r, f) + S(r, f),

and f and g assume one of the following relations:

(i) f ≡ esγ − 1
e−(k+1−s)γ − 1

, g ≡ e−sγ − 1
e(k+1−s)γ − 1

;

(ii) f ≡ e(k+1)γ − 1
esγ − 1

, g ≡ e−(k+1)γ − 1
e−sγ − 1

;

(iii) f ≡ esγ − 1
e(k+1)γ − 1

, g ≡ e−sγ − 1
e−(k+1)γ − 1

;

where γ is a nonconstant entire function, s and k (≥
2) are positive integers such that s and k + 1 are
relatively prime and 1 ≤ s ≤ k.

Lemma 4 (see [2, Theorem 5.13], [9, Theorem
5] or [12, (18)]). Let f and g be two distinct non-
constant meromorphic functions sharing 0, 1 and ∞
CM. If f is not any Möbius transformation of g,
then

(4)

T (r, f) + T (r, g) = N(r, f) +N(r, 0, f)

+N(r, 1, f) +N0(r) + S(r, f).

3. Proof of Theorem 1 and Corollary 1.
3.1. Proof of Theorem 1. Since f �≡ g, by

Lemma 1, it follows that for a = 0, 1,∞

(5) N(r, a, f) = N1)(r, a, f) + S(r, f).

We discuss the following three cases.
Case 1. Suppose that f is a Möbius transfor-

mation of g. By Lemma 2, we know that f and g

satisfy one of the six relations in Lemma 2. We dis-
tinguish the following six subcases.

Subcase 1.1. Assume that f and g satisfy the
relation (i) in Lemma 2. Then 0 and ∞ are Picard
exceptional values of f and g. Thus, we may assume
that f = −eγ and g = −e−γ , where γ is a non-
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constant entire function. From this we obtain the
relation (i) in Theorem 1 with k = 1.

Subcase 1.2. Assume that f and g satisfy the
relation (ii) in Lemma 2. Then 1 and ∞ are Picard
exceptional values of f and g. In the same manner
as Subcase 1.1, we can obtain the relation (ii) in
Theorem 1 with k = 1.

Subcase 1.3. Assume that f and g satisfy the
relation (iii) in Lemma 2. Then 0 and 1 are Picard
exceptional values of f and g. In the same manner
as Subcase 1.1, we can obtain the relation (iii) in
Theorem 1 with k = 1.

Subcase 1.4. Assume that f and g satisfy the
relation (iv) in Lemma 2. Then c and ∞ are Picard
exceptional values of f , 1 − c and ∞ are Picard ex-
ceptional values of g. Thus, we may assume that
f = c(eγ + 1) and g = (1 − c)(e−γ + 1), where γ is a
nonconstant entire function. From this we obtain

N1)(r, f)+N1)(r, 0, f)−m(r, 1, g) = T (r, f)+S(r, f),

which contradicts the assumption (1) in Theorem 1.
Subcase 1.5. Assume that f and g satisfy the

relation (v) in Lemma 2. Then 1 and c are Picard
exceptional values of f , 1 and 1/c are Picard ex-
ceptional values of g. In the same manner as Sub-
case 1.4, we have a contradiction.

Subcase 1.6. Assume that f and g satisfy the
relation (vi) in Lemma 2. Then 0 and c are Picard
exceptional values of f , 0 and c/(c−1) are Picard ex-
ceptional values of g. In the same manner as Subcase
1.4, we also have a contradiction.

Case 2. Suppose that N0(r) �= S(r, f), and
that f is not any Möbius transformation of g. By
Lemma 3, we know that f and g satisfy one of the
three relations in Lemma 3. We distinguish the fol-
lowing three subcases.

Subcase 2.1. Assume that f and g satisfy the
relation (i) in Lemma 3. From this we obtain the
relation (i) in Theorem 1 with k ≥ 2. Since k (≥ 2)
and s are positive integers such that 1 ≤ s ≤ k, s
and k + 1 are relatively prime, we have

T (r, f) = k T (r, eγ) + S(r, f),

N1)(r, f) = (k − s)T (r, eγ) + S(r, f),

N1)(r, 0, f) = (s− 1)T (r, eγ) + S(r, f),

m(r, 1, g) = S(r, f).

From the above we get (2).
Subcase 2.2. Assume that f and g satisfy the

relation (ii) in Lemma 3. From this we obtain the

relation (ii) in Theorem 1 with k ≥ 2. In the same
manner as Subcase 2.1, we have

T (r, f) = k T (r, eγ) + S(r, f),

N1)(r, f) = (s− 1)T (r, eγ) + S(r, f),

N1)(r, 0, f) = k T (r, eγ) + S(r, f),

m(r, 1, g) = sT (r, eγ) + S(r, f).

From this we get (2).
Subcase 2.3. Assume that f and g satisfy the

relation (iii) in Lemma 3. From this we obtain the
relation (iii) in Theorem 1 with k ≥ 2. In the same
manner as Subcase 2.1, we have

T (r, f) = k T (r, eγ) + S(r, f),

N1)(r, f) = k T (r, eγ) + S(r, f),

N1)(r, 0, f) = (s− 1)T (r, eγ) + S(r, f),

m(r, 1, g) = sT (r, eγ) + S(r, f).

From this we also get (2).
Case 3. Suppose that N0(r) = S(r, f), and

that f is not any Möbius transformation of g. By
Lemma 4, we can obtain (4). Obviously,

m(r, 1, g) = T (r, g) −N(r, 1, g) + O(1)(6)

= T (r, g) −N(r, 1, f) +O(1).

From (4), (5) and (6) we get

N1)(r, f)+N1)(r, 0, f)−m(r, 1, g) = T (r, f)+S(r, f),

which contradicts the assumption (1) in Theorem 1.
Theorem 1 is thus completely proved.
3.2. Proof of Corollary 1. By Theorem 1,

from (3) we know that f and g satisfy one of the three
relations in Theorem 1 with k = s = 1. From this
we get that f and g satisfy one of the three relations
in Corollary 1.

4. Concluding remarks. By the proof of
Theorem 1, we have the following theorem, which
is a supplement of Theorem 1.

Theorem 2. Let f and g be two distinct non-
constant meromorphic functions sharing 0, 1 and ∞
CM. Then there exists a set E of finite linear mea-
sure such that

lim sup
r→∞
r 
∈E

N1)(r, f) +N1)(r, 0, f) −m(r, 1, g)
T (r, f)

≤ 1.

Obviously,

N1)(r, f) +N1)(r, 0, f)−m(r, 1, g)

≤ N1)(r, f) +N1)(r, 0, f) − 1
2
m(r, 1, g)
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≤ N1)(r, f) +N1)(r, 0, f).

From the above and proceeding as in the proof of
Theorem 1, we can prove the following results.

Theorem 3. Let f and g be two distinct non-
constant meromorphic functions sharing 0, 1 and ∞
CM. If there exists a set I of infinite linear measure
such that

lim sup
r→∞
r∈I

N1)(r, f) +N1)(r, 0, f) − 1
2 m(r, 1, g)

T (r, f)
< 1,

then f and g satisfy one of the following relations:

(i) f =
esγ − 1

e−(k+1−s)γ − 1
, g =

e−sγ − 1
e(k+1−s)γ − 1

,

(ii) f = ekγ + · · ·+ eγ + 1,
g = e−kγ + · · ·+ e−γ + 1,

(iii) f =
eγ − 1

e(k+1)γ − 1
, g =

e−γ − 1
e−(k+1)γ − 1

,

where k and s are positive integers such that 1 ≤
s ≤ k, s and k + 1 are relatively prime, and γ is a
nonconstant entire function, and

N1)(r, f) +N1)(r, 0, f) − 1
2
m(r, 1, g)

=
(
1 − 1

k

)
T (r, f) + S(r, f),

in (i), and

N1)(r, f) +N1)(r, 0, f) − 1
2
m(r, 1, g)

=
(
1 − 1

2k

)
T (r, f) + S(r, f),

in (ii) and (iii).
It is easy to see that Theorem 3 is improvement

and extension of Theorem C. By Theorem 3, we have
the following Corollary.

Corollary 2. Let f and g be two distinct
meromorphic functions sharing 0, 1 and ∞ CM. If
f is not any Möbius transformation of g, and there
exists a set I of infinite linear measure such that

lim sup
r→∞
r∈I

N1)(r, f) +N1)(r, 0, f) − 1
2 m(r, 1, g)

T (r, f)
≤ 1

2
,

then

N1)(r, f) +N1)(r, 0, f) − 1
2
m(r, 1, g)

=
1
2
T (r, f) + S(r, f),

and f and g satisfy the following relation:

f =
esγ − 1

e−(k+1−s)γ − 1
, g =

e−sγ − 1
e(k+1−s)γ − 1

,

where k = 2 and s = 1 or 2, γ is a nonconstant
entire function.

Theorem 4. Let f and g be two distinct non-
constant meromorphic functions sharing 0, 1 and ∞
CM. If there exists a set I of infinite linear measure
such that

(7) lim sup
r→∞
r∈I

N1)(r, f) +N1)(r, 0, f)
T (r, f)

< 1,

then f and g satisfy the following relation:

f =
esγ − 1

e−(k+1−s)γ − 1
, g =

e−sγ − 1
e(k+1−s)γ − 1

,

where s and k are positive integers such that 1 ≤ s ≤
k, s and k+1 are relatively prime, γ is a nonconstant
entire function, and

N1)(r, f) +N1)(r, 0, f) =
(
1 − 1

k

)
T (r, f) + S(r, f).

It is easy to see that Theorem 4 is improvement
and extension of Theorem A and Theorem B.

Example 4. Let

f(z) =
2

ez + 1
, g(z) =

2
e−z + 1

.

Example 5. Let

f(z) =
1
2

(ez + 1), g(z) =
1
2

(e−z + 1).

Example 6. Let

f(z) =
ez2 − 1
ez − 1

, g(z) =
e−z2 − 1
e−z − 1

.

It is easy to show, from the above examples, that
the assumption (7) in Theorem 4 is sharp.

By Theorem 4, we have the following:
Corollary 3. Let f and g be two distinct non-

constant meromorphic functions sharing 0, 1 and ∞
CM. If there exists a set I of infinite linear measure
such that

1
2
≤ lim sup

r→∞
r∈I

N1)(r, f) +N1)(r, 0, f)
T (r, f)

<
2
3
,

then f and g satisfy one of the following relations:

(i) f =
eγ − 1
e−2γ − 1

, g =
e−γ − 1
e2γ − 1

,

(ii) f =
e2γ − 1
e−γ − 1

, g =
e−2γ − 1
eγ − 1

,

where γ is a nonconstant entire function, and

N1)(r, f) +N1)(r, 0, f) =
1
2
T (r, f) + S(r, f).
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Corollary 4. Let f and g be two distinct non-
constant entire functions sharing 0 and 1 CM. If
δ(0, f) > 0, then f and g satisfy the following re-
lation:

f = −ekγ − · · · − eγ , g = −e−kγ − · · · − e−γ ,

where k is a positive integer, γ is a nonconstant en-
tire function, and

N1)(r, 0, f) =
(
1 − 1

k

)
T (r, f) + S(r, f).
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