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Isolation of the Weyl conformal tensor for Einstein manifolds
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Abstract:
is given, when its L™/?-norm is small.
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1. Introduction. The aim of this note is to
show that the Weyl conformal tensor of an oriented
positive Ricci Einstein n-manifold, n > 4 obeys the
following isolation theorem.

Theorem. Let (M, g) be a compact, connected
oriented Finstein n-manifold, n > 4, with positive
scalar curvature s and of Vol(g) = 1. Then, there
exists a constant C(n), depending only on n such
that if L™?-norm ||W||pn;2 < C(n)s, then W = 0
so that (M, g) is a finite isometric quotient of the
standard n-sphere of unit volume.

This theorem generalizes the isolation theorem
given by M. Singer [§].

Theorem [8]. Let (M,g) be a compact, con-
nected oriented Finstein n-manifold (n = 2m > 4)
with non-vanishing Euler characteristic x(M) and of
positive scalar curvature. Then there is a constant
e > 0, depending on n and x(M), such that if the
L2 norm |W|| a2 <€, then W =0 and so (M, g)
is isometric to a quotient of S™ with the canonical
metric up to constant.

Our theorem is valid even in odd dimension. For
related results see [2].

The idea of the proof of our theorem is based
on the Weitzenbock formula on the operator dj :
C>(Q' @ Q%) — C>(Q? ® Q%) exploited by the
first author in [5] and also on a crucial use of the
Sobolev inequality relating to Yamabe metrics.

2. Sobolev inequality. The Sobolev in-
equality of a compact Riemannian n-manifold
(M,g), n > 3, can be described in terms of Yam-
abe metrics. Refer also to [1, 4, 7].
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Consider the Yamabe functional Q, : C7°(M)
— R,

n —

W) £ Q) = {125 [ 1P,

+/M5f2dvg}/{/M fpd,ug}(Q/P),

p = (2n/n —2). The infimum of Q4(f) is called the
Yamabe constant p([g]), a conformal invariant of the
conformal class [g];

(2) u(lg]) = inf{Qy(f) | f € CT(M)}.

By the completely solved Yamabe problem there
exists for any metric g an f € C(M) satisfying

Qq(f) = u(lg]). So, the metric g = fU/""g,
called the Yamabe metric, a conformal change of

g has constant scalar curvature given by § =
11([g]) Vol(g)~ /™. Namely

(3) 1u(lg]) = § Vol(g) /™.

We take a Yamabe metric in the conformal class
[g], denoted by g and then obtain the Sobolev in-
equaility

n—1
(1) A2Vl
> s Vol(g) /™ {||f1I3» — Vol(g)~®/™|| |2},
f e HY (M)
where p = (2n/n — 2).
Normalizing volume, we have

Proposition 0.1. Let g be a Yamabe metric
on M in a conformal class and with unit volume.
Then

—1
(5) A==V IEe = s{I 10— I£113: 3},
f e HY(M).
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Remark 0.2. The inequality (5) holds when
f is replaced by any tensor T' because of the Kato’s
inequality

(6) VT[] < |VT].

Remark 0.3. Theorem 1.3 in [4] (see also
Proposition 3.1, [7]) indicates that any Einstein met-
ric must be Yamabe, provided it is not conformally
flat.

3. Proof of Theorem. We assume that W
does not vanish identically. So the Einstein metric g
is, from the above remark, a Yamabe metric in the
conformal class [g].

We normalize g by constant rescaling so that
Vol(g) = 1.

As observed in [8] by M. Singer the Weyl con-
formal tensor W satisfies

(7)

2
0= (dpdy + 0rdp)W = V*VIW + fW +{W, W}
Here {-,-} denotes a certain quadratic combination

of W.
So we get

2s _
8) IVWIIZ: + —[WliZ2 < O [W|2s
< C W pnr2 W 2o
Here we used the Holder inequality together with the
pointwise inequality
9) [({w, W}, W) < WP

for a constant C),, > 0, depending only on n. Apply-
ing the Sobolev inequality in Proposition 0.1 yields

(10) CHW I parel W70
n—2
4(n — 1)5

Assume 4 < n < 9. Then
(2/n) = ((n —2)/4(n — 1)) > 0 so that

-2
. > g,
(11) Cot W lpnsz >

4(n—1)
If, contrarily, m» > 10, it holds (2/n) —
(n—2/4(n—1)) < 0. However [|[W|2, < [|[W|3,,
since p > 2. So,

2s
> gHWH%z + (W7, =W ]32).

I e

n 4(n—1)

2 n—2 9
> (= — ——)s|[|[W||5,.
> (5~ gz )Wl

)slwiz:

Isolation of Weyl conformal tensor 141

We have thus
(13) CHW |l pes2 W25

= {(% N 4(7;1_—21))5 * 4(7;1_—21)5}HWH%”

2
=5l W2,

giving rise to |[W{|pn/2 > (2/n)Chps.
Therefore, if we put C(n) as

n—2
14 Cn)=——C 4<n<9
2
(15) =—C,, 10 < n,
n
then we get a contradiction giving the complete
proof.
4. Remarks. A pointwise isolation theorem

is similarly obtained as

Theorem 0.4. Let (M, g) be a compact con-
nected oriented Einstein n-manifold (n > 4) of scalar
curvature s > 0. If |W| < (2/n)C,s holds every-
where and strict inequality holds at a point, then
W = 0, that is, (M, g) is, up to a constant scale, a
finite isometric quotient of the standard n-sphere.

In four dimension we have a similar pointwise
isolation theorem for the (anti-)self-dual Weyl ten-
sor W for a wide class of 4-manifolds satisfying
§TW* = 0 in [6]. Remark also that M. Gursky
showed the following in [3]:

Let M be a compact, connected, oriented 4-
manifold and ¢ a metric on M which satisfies
STWT = 0 and the Yamabe constant wu([g]) > 0.
If

4
[ W vy < gD +3r0),
M
then, (i) g is anti-self-dual, i.e., W = 0, or (ii) g
is a positive Einstein metric which is either Kéhler
or the quotient of a Kéahler metric by an isometric
anti-holomorphic involution.
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